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Abstract: In small molecule identification from tandem mass (MS/MS) spectra, input–output
kernel regression (IOKR) currently provides the state-of-the-art combination of fast training and
prediction and high identification rates. The IOKR approach can be simply understood as predicting
a fingerprint vector from the MS/MS spectrum of the unknown molecule, and solving a pre-image
problem to find the molecule with the most similar fingerprint. In this paper, we bring forward the
following improvements to the IOKR framework: firstly, we formulate the IOKRreverse model that
can be understood as mapping molecular structures into the MS/MS feature space and solving a
pre-image problem to find the molecule whose predicted spectrum is the closest to the input MS/MS
spectrum. Secondly, we introduce an approach to combine several IOKR and IOKRreverse models
computed from different input and output kernels, called IOKRfusion. The method is based on
minimizing structured Hinge loss of the combined model using a mini-batch stochastic subgradient
optimization. Our experiments show a consistent improvement of top-k accuracy both in positive
and negative ionization mode data.

Keywords: metabolite identification; machine learning; structured prediction; kernel methods

1. Introduction

In recent years, the massively increased amounts of publicly available reference tandem mass
(MS/MS) spectra in databases such as GNPS [1] and MassBank [2] have caused a revolution in small
molecule identification. In particular, the use of modern machine learning approaches has become
feasible [3], and led to the generation of a host of machine learning approaches and identification
tools such as FingerID [4,5], CFM-ID [6,7], CSI:FingerID [8], CSI:IOKR [9], magnitude-preserving
IOKR [10] ChemDistiller [11], SIMPLE [12], ADAPTIVE [13] and SIRIUS [14]. The identification rates
have witnessed a step-change upward, and consequently the use of the tools in practical work-flows
has massively increased (see, e.g., [15]).

The majority of the machine learning methods rely on the same conceptual scheme [3] introduced
with FingerID [4]: predicting molecular fingerprints from MS/MS data and finding the most similar
fingerprint from the molecular structure database. This approach has been very successful, for example,
CSI:FingerID [8] and CSI:IOKR [9] have been top performers in the most recent CASMI contests
(2016: [16] and 2017: [17]). The alternative conceptual approach for small molecule identification,
sometimes called in silico fragmentation [3], calls for predicting MS/MS spectra for a set of candidate
molecular structures and choosing the most similar predicted MS/MS spectrum to the observed
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MS/MS spectrum. This approach is used, e.g., in the non-machine learning based MetFrag [18,19]
as well as CFM-ID [6,7], which is the most notable machine learning tool relying on the in silico
fragmentation approach.

CSI:FingerID uses an array of Support Vector Machines with multiple kernel learning [20] to
individually predict each bit of the molecular fingerprint vector, whereas CSI:IOKR predicts the
molecular structures through a single structured output prediction [21] algorithm, called Input–Output
Kernel Regression (IOKR) [22], where both inputs and outputs are kernelized for the best performance.
Due to this approach, CSI:IOKR is extremely fast to train and is on par with CSI:FingerID in accuracy.
Both CSI:FingerID and CSI:IOKR make use of multiple data sources, fused using the multiple kernel
learning (MKL) algorithm ALIGNF [23] that sets importance weights to the input kernels prior learning
the fingerprint prediction models. Interestingly, CSI:FingerID [8] benefits from the MKL technique
more than CSI:IOKR [9] that provides equally good or better results using uniform weights for the
inputs, a technique referred to as uniform MKL or Unimkl. This corresponds to summing up or
averaging the input kernels.

In this paper, we bring forward two methodological contributions. Firstly, we extend the IOKR [9]
approach by formulating essentially an in silico fragmentation problem which we call IOKRreverse.
From a set of candidate molecular structures, we implicitly (through a kernel function) predict
a representation of an MS/MS spectrum for each candidate, and solve a pre-image problem to output
the molecular structure whose predicted MS/MS is the closest to the observed one. All this computation
is done through kernel matrices of the inputs (MS/MS spectra) and outputs (molecular structures).

Secondly, we introduce an approach called IOKRfusion to combine multiple IOKR and
IOKRreverse models, which arise from the use of different input and output kernels on the training
data. The models are combined by minimizing the structured Hinge loss [24], which is frequently
used in structured output learning, and corresponds to a convex (thus efficiently computable) upper
bound for maximizing top-1 accuracy over a candidate set (an NP-hard task). We bring forward
a mini-batch subgradient algorithm for the optimization. This way of aggregating multiple data
sources is sometimes called late fusion, since the model learning happens before the aggregation, as
compared to the multiple kernel learning using ALIGNF [23], which happens before model learning,
making it an early fusion approach.

The structure of the paper is as follows. In Section 2, we review the IOKR model and present
the IOKRreverse model as well as the late fusion approach for minimizing the structured Hinge loss
of the combined model. Section 3 presents our experiments with the models and Section 4 presents
the discussion.

2. Materials and Methods

In the following, we note X the set of tandem mass spectra and Y a set containing 2D molecular
structures. We consider a set of ` training examples {xi, yi}`i=1 ⊆ X ×Y .

2.1. Input–Output Kernel Regression

Input Output Kernel Regression (IOKR) [22] is a machine learning framework that can be used
for solving structured prediction problems. Structured output prediction involves the prediction of
outputs corresponding to complex structured objects, for example graphs or trees, rather than scalar
values as in regression and classification problems. Structure output prediction can also be used in the
case where we search to predict multiple interdependent outputs. Structured data can generally be
decomposed into several parts and structured prediction approaches make use of the dependencies
existing between these parts.

The IOKR framework has been used in CSI:IOKR [9] for compound structure identification
(CSI), where we search to predict the molecular structures of metabolites from their MS/MS spectra.
In [9], the similarities between the molecular structures were encoded using an output kernel function
ky : Y × Y → R. This kernel is associated with a high-dimensional vector space Fy, referred to as the
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output feature space, and a function ψ : Y → Fy that maps outputs (molecules) to the output feature
space Fy. The inner product in the feature space can be evaluated by computing the values of the
output kernel: 〈

ψ(y), ψ(y′)
〉
Fy

= ky(y, y′), ∀y, y′ ∈ Y .

IOKR solves the metabolites identification problem by first learning a function h from X to Fy

that approximates the output feature map ψ. h is learned by solving the following regression problem:

min
h∈H

`

∑
i=1
‖h(xi)− ψ(yi)‖2

Fy
+ λh‖h‖2

H, (1)

where λh > 0 is a regularization parameter. h is modeled as: h(x) = Wφ(x), ∀x ∈ X where
φ : X → Fx is a feature map from X to an input feature space Fx associated with an input kernel
k : X ×X → R measuring a similarity between MS/MS spectra. W is a linear operator from Fx to Fy.
When using this model, the solution to Problem (1) is given by:

h(x) =
`

∑
i=1

αi(x)ψ(yi), with α(x) = (λh I` + KX)
−1kx

X , (2)

where KX is the kernel matrix of kx on the training set: [KX ]i,j = kx(xi, xj) ∀i, j = 1, . . . , ` and

kx
X =

[
kx(x1, x), . . . kx(x`, x)

]
T ∈ R` collects the kernel evaluations of the training inputs against x.

Given the prediction h(xi) for an MS/MS spectrum xi, the prediction of the corresponding
molecule yi requires solving a pre-image problem. For this, we consider a subset Yxi of molecular
structures from a large database such as PubChem [25], for example the set of molecules having the
same molecular formula as xi if it is known or having a similar mass to the one measured for xi.
We then search for the nearest molecule to the prediction h(xi) in the output feature space Fy:

f (xi) = argmin
y∈Yxi

‖h(xi)− ψ(y)‖2
Fy

.

When replacing h(xi) by the solution given in (2), this can be rewritten as follows:

f (xi) = argmin
y∈Yxi

α(xi)
TKYα(xi) + ky(y, y)− 2α(xi)

Tky
Y,

where KY and ky
Y are defined similarly to KX and kx

X .

2.2. IOKRreverse: Mapping Kernel Representations of Molecules to Kernel Representation of MS/MS Spectra

In this subsection, we introduce a variant of IOKR called IOKRreverse inspired from recent works
designed to remedy the problem of hubness in high dimensional nearest-neighbour approaches [26].
Hubness in k-nearest neighbours refers to the emergence of hubs, i.e., points that are among the
k-nearest neighbours of a lot of data. The presence of hubs can have a bad impact on k-nearest
neighbours accuracy. Recently, this phenomenon observed in high dimensional search spaces has
also been identified to be an important source of error in Zero-Shot Learning [27]. In a nutshell,
Zero-Shot Learning [28,29] is a realistic machine learning setting for multi-class classification especially
meaningful when the number of classes is extremely large: it consists of learning a classifier able to
predict classes not seen during the training phase. One of the most relevant approaches to zero-shot
learning relies on a regression-based scheme very similar to IOKR. Labels are first mapped onto
a Euclidean space. Then, a function is learned to solve the regression problem in the Euclidean space
instead of solving a classification problem. Eventually, to make a prediction on a new example, a
nearest neighbour search provides the label closest to the mapped example. Recent contributions [27]
have shown that reversing the regression problem, meaning attempting to approximate the relationship
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between the outputs (in this case the mapped labels) and the inputs (for instance images) allows for
mitigating the hubness problem and provides a significant accuracy improvement. Variance of the
data on which the nearest neighbour search is performed is key to the hubness. As regression has
a shrinkage effect on mapped data impacting their variance, direct regression and reverse regression
do not have the same effect. The authors in [27] have demonstrated that reverse regression is expected
to provide smaller variance and better performance when retrieving the output objects.

As the pre-image problem in IOKR boils down to search for the nearest neighbour, we propose to
adopt a similar scheme in the context of IOKR. Instead of learning a function h that maps the input
examples to the output feature space, we learn a function g that maps the output examples to the input
feature space, in this case, molecular structures to MS/MS feature space (see Figure 1).

X Y

Fy

f︎

h ︎

Fx

φ ψ
g ︎

Figure 1. Schematic illustration of IOKR and IOKRreverse approaches. IOKR learns a function h to
map MS/MS spectra to a molecular feature space Fy, whereas IOKRreverse learns a function g to map
the molecular structures to a MS/MS feature space Fx.

To learn this function g, we solve the following optimization problem:

min
g∈G

`

∑
i=1
‖g(yi)− φ(xi)‖2

Fx
+ λg‖g‖2

G , λg > 0. (3)

This time the function g is modeled as g(y) = Vψ(y), ∀y ∈ Y , where V is a linear operator from Fy to
Fx. When replacing g(y) by this expression, the solution of the IOKRreverse optimization problem
in (3) is given by:

g(y) =
`

∑
i=1

βi(y)φ(xi), where β(y) = (λg I` + KY)
−1ky

Y.

In IOKRreverse, the pre-image problem consists of solving a nearest neighbor problem in the
input feature space Fx. Given the input feature vector of an MS/MS spectrum xi, we use the function
g learned in the previous step for predicting the input feature vectors for all the candidates in Yxi

(the candidate set of xi). We then search the closest candidate to φ(xi) in the input feature space Fx:

f (xi) = argmin
y∈Yxi

‖g(y)− φ(xi)‖2
Fx

.

Using the kernel trick in the input space, this can be rewritten under the following form:

f (xi) = argmin
y∈Yxi

β(y)TKX β(y) + kx(xi, xi)− 2β(y)Tkxi
X .
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2.3. Combining Multiple Models to Maximize Top-1 Accuracy

Combining multiple representations and data sources is a potent way of improving the predictive
capabilities of machine learning models. This task can be implemented in several ways [30],
in particular using early fusion, where data sources and representations are combined prior to learning
the model, or late fusion, where the models learned using different representations are combined
after model learning. Given multiple input kernels, a popular early fusion approach is to use multiple
kernel learning [23] to find a liner combination of the input kernels so that the combined kernel would
be similar to a given target kernel. The learned combined kernel is then used as the input kernel in the
next phase. This approach has been previously used in both CSI:FingerID [14] and CSI:IOKR [9].

Here, we propose instead to combine the set of models learned by using individual input and
output kernels after learning the models, that is, using late fusion. Several models are learned using the
IOKR and IOKRreverse approaches for different pairs of input, output kernels. For each of these models,
we can compute a compatibility score s(x, y) for an input–output pair (x, y) ∈ X × Y , for example
using the normalized cosine similarity:

s(x, y) =
〈h(x), ψ(y)〉Fy

‖h(x)‖‖ψ(y)‖ in the case of IOKR,

s(x, y) =
〈g(y), φ(x)〉Fx

‖g(y)‖‖φ(x)‖ for IOKRreverse.

We then search to learn a linear combination of the score functions obtained with IOKR and
IOKRreverse: ∑K

k=1 wksk(x, y). The goal is to learn a vector w such that the linear combination of the
scores for the correct pair (xi, yi) is separated from the combined scores of all incorrect pairs (xi, y) for
y ∈ Yxi . For this, we solve the optimization problem proposed in the structured SVM approach [31]:

min
w

J(w) =
λ

2
‖w‖2 +

1
`

`

∑
i=1

`(w, xi, yi), λ ≥ 0, (4)

where
`(w, xi, yi) = max

y∈Yxi

(
∆(yi, y)−wT(s(xi, yi)− s(xi, y)

)
is the structured Hinge loss and s(x, y) = (s1(x, y), . . . , sK(x, y))T is a vector of compatibility scores.
∆(yi, y) is a measure of distance between the two output structures yi and y. Here, we used
the Hamming loss between molecular fingerprints: ∆(yi, y) = 1

d ∑d
j=1 1 f p(yi) 6= f p(y). We solve this

optimization problem using a mini-batch subgradient descent (see Algorithm 1). This is an iterative
optimization algorithm. At each step, a mini batch B of m training examples is selected at random and
the weights are updated as follows:

w(k+1) = w(k) − t
1
|B| ∑

i∈B
5w Ji(w),

where t is the step size and Ji(w) = `λ
2 ‖w‖2 + `(w, xi, yi).
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Algorithm 1: Mini-batch subgradient descent for the score aggregation.

Initialize w(0);
for k = 1 to K do

Select mini batch B of size m from the training set;
For each pair (xi, yi) in B, find the candidate output y with the highest loss:

ȳxi = argmax
y∈Yxi

(
∆(yi, y)−wTs(xi, yi) + wTs(xi, y)

)
Update the weights:

w(k) = w(k−1) − t(λw(k−1) +
1
|B| ∑

i∈B
s(xi, ȳxi )− s(xi, yi))

end
Output wK

2.4. Kernels

In this subsection, we present the different input and output kernels used to measure the similarity
between MS/MS spectra and molecular structures, respectively.

2.4.1. Input Kernels

We considered 15 different kernels on MS/MS spectra (listed in Table 1). Among these kernels, 14
were defined based on fragmentation trees [32,33] that model the fragmentation process of the metabolites
as a tree. In this tree, each node corresponds to a peak in the MS/MS spectrum and is annotated by the
predicted molecular formula for the corresponding fragment. The edges correspond to losses and give
information about the fragmentation reactions existing between pairs of fragments. Different kernels
on fragmentation trees can be defined by comparing the nodes, the edges or the paths for pairs of
fragmentation trees. In addition, we used the recalibrated probability product kernel (PPKr) [4,8] that
models the peaks in an MS/MS spectrum as a two-dimensional, normal distribution with σm and σi the
standard deviations on the mass-to-charge ratio and the intensity. This kernel writes as:

kPPKr
x (x, x′) =

1
nx, nx′

1
4πσmσi

nx ,nx′

∑
`,`′=1

exp

(
− (m(x`)−m(x′`′))

2

4σ2
m

)
exp

(
− (i(x`)− i(x′`′))

2

4σ2
i

)
,

where m(x`) denotes the mass-to-charge ratio of the `-th peak of spectrum x and i(x`) its intensity.
nx indicates the number of peaks contained in x.

Table 1. Description of the input kernels (see [34] for further details).

Name Description

LI Loss intensity counts the number of common losses weighted by the intensity

RLB Root loss binary counts the number of common losses from the root to some node

RLI Root loss intensity weighted variant of RLB that uses the intensity of terminal nodes

JLB Joined loss binary counts the number of common joined losses

LPC Loss pair counter counts the number of two consecutive losses within the tree

MLIP Maximum loss in path counts the maximum frequencies of each molecular formula in any path

NB Node binary counts the number of nodes with the same molecular formula

NI Node intensity weighted variant of NB that uses the intensity of nodes
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Table 1. Cont.

Name Description

NLI Node loss interaction counts common paths and weights them by comparing the molecular
formula of their terminal fragments

SLL Substructure in losses
and leafs

counts for different molecular formula in how many paths they are
conserved (part of all nodes) or cleaved off intact (part of a loss)

NSF Node subformula considers a set of molecular formulaM and counts how often each of
them occurs as subset of nodes in both trees

NSF3 takes the value of NSF to the power of three

GJLSF Generalized joined loss
subformula

counts how often each molecular formula fromM occurs as subset of
joined losses in both fragmentation graphs

RDBE Ring double-bond
equivalent

compares the distribution of ring double-bond equivalent values
between two trees

PPKr Recalibrated probability
product kernel computes the probability product kernel on preprocessed spectra

2.4.2. Output Kernels

We measured similarities between molecular structures by using kernels between molecular
fingerprints. A molecular fingerprint represents the structure of a molecule as a binary vector,
where each value indicates the presence or absence of a molecular property. A molecular property can
encode the presence of a certain bond, substructure or atom configuration. As in [9], we used a linear
and a Gaussian kernel on molecular fingerprints. In addition, we considered the Tanimoto kernel [35]
that is commonly used for comparing molecular fingerprints:

ktan
y (y, y′) =

| f p(y) ∩ f p(y′)|
| f p(y) ∪ f p(y′)| =

f p(y)T f p(y′)
‖ f p(y)‖2 + ‖ f p(y′)‖2 − f p(y)T f p(y′)

.

We also proposed a modified version of the Gaussian kernel, in which the distance is replaced by
the distance between the feature vectors associated with the Tanimoto kernel:

kgauss−tan
y (y, y′) = exp

(
−γ

∥∥ψtan(y)− ψtan(y′)
∥∥2
Fy

)
= exp

(
−γ

(
ktan

y (y, y) + ktan
y (y′, y′)− 2ktan

y (y, y′)
))

.

3. Results

We used two subsets of tandem mass spectra from GNPS (Global Natural Products Social
molecular networking) [1] and MassBank [2] to evaluate the performance of our method. The first
subset contains 6974 MS/MS spectra, corresponding to 6504 structures, measured with a positive
ionization mode while the second subset contains 3578 MS/MS spectra, corresponding to 2376
structures, measured with a negative ionization mode. In the positive ionization mode, the spectra have
the following adducts: [M + H]+, [M + K]+, [M + Na]+, [M − H2O + H]+, [M]+ and [M + H3N + H]+,
while the following adducts are observed in the negative ionization mode: [M − H]−, [M]−, [M + Cl]−,
[M − H2O − H]−, [M + CH2O2 − H]− and [M + C2H4O2 − H]−. We consider separately the MS/MS
spectra measured with negative and positive ionization modes as the mechanisms of fragmentation of
positive and negative ions are different. We visualize this difference in the supplementary materials by
comparing the spectra similarities in the different ionization modes.

The spectra correspond to LC-MS/MS data measured with Quadrupole-Time of Flight (Q-ToF),
Orbitrap, Fourier Transform Ion Cyclotron Resonance (FTICR) and ion trap instruments. The MS/MS
spectra measured with different collision energies have been merged together. We considered molecular
fingerprints containing 7593 molecular properties computed using the Chemistry Development
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Kit (CDK) [36]. These fingerprints contain molecular properties from FP2 (55 bits), FP3 (307 bits),
MACCS (166 bits), Pubchem fingerprint (881 bits), Klekota–Roth (4860 bits) [37] and ECFP
(Extended-connectivity Fingerprints) (1324 bits) [38].

3.1. Experimental Protocol

The performance of the models were evaluated using 5-fold cross-validation (CV). The MS/MS
spectra corresponding to the same molecular structures were contained in the same fold. This avoids
having the case where an MS/MS spectrum in the training set has the same molecular structure as
a test example. In each round of the cross-validation, we used three folds for training the IOKR and
IOKRreverse models, one fold to train the score aggregator and the last fold as test set. We evaluated
the performance by computing the averaged top-k accuracy over the test examples. This corresponds
to the percentage of test examples for which the true molecular structure was found among the k top
ranked molecules.

The regularization parameters λh and λg were tuned on the training set of each fold among
a grid. We selected the parameters that minimize the averaged mean squared error. Regarding the
parameter λ used in the aggregation model, it was selected on the validation set using 4-CV such that
it maximized the top-1 accuracy. Regarding the parameter γ of the Gaussian and Gaussian–Tanimoto
output kernels, we took the value for which the entropy is maximal. All of the kernels have been
centered and normalized.

In the pre-image, we assumed the molecular formula of the test spectra to be known and we
considered the molecules from Pubchem with the same molecular formula as candidates.

For the Mini-batch subgradient descent, we used 30 epochs, this means that we passed on the full
training set 30 times. In each epoch, the training set was split randomly into small batches of fixed size.
The mini-batch size was selected by cross-validation on the validation set. The learning rate was set to
t = 1

λk at iteration k.
In Section 3.4, we include the predictive performance obtained with the competing method

CSI:FingerID [8]. These results were obtained using the CSI:FingerID 1.1 version with the modified
Platt scoring, for which the best predictive performance have been observed in [8]. We applied this
method on the same cross-validation folds, using four folds for training and the last fold for testing,
and the parameter c was tuned on the training sets. We used as input kernel the combination of the
15 input kernels learned with the ALIGNF algorithm [23].

3.2. Results Obtained with IOKR and IOKRreverse Using Different Kernels

We first report on using IOKR and IOKRreverse as standalone models, and selecting a single input
and output kernel at the time for the model. In Figure 2, we visualized the top-1 accuracy obtained
with the IOKR and IOKRreverse approaches using different pairs of single input and single output
kernel. The best input kernel is PPKr, consistently for both IOKR and IOKRreverse, for both ionization
modes and different output kernels. In the case of negative ionization mode, the predictive performance
obtained with IOKRreverse is worse than the ones obtained with IOKR for most of the kernels. With the
PPKr kernel, the top-1 accuracy of IOKRreverse using a linear output kernel is equal to 29.85, slightly
below the highest top-1 accuracy obtained with IOKR (30.74). In addition, the fragmentation tree
based kernels do not work well as standalone input kernels in negative ionization mode, in particular
for IOKRreverse. In the positive ionization mode, the results are different. IOKR still performs better
for most of the kernels. However, IOKRreverse is better than IOKR for three out of the four best
input kernels (NB, NI, NLI, PPKr). This improvement is especially important for the best performing
input kernel PPKr. When using this input kernel, IOKRreverse increases the top-1 accuracy by three
percentage points: 34.36 instead of 31.22 for IOKR.
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Figure 2. Heatmap of the top-1 accuracy obtained with IOKR and IOKRreverse for different input and
output kernels in the negative ionization mode (a) and the positive ionization mode (b). The rows
correspond to the different input kernels while the columns indicate the output kernels.

3.3. Weights Learned by the Aggregation Model

Next, we turn our attention to the proposed score aggregation method (IOKRfusion). We first
visualize the weights learned for the individual models in the two combined models (we have separate
negative and positive mode models). The weights are shown in Figure 3.

We first notice that all models with PPKr as the input kernel are highly weighted in the combined
model, regardless of the output kernel or whether IOKR or IOKRreverse is used. This is true for both
combined models (positive and negative modes). In addition, the high aggregation weights tend to
appear for models that are good predictors in the standalone setting as well (c.f. Figure 2), indicating
that the models have complementarity besides good individual performance.
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Figure 3. Heatmap of the weights learned during the score aggregation in the negative ionization
mode (a) and the positive ionization mode (b). The weights have been averaged over the
five cross-validation folds.

3.4. Results for Combined Models

Next, we report on the predictive performance of different aggregated models, including the early
fusion MKL approaches and the proposed IOKRfusion approach relying on late fusion. We compare
the results of score aggregation to IOKR Unimkl and CSI:FingerID. IOKR Unimkl denotes using IOKR
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with a linear combination of the 15 kernels as the single input kernel. In this combination, the same
weight, 1, is given to each input kernel. This approach has previously shown to be a competitive way
to combine input kernels for IOKR models [9]. For IOKRfusion, we show separately the top-k accuracy
of the model restricted to combining the 60 IOKR models (4*15) and the model restricted to combining
the 60 IOKRreverse models, as well as the combination including both IOKR and IOKRreverse models.
The results obtained are shown in Table 2.

We first note that IOKRfusion aggregating all scores (IOKR and IOKRreverse) gives the best
results by a significant margin in both negative and positive mode. Interestingly, the two restricted
models, IOKRfusion aggregating either IOKR scores or IOKRreverse scores, do not give a consistent
improvement over the IOKR Unimkl variants. Among the IOKR Unimkl variants, there is no clear
winner: positive and negative mode seem to favor different output kernels, but the differences are
relatively small.

Table 2. Comparison of the top-k accuracy between CSI:FingerID, IOKR Unimkl and IOKRfusion in
the negative and positive ionization modes. The highest top-k accuracies are shown in boldface.

Method Negative Mode Positive Mode

Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

CSI:FingerID 31.9 60.2 69.9 36.0 67.5 76.5

IOKR Unimkl - Linear 30.1 58.8 68.6 34.9 66.9 76.0
IOKR Unimkl - Tanimoto 31.0 60.0 69.7 35.2 67.6 76.5
IOKR Unimkl - Gaussian 31.0 60.3 69.6 35.0 67.7 76.3
IOKR Unimkl - Gaussian Tanimoto 30.9 61.0 70.5 33.9 66.5 75.2

IOKRfusion - only IOKR scores 28.4 57.0 67.2 33.5 64.4 73.4
IOKRfusion - only IOKRreverse scores 30.1 60.4 71.4 37.6 69.2 77.9
IOKRfusion - all scores 32.1 62.4 71.8 37.8 69.7 78.4

In Figures 4 and 5, we visualize the top-k accuracies of IOKR Unimkl and CSI:FingerID with the
combination of all scores (IOKRfusion) in the negative (Figure 4) and positive (Figure 5) ionization
modes. The plots in these figures also represent the top-k accuracy difference compared to the top-k
accuracy obtained with CSI:FingerID. We observe that IOKRfusion consistently obtains better results
than the other approaches. In the positive ionization mode, the score aggregation model improves
upon CSI:FingerID and all the IOKR Unimkl models by around two percentage points for top-1 to
top-10 accuracy. In the negative ionization mode, we observe a similarly consistent increase of one
percentage point compared to the other models.
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ionization mode.
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Figure 5. Plot of the top-k accuracy for IOKR Unimkl, CSI:FingerID and IOKRfusion in the positive
ionization mode.

3.5. Running Times

We evaluated the running times of the different approaches on the negative dataset using 2859
spectra in the training set and 719 spectra in the test set (see Table 3). In this evaluation, we fixed the
values of the different hyperparameters. In the score aggregation algorithm, we set the batch size to
15 and the number of epochs to 30. For the IOKR and IOKRreverse models that use a single kernel
in input, we evaluated the running times for each of the 15 input kernels and averaged the training
and test times. All of the models were trained on a single computer without any GPU acceleration or
special infrastructures.

From the table, we can see that all single kernel IOKR models are trained in less than 10 s each,
while computing the predictions (computing the pre-image) takes the majority of the time, 1–10 min
depending on the output kernel. IOKRreverse models are equally fast to train, but the predictions are
heavier to compute than for IOKR, the time consumed being in the interval of 28–35 min depending
on the output kernel. The models based on multiple kernel learning (Unimkl) are only slightly more
demanding to train, 4–12 s per model.

Computing the IOKRfusion model is comparatively very efficient after the component
models have been trained and their predictions extracted. Learning a combination of 120 models:
15 (input kernels) × 4 (output kernels) × 2 (IOKR and IOKRreverse models), took slightly over three
minutes, corresponding to around 1.5 s amortized time per model. Testing is much faster still, taking
only 0.1 s in total, starting from the scores of the individual models.

The running times for CSI:FingerID are not included, but it has been shown in [9] that IOKR
Unimkl is approximately 7000 times faster to train and is faster to test than CSI:FingerID.

Table 3. Running times for the training and the test steps.

Method Training Time Test Time

IOKR - linear 0.85 s 1 min 15 s
IOKR - tanimoto 3.9 s 7 min 40 s
IOKR - gaussian 7.2 s 8 min 38 s
IOKR - gaussian-tanimoto 7.6 s 8 min 44 s

IOKRreverse - linear 3.9 s 28 min 20 s
IOKRreverse - tanimoto 4.1 s 33 min 57 s
IOKRreverse - gaussian 7.4 s 34 min 49 s
IOKRreverse - gaussian-tanimoto 7.5 s 35 min 4 s

IOKR Unimkl - linear 4.3 s 1 min 10 s
IOKR Unimkl - tanimoto 8.7 s 7 min 52 s
IOKR Unimkl - gaussian 11.7 s 8 min 28 s
IOKR Unimkl - gaussian-tanimoto 11.9 s 8 min 42 s

IOKRfusion 3 min 3 s 0.1 s
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4. Discussion

In this paper, we presented extensions to the IOKR framework that were shown to improve the
identification rates of molecular structures from the MS/MS data. The first extension, IOKRreverse,
changes the learning setting so that the regression problem is performed in the input (MS/MS) feature
space rather than the output feature space. Using IOKRreverse as a standalone model in the positive
ionization mode improved the IOKR results, but similar behaviour was not observed in the negative
ionization mode.

The IOKRreverse model, which with a slight abuse of concepts, could be thought as a ‘in silico
fragmentation model’ in that the model implicitly predicts a feature map of an MS/MS spectrum
from the molecular structure. However, we must stress that there is no explicit fragmentation model
present in IOKRreverse. Implicit fragmentation model could be seen if the input kernel is based on
a fragmentation tree. Then, IOKRreverse can be interpreted as mapping molecular structures into a
feature space where fragmentation trees are embedded, and the pre-image problem finds the molecular
structure whose predicted fragmentation tree embedding is closest to the predicted one.

The proposed IOKRfusion approach, which combines several IOKR and IOKRreverse models
trained with individual input and output kernels, obtained the best results in both negative and
positive ionization mode, showing the potential of the approach. In particular, we note the late fusion
approach, used by IOKRfusion, improves over the early fusion MKL approach Unimkl, which was
previously found to be the best choice for CSI:IOKR [9]. In addition, the IOKRfusion approach
turned out to outperform CSI:FingerID, which relies on an ALIGNF algorithm for MKL early fusion.
The proposed IOKRfusion approach is also extremely fast to train and test. The dominant time cost is
the extraction of the predictions of the individual models to be combined. In conclusion, IOKRfusion
can be seen to maintain the computational efficiency of the IOKR framework, while improving the
small molecule identification accuracy.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/8/160/s1,
Figure S1: Boxplots of the input kernel values for pairs of MS/MS spectra having the same molecular structure.
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