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Abstract. This paper is devoted to an exhaustive presentation of a fast 
computation numerical tool, dedicated to the simulation of transient currents 
induced by stochastic events in microelectronic devices. This is a part of a 
numerical platform, SITARe, combining a spice simulator with the semi-
analytical model presented here. The paper describes the theoretical model, 
the calibration. An instance of application illustrates the ability of the tool. 

1 Introduction  
With dimensions continuously shrinking, some disruptive effects, as those due to alpha 

intrinsic impurities, become critical for circuit performances. By testing a circuit in a 
sheltered underground environment as the LSBB (Laboratoire Souterrain à Bas-Bruit) of 
Rustrel (France), the alpha contamination level induced by radioactive impurities can be 
quantified easily. This is a considerable gain of time and precision for the evaluation of an 
alpha contamination. However, the simulation can provide an interesting complement to this 
experimental approach. Then the reliability of a circuit can be estimated by simulating a 
physical disturbance at the scale of an elementary device and by evaluating its consequences 
at the scale of several interconnected elementary devices.  

The simultaneous simulation of the disruptive phenomenon on the elementary device and 
the electrical behavior of the whole system is hard to perform with the same numerical tool. 
Then two types of numerical tools are used to simulate the crossing of an ionizing particle in 
a device, each of them corresponding to a scale of the circuit 
The first one, the TCAD simulation (as Sentaurus [1]), relies on a quantitative multi physics 
approach, at the scale of the lowest length in the electronic device. The particle is generated 
as an electron-hole distribution in the device simulated at a physical level and the transient 
current is generated at the electrodes by solving the transport equation in the semi-conductor 
volume [2, 3, 4]. If well calibrated, TCAD simulation is a realistic method for single events 
studies but it is time consuming, and generally needs high CPU resources because based on 
a multi-physics finite elements approach. Finally, TCAD simulation allows a better 

                                                   
* Corresponding author: karine.coulie@univ-amu.fr 

E3S Web of Conferences 88, 06002 (2019)  https://doi.org/10.1051/e3sconf/20198806002
i-DUST 2018

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(http://creativecommons.org/licenses/by/4.0/). 



understanding of the physics at the scale of the elementary device, but is not suitable for an 
extensive study at the cell scale.  
The second type of tools relies on the electrical behavior of the entire system or circuit. This 
approach is based on very classical Kirchhoff’s method [5]. Each elementary device is 
modeled by its electrical biased current characteristic. The impact of the collected currents in 
one or several nodes is simulated by adding some current sources in the system simulated at 
circuit level [6, 7]. In order to explore all the possibilities in term of time duration or intensity, 
the currents are randomly generated. The range of value of transient characteristics (duration 
and level of intensity) of the current can be based on numerical experiments (given by the 
TCAD simulation for instance) or by the experimental knowledge. The currents can be 
generated by a simple analytical formulation (a double exponential is often used) and so the 
physics of disruptive ionizing effect responsible for the current is lost. The results of such 
simulations allow discussions about the stability or instability of the device under current 
stresses, giving generally criteria for stability in terms of order of magnitude of the currents 
and their life time. However, they cannot help in the understanding of the physical links 
between the nature and the configuration of the disruptive effect and the stability of the cell.  

In this context, this paper is devoted to an exhaustive presentation of a fast computation 
numerical tool allowing the simulation of disruptive effects on electronic devices, from the 
particle (i.e. alpha) to the loss of functionality. SITARe (Simulation Tool with semi-
Analytical method for Transient Effects) connects the simulation of the transient disruptive 
effect induced by stochastic events, at the scale of a single junction (semi-analytical model), 
to the simulation at the scale of the electronic device (spice simulator). The disruptive 
parasitic currents are caused, by an arbitrary localized (in time and in space) generation of 
electrons-holes pairs near the functional junctions of the device. A semi-analytical model, 
allowing the fast random generation of statistical data (Monte-Carlo), without losing the 
physics of the ionizing phenomenon is proposed. The paper describes the theoretical model 
(section 2), the calibration (section 3) and an instance of application (section 4). 

2 The modeling of disruptive currents   

2.1 Geometrical set up 

The general geometry that can be taken into 
account by the model is depicted in figure 1. 
Electron-hole pairs are generated in a 
volume (called Γ in figure 1) of the silicon 
bulk.  These electric charges move through 
the volume of the substrate and can be 
collected at the sensitive surfaces.  These 
surfaces are the junctions of the device 
(drains or sources for a transistor). Only 
three are represented in figure 1 (denoted by 
Σ1, Σ2, Σ3) as an instance. The number as the 
shape of collecting surfaces is arbitrary. The 
tool makes it possible the addition of as 
collecting surfaces as necessary. Our tool 
simulates the disruptive currents induced by 

the creation of electron-hole pairs but not simulate the physical phenomenon at the origin of 
this generation (e.g. nuclear interaction). The value of νS is derived from the LET (Linear 

 
Figure 1. Schematic representation of a volume (Γ) of 
apparition of electron-hole pair (white in the drawing) 
in a silicon substrate (light grey). The three collecting 
surfaces represented here (Σ1, Σ2, Σ3) are arbitrarily 
shaped and as numerous as wanted 
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Figure 1. Schematic representation of a volume (Γ) of apparition of electron-hole pair (white in the drawing) in a silicon substrate (light grey).
The three collecting surfaces represented here (Σ1, Σ2, Σ3) are arbitrarily shaped and as numerous as wanted

currents induced by the creation of electron-hole pairs but not simulate the physical phenomenon at the origin of this
generation.

2.2. Volume charge transport modeling

The volume concentration of the species s (s = h for holes and s = e for electrons) is denoted by ns. ns(M, t) and

its associated charge current density vector
−→
js (M, t) respect conservation law at any point M in the semi-conductor

volume at any instant t. It leads to the local classical general conservation equation:

−→
∇ .
−→
js + qs

∂ns

∂t
= σ (1)

where σ(M, t) denotes the ”source term”.

2.2.1. Generation and recombination modeling

The right hand σ term of the equation (1) can be considered as a distribution. This approach is classic in electro-
dynamics, for instance, [6]. It contains the possible recombinations of holes and electrons at M at instant t as the
geometry (volume Γ) and the duration of the initial generation of the charges. Let us explain the construction of the
term σ we take into account in our model
The elementary distribution modeling an instantaneous generation at a point S is modeled as a product between the
Dirac distribution peak δ(t = 0) centered at the origin of time (t = 0) and the 3D spatial Dirac peak δ(S ) = δ(x =
xS )δ(y = yS )δ(z = zS ) at the point S with coordinates (xS , yS , zS ). The general solution of an arbitrary shape gen-
eration in time and space is then obtained by the double convolution between solution obtained for the double Dirac
distribution (called Green function) and the temporal shape of the source and the spatial shape of the volume Γ.
We choose to model the local recombination of pairs of electron-hole by two distinct local laws of different time range.
The first one is a local classical exponential recombination law. It models a recombination rate proportional to the
density ns. The second one allows modeling the tail of the current (at long time range) as a power law. It is assumed
to be proportional to ns/t. The origin and the validity of this term is discussed after, in a dedicated section.
Finally, the σ term is supposed to be as :

σ = qsδ(S )δ(t) − νs qsns(M, t) + ζsqs
ns(M, t)

t

where νs is a frequency and ζs is a dimensionless coefficient.

The relation (1) becomes

−→
∇ .
−→
js (M, t) + qs

∂ns

∂t
= qsδ(S )δ(t) − νs qsns(M, t) + ζsqs

ns(M, t)

t
(2)

3

E3S Web of Conferences 88, 06002 (2019)  https://doi.org/10.1051/e3sconf/20198806002
i-DUST 2018

2



Energy Transfer) value. This is the energy lost by the particle, by unit of length, when 
interacting with the bulk. It varies along the track and is linked to the initial energy of the 
particle [8]. The values have been extracted from the SRIM tables (Stopping in Range of Ions 
in Matter) [9]. Interacting with the semi-conductor, this particle deposits electron-holes pairs 
all along its trajectory with a linear density of νS per unit of time (S denotes the current point 
of the track). 

2.2 Volume charge transport modeling 

The volume concentration of the species s (s=h for holes and s=e for electrons) is denoted by 
nS. nS(M,t) and its associated charge current density vector ȷ"(M,t) respects the conservation 
law at any point M in the semi-conductor volume at any instant t. It leads to the local classical 
general conservation equation: 

∇𝚥% + 𝑞%
()*
(+

= 𝜎       (1) 

where σ (M,t) denotes the "source term".  

2.2.1 Generation and recombination modeling 

The σ term of the equation (1) can be considered as a distribution. This approach is classic 
in electrodynamics, for instance [5]. It contains the possible recombination of holes and 
electrons at M, at the time t as the geometry (volume Γ) and the duration of the initial 
generation of the charges. The elementary distribution, modeling an instantaneous generation 
at a point S, is modeled as a product between the Dirac distribution peak δ(t=0) centered at 
the origin of time t=0 and the 3D spatial Dirac peak  δ(S)= δ(x=xs).δ(y=ys).δ(z=zs) at the point 
S with coordinates (xs, ys, zs). The general solution of an arbitrary shape generation in time 
and space is then obtained by the double convolution between  the solution obtained for the 
double Dirac distribution (called Green function) and the temporal shape of the source and 
the spatial shape of the volume Γ. We choose to model the local recombination of electron-
hole pairs by two distinct local laws of different time range. The first one is a local classical 
exponential recombination law. It models a recombination rate proportional to the density nS. 
The second one allows to model the tail of the current (at long time range) as a power law. It 
is assumed to be proportional to nS/t. The origin and the validity of this term is discussed 
after, in a dedicated section. 𝜁%	is a parameter for numerical adjustment. Its sign is a priori 
unknown, reason we choose to write “+𝜁%”. Finally, the σ term is supposed to be as: 

𝜎 = 𝑞%𝛿 𝑆 𝛿 𝑡 − 𝜈%𝑞%𝑛% 𝑀, 𝑡 + 𝜁%𝑞%
)* 8,+

+
        (2) 

where νS is a frequency and ζS is a dimensionless coefficient.  

The relation (1) becomes  

∇𝚥% + 𝑞%
()*
(+

= 𝑞%𝛿 𝑆 𝛿 𝑡 − 𝜈%𝑞%𝑛% 𝑀, 𝑡 + 𝜁%𝑞%
)* 8,+

+
       (3) 

2.2.2 Drift diffusion model: link between current and concentration 

𝚥% 𝑀, 𝑡  is assumed to be linked to nS by a linear relation combining two process of diffusion 
in one hand and electrical drift in other hand, at any point M and any time t as:  

𝚥% 𝑀, 𝑡 = −𝐷%𝑞%∇𝑛% 𝑀, 𝑡 − 𝑞%𝜇%𝑛% 𝑀, 𝑡 𝜉(𝑀, 𝑡)       (4) 
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where qS is the electric charge of the species s, DS is the diffusivity of the species s, µS is the 
conductivity of the species s, and ξ(M,t) the local electrical field.  

2.2.3 Local complete transport equation 

Finally introducing relation (3) in  (2), it comes a Fokker-Planck equation type [10] as:  

−𝐷%∇>𝑛% 𝑀, 𝑡 ∇. (𝜇%𝑛% 𝑀, 𝑡 𝜉 𝑀, 𝑡 ) +
()*
(+

 = 𝑞%𝛿 𝑆 𝛿 𝑡 − 𝜈%𝑛% 𝑀, 𝑡 + 𝜁%
)* 8,+

+
     (5) 

In the general case, and a priori, µS as νS and ζS could be local and depend on ξ(M,t), M and 
t. Solving completely the equation (5) in such a context, needs to introduce the conduction 
bands and then to solve a set of local and non-stationary equations using a spatial mesh of all 
the structure. The 3D TCAD computation uses this approach. Because our model is based on 
the will of avoiding such a complexity, some hypothesizes are made to derive an equation 
with an analytical solution. 

2.2.4 Simplifying assumption 

1. µS as νS and ζS are supposed to be constant and uniform in the substrate. 

2. The local global electric charge is supposed to be null, that is to say that everywhere, 
the Maxwell-Gauss law writes 

∇. 𝜉 𝑀, 𝑡 = 0                (6) 

3. The electric field is not continuous. It is supposed to be null everywhere in the 
volume of the bulk. At the collecting surface, it is considered as non null, but 
assumed to be constant in intensity and oriented as the normal of the collecting 
surface. That is to say, the effect of the space charge zone of the implant is taken 
into account as if it took place at the implant surface.   

With the first hypothesis, the second term of relation (5) writes: 

∇. 𝜇%𝑛% 𝑀, 𝑡 𝜉 𝑀, 𝑡 = 𝜇%𝜉 𝑀, 𝑡 	∇𝑛% 𝑀, 𝑡 + 𝜇%𝑛% 𝑀, 𝑡 ∇. 𝜉(𝑀, 𝑡)     (7) 

The second hypothesis, included in relation (7), leads that in every point M in the volume of 
the bulk: 

∇. 𝜇%𝑛% 𝑀, 𝑡 𝜉 𝑀, 𝑡 = 𝜇%𝜉 𝑀, 𝑡 	∇𝑛% 𝑀, 𝑡          (8) 

The third hypothesis, leads that (8), writes, for every point M in the volume of the bulk : 

∇. 𝜇%𝑛% 𝑀, 𝑡 𝜉 𝑀, 𝑡 = 0          (9) 

Finally these three hypotheses allow to assume that nS(M,t) is driven by the following  
transport: 

−𝐷%∇>𝑛% 𝑀, 𝑡 + ()*
(+

 = 𝑞%𝛿 𝑆 𝛿 𝑡 − 𝜈%𝑛% 𝑀, 𝑡 + 𝜁%
)* 8,+

+
       (10) 

where DS is the diffusivity of the species s,  δ(S), δ(t) are the Dirac distributions centered at 
the point S and at time t=0, νS is the density of charges disappearing per unit of time by 
recombination, supposed constant, the latest term is a recombination term allowing to 
simulate the tail of the current pulse as a power law (ζS dimensionless). 
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2.2.5 Resolution by simplified convolution 

The classical solution, of the equation (10), for free space boundaries conditions is called the 
Green function in free space. It is denoted by g3d(MS, t) and is given by: 

𝑔BC 𝑀𝑆, 𝑡 = (D*+)E*

(FGC*)
H
I
exp	 − 8%I

FC*+
exp	(−𝜐%𝑡)          (11) 

where ηS is necessarily dimensioned as a frequency. 

In the general case, to take into account the spatial shape of the volume Γ, g3d is convolved 
with a function describing the spatio-temporal distribution of the generation of electron-hole 
pairs in the volume Γ. We assume here a last simplifying hypothesis: the process of charges 
generation is very short compared to the transport time range through the bulk. Then the 
process is considered as instantaneous and there is no need to operate a convolution on the 
time variable. νS0(M) is the number of element of species s generated per unit of volume 
around the source point S in the volume Γ. It is dimensioned as the inverse of a volume. Then 
finally, the solution for ns(M,t) is given by the spatial convolution all along the volume Γ.   

𝑛% 𝑀, 𝑡 = 𝜐N 𝑆 𝑔BC 𝑀𝑆, 𝑡 𝑑B𝑆%∈Q       (12) 

2.2.6 Discussion about the recombination modeling 

In relation (11), the factor (𝜂%𝑡)S*	modulates the classic extinction factor modeled as exp(-
νS.t). The global effect of this "law-power" factor is to produce a particular tail (at long time 
after the maximum of the current is reached) in the transient current shape. It allows to model 
- with only one coefficient - a part of the complexity of the transport reduced by the 
simplifying assumptions.  Then, the collective transport of charges in a biased medium could 
be considered as analogous as an anomalous diffusion observed in heterogeneous and 
complex media. In the diffusion studies, it is usual to consider ns(M,t) as a density of 
probability of presence and to link the  stochastic microscopic rules of displacement (as 
mobile-Immobile model for instance) to a partial differential equation. More generally, in the 
stochastic approaches of diffusion problems, the tail (at long time range) is an important 
characteristic of the associated stochastic process. For instance, this tail is associated to the 
memory properties of the process.  It has been theoretically well explored from many years 
[11]. It defines the property of stability of the stochastic distribution involved in the transport 
phenomenon.  Stable distributions of stochastic processes have a lot of applications in 
complex physics problems [12] and signal processing [13]. With the will of avoiding the 
mathematical complexity of the complete description of stochastic process with memory, we 
assume the macroscopic factor of modulation in a "law-power" form.  The parameter ηS is 
the key of this modulation. 

2.3 Charge collection 

On any surface Σ, described by its local normal vector 𝑑>Σ, in full generality, the collected 
current, 𝐼%V, of the s species, is obtained by integrating the vector 𝚥%	over the surface. 

𝐼% Σ, t = 𝚥% 𝑀, 𝑡 . 𝑑>Σ(8)V         (13) 

Σ corresponds to all the considered collecting surfaces. In the configuration depicted in figure 
1, for instance, it would correspond to the union of Σ1 and Σ2. Because of the relation (4) and 
the three hypothesis concerning the diffusion current 𝐼%X (Σ) : 
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𝐼% Σ, t = −𝐷%𝑞% ∇>𝑛% 𝑀, 𝑡 . 𝑑>Σ(8) + 𝑞%𝛺% 𝑛% 𝑀, 𝑡 . 𝑑>Σ(8)VV      (14) 
 
																																																											𝐼%X Σ, t 																																											𝐼%Z[)X Σ, t 										 

where Ωs = μs.ξΣ and ξΣ denotes the scalar amplitude of the electrical field on the collecting 
surface and normal to the surface.  

In Cartesian coordinates, the gradient of ns is easily obtained from relations (11) and (12), 
that allows estimating the collected current on the surface Σ. One originality of our approach 
lies in taking into account the two terms in the collected current formulation: diffusion and 
conduction. The relative modulation of the two terms is ensured by macroscopic independent 
numerical parameters (Ωs and Ds). For instance, if the collecting surface (the junction) is non-
biased, the diffusion term could ensure alone a non-null current, while Ωs would be chosen 
as null. Finally, the collected current needs five independent macroscopic parameters to be 
modelled: Ds, Ωs, νs, ηs, ζs. Their numerical values are fixed at the end of a numerical 
calibration process. One instance is given in section 3. 
 The quantity of charge 𝑄%(Σ, 𝑡N), passing through the collecting surface from the 
beginning of the collection ti to the time t0 is evaluated as:  

𝑄% Σ, 𝑡N = 𝐼%
+]
+^

Σ, 𝑡N 𝑑𝑡		       (15) 

Finally, the modeling of the junction is numerically calculated in a classical way by 
discretizing the surface in rectangular blocks. The only originality comes from an adaptive 
time step, based on a a priori and not a posteriori calculation. It is optimized to get a 
discretization around the current peak and release the time step in the relaxation part. The 
time Tb corresponding to the maximum of current depends on the minimal distance between 
the track and the junction, rmin. Its obtained from 𝜁% = 0 as: 

 𝑇 = B
Fa*

1 + Fa*cd^e
I

fC
− 1      (16) 

3 Calibrating the computation   
The calibration of our code 
consists in adjusting the 
parameters of our model to fit as 
well as possible the intensity 
given by a reference computation, 
here provided by a TCAD 
simulator (Sentaurus Device). It 
is a 3D Finite Elements Method 
commercial code taking into 
account the physics of the 
semiconductor in a non-
stationary mode. All the 
quantities (ns, etc..) are locally 
and temporally computed, point 
by point and time after time.  
TCAD simulation needs the 
entire knowledge of the physical 
parameters in the bulk (doping 
profiles, junction dimensions,  

 
Figure 2. Collected currents versus time for non biased junction 
(left, configuration C1) and biased junction (right, configuration 
C2), for a horizontal track. Dashed curve is obtained by TCAD, full 
curve is provided by SITARe. The parameters for the semi-
analytical model are: De = 2.5×10−4 m2/s, νe = 0.67×1010 Hz, Ωe(C1) 
= 2.3×104 Hz and Ω e(C2) = 8.4×104 Hz, η e(C1) = 0.29×1010 Hz, 
ζe(C1) = −0.21, ηe(C2) = 1.1×1010 Hz, ζe(C1) = −1.05. The shape of 
the collecting surface is Gaussian. 
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3.3. Calibrating the computation

The calibration of our computation code consists in adjusting the parameters of our model to fit as well as possible the
intensity given by a reference computation. This latest is provided by a 3D Finite Elements Method commercial code
(Sentaurus Device in our case) taking into account the physics of the semi conductor in a non-stationnary mode. All
the quantities (ns, etc..) are locally and temporaly computed, point by point and time after time. Naturally, it needs
the entire knowledge of the physical parameters in the bulk. The layout of the device is given by the manufacturer of
the simulated device (Xilinx), with all the necessary process data (doping concentration, size of implants, etc.) [18].
This layout allows generally to define roughly the geometrical function z = f (x, y) for the collecting surfaces. The ”fit
parameters” are then the physical quantities of the substrate (Ds, νs, ηs, ζs), and the global parameter,Ωs (relation 16).
Because the collecting surface (junction) can be externally polarized or not, at least two TCAD simulations (polarized
or not) are needed to determine the ”fit parameters”. Then few (one, two or three) reference-configurations for Γ are
used to refine the fitting process. To illustrate this latest, one instance of results of calibration is presented in figure 3.
The volume Γ is an horizontal line, located at 0.5 µm underneath the collecting surface, centered on the center of the
implant (the middle of the track is in front of the center of the implant), and oriented in the same direction than the
smallest dimension of the implant (x axis). It is 0.5 µm long. It corresponds to an impact of an α particle, ionizing the
bulk, with a constant LET (linear energy tranfser) corresponding to 1.5 MeV. Those values are extracted from SRIM
database [25]. The collecting surface is an N doped junction of 0.32 µm large and 1.1 µm long. This implant can be
polarized (configuration C1) or not (configuration C2) ). The nature of the collected charges is also electrons (e for
the subscripts). In this example, it is aimed to differentiate the two configurations with only the conduction parameter
( Ωe). That is to say, the calibration process is enforced to have same charges transport physics in the volume for the
two configurations (νe and De are the same). Thus, between the two configurations, there are three degrees of freedom
(ηe, ζe, Ωe).
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Figure 3. Collected currents versus time for non polarized implant (left) corresponding to configuration C1 and polarized implant (right) corre-
sponding to configuration C2 for an horizontal track. Dashed and round marked curve is obtained by TCAD, full and x-marked curve is provided
by our semi-analytical code. The parameters for the semi-analytical model are : De = 2.5×10−4 m2/s, νe = 0.67×1010 Hz,Ωe(C1) = 2.3×104 Hz
and Ωe(C2) = 8.4 × 104 Hz, ηe(C1) = 0.29 × 1010 Hz, ζe(C1) = −0.21, ηe(C2) = 1.18 × 1010 Hz, ζe(C1) = −1.05. The collected surface is meshed
with Nx = Ny = 32 and has a gaussean shape.

A very light shift on position of the maximum of the currents (∼ 2× 10−2 ns) is observed in C1 configuration between
TCAD and semi analytical results. On the other hand, in the C2 configuration the major difference between the two
curves appears in the the tail of the curve, between 0.2 and 0.4 ns. Nevertheless the global agreement seems to be
good. The choice of the level of agreement and the areas where the fit has to be optimized is determined by the aimed
application. For instance one classical approach is to fit the Imax, tmax area, where the current is maximum. To give
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3.3. Calibrating the computation

The calibration of our computation code consists in adjusting the parameters of our model to fit as well as possible the
intensity given by a reference computation. This latest is provided by a 3D Finite Elements Method commercial code
(Sentaurus Device in our case) taking into account the physics of the semi conductor in a non-stationnary mode. All
the quantities (ns, etc..) are locally and temporaly computed, point by point and time after time. Naturally, it needs
the entire knowledge of the physical parameters in the bulk. The layout of the device is given by the manufacturer of
the simulated device (Xilinx), with all the necessary process data (doping concentration, size of implants, etc.) [18].
This layout allows generally to define roughly the geometrical function z = f (x, y) for the collecting surfaces. The ”fit
parameters” are then the physical quantities of the substrate (Ds, νs, ηs, ζs), and the global parameter,Ωs (relation 16).
Because the collecting surface (junction) can be externally polarized or not, at least two TCAD simulations (polarized
or not) are needed to determine the ”fit parameters”. Then few (one, two or three) reference-configurations for Γ are
used to refine the fitting process. To illustrate this latest, one instance of results of calibration is presented in figure 3.
The volume Γ is an horizontal line, located at 0.5 µm underneath the collecting surface, centered on the center of the
implant (the middle of the track is in front of the center of the implant), and oriented in the same direction than the
smallest dimension of the implant (x axis). It is 0.5 µm long. It corresponds to an impact of an α particle, ionizing the
bulk, with a constant LET (linear energy tranfser) corresponding to 1.5 MeV. Those values are extracted from SRIM
database [25]. The collecting surface is an N doped junction of 0.32 µm large and 1.1 µm long. This implant can be
polarized (configuration C1) or not (configuration C2) ). The nature of the collected charges is also electrons (e for
the subscripts). In this example, it is aimed to differentiate the two configurations with only the conduction parameter
( Ωe). That is to say, the calibration process is enforced to have same charges transport physics in the volume for the
two configurations (νe and De are the same). Thus, between the two configurations, there are three degrees of freedom
(ηe, ζe, Ωe).
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Figure 3. Collected currents versus time for non polarized implant (left) corresponding to configuration C1 and polarized implant (right) corre-
sponding to configuration C2 for an horizontal track. Dashed and round marked curve is obtained by TCAD, full and x-marked curve is provided
by our semi-analytical code. The parameters for the semi-analytical model are : De = 2.5×10−4 m2/s, νe = 0.67×1010 Hz,Ωe(C1) = 2.3×104 Hz
and Ωe(C2) = 8.4 × 104 Hz, ηe(C1) = 0.29 × 1010 Hz, ζe(C1) = −0.21, ηe(C2) = 1.18 × 1010 Hz, ζe(C1) = −1.05. The collected surface is meshed
with Nx = Ny = 32 and has a gaussean shape.

A very light shift on position of the maximum of the currents (∼ 2× 10−2 ns) is observed in C1 configuration between
TCAD and semi analytical results. On the other hand, in the C2 configuration the major difference between the two
curves appears in the the tail of the curve, between 0.2 and 0.4 ns. Nevertheless the global agreement seems to be
good. The choice of the level of agreement and the areas where the fit has to be optimized is determined by the aimed
application. For instance one classical approach is to fit the Imax, tmax area, where the current is maximum. To give
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gate oxide thickness…), usually 
given by the manufacturer of the 
simulated device [14]. Then the 
layout allows to define roughly the 
geometrical function z = f (x, y) for 
the collecting surfaces. The fitting 
parameters are then the physical 
quantities of the substrate (Ds, νs, ηs, 
ζs), and the global parameter, Ωs 
(relation 14). Because the collecting 
surface (junction) can be externally 
biased or not, at least two TCAD 
configurations (biased or not) are 
needed to determine the fitting 
parameters. Then few (one, two or 
three) reference-configurations for Γ 
are used to refine the fitting process. 
The most convenient cases, for the 
calibration of diffusion process 
(track generated out of the junction), 
are the vertical impact (less 
favorable diffusion case) and a horizontal impact (most favorable diffusion case). One 
instance of calibration is presented in figure 2. The volume Γ is a  0.5 μm horizontal line, 
located at 0.5 μm underneath the collecting surface, centered on the center of the junction, 
and oriented in the same direction than the smallest dimension of the implant (x axis). It 
corresponds to an α particle impact, ionizing the bulk, with a constant LET corresponding to 
an initial energy of 1.5 MeV. The collecting surface is a N doped junction (0.32 μm by 1.1 
μm). This junction can be biased (configuration C1) or not (configuration C2). The collected 
charges are electrons (e for the subscripts). In this example, the two configurations are 
differentiated only with the conduction parameter (Ωe). It means that the calibration process 
is enforced to have same charges transport physics in the volume for the two configurations 
(νe and De are the same). Thus, between the two configurations, there are three degrees of 
freedom (ηe, ζe, Ωe). Note that the TCAD calculation time is around 48 hours, in a standard 
workstation computer while it is less than 1 second for the semi-analytical computation. 

4 One instance of application 
The figure 3 presents one instance of application for alpha tracking [15]. 9 junctions 

(figure 3(a)) are simulated by using SITARe. The 9 corresponding currents extracted from 
SITARe (figure 3(b)) are injected in 9 voltage controlled oscillators used for particle 
detection. By treating the 9 signals at the output of the 9 detectors, the crossing of the alpha 
particle through the 9 by 9 matrix of detectors can be reconstructed. This example illustrates 
the ability of SITARe to study the physical behavior linked to a a given device. Another 
example published in [14], illustrates the capacity of the tool to treat a huge number of data 
in order to extract simplified metrics. 

5 Discussion and conclusion 
In this paper, an intermediate numerical tool able to simulate the collection of charges, 

generated by a radiative particle, on several biased junctions is exposed. Similar approaches 

 
Figure 3. a) Configuration of the particle strike,  b) Corresponding 
currents generated by SITARe, c) Evolution of the delay parameter 
within the 3x3 matrix. 
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have been developed since many years for the study of radiation effects in electronic devices. 
Usually, these tools are dedicated to Single Event Rates prediction in a given radiative 
environment [7, 8]. In comparison, our tool does not aim at prediction but at the analysis of 
a huge number of data to extract significant metrics for reliability prediction and the analysis 
of the physical behavior of any device.  

The main limitation of our tool lies in the calibration process. We have to launch TCAD 
3D complete and transient simulations. This multi physics simulation needs a lot of 
information directly provided by the manufacturer of the technology. These information is 
often confidential and not easy to obtain. At this time, this point is difficult to overpass 
because whatever the involved model, or its numerical implementation, the calibration 
process needs to have electric characteristics used as reference such as described in the 
previous section. 

Another limitation lies in the huge quantity of data generated for a statistical study. In 
SITARe, this quantity is reduced before the electrical simulation. A post treatment is 
necessary after the electrical simulation to keep results easy to exploit. For a single collecting 
junction, one post-treatment has been successfully proposed in [16]. However, when several 
collection surfaces are involved, the solution proposed becomes ineffective because there are 
as many diagrams as collecting surface. We are working on a systematic reduction of the 
representation of the experiences, before and after electrical simulations, by considering 
some pertinent physical quantities such as energy or action at the device scale, and not only 
at the junction scale. 
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