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Abstract 13 

During the recent years studies of bat activity are predominantly based on ultrasound 14 

detection. However this method suffers from several biases such as different species call 15 

ranges, temporal and habitat-related variability. In order to test the bias linked to the detection 16 

of whispering gleaning bats in temperate lowland forests, we equipped several individuals of 17 

Myotis bechsteinii and Plecotus auritus with transmitters and followed them on their foraging 18 

grounds where we simultaneously recorded echolocation calls. Our results highlight the very 19 

low detectability of these species whose presence was ascertained at the recording station. On 20 

the other hand, we detected the presence of many other species. We suggest methodological 21 

recommendations for ultrasound detection whenever gleaning bat species are concerned. 22 
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Most inventories or monitoring to identify habitat selection by species are based on presence / 26 

absence data. Yet it is often difficult to associate the absence of data with the absence of the 27 

target taxon (Brotons et al., 2004; Mackenzie, 2005; Royle, Nichols & Kery, 2005). A gap in 28 

a set of presence-absence data may have important implications for the production of high-29 

quality analysis, and thus for understanding ecological phenomena, or even for implementing 30 

conservation strategies. Such analysis can have various biases that depend on the method 31 

used, the observers, the environment in which the observations take place, the viewing 32 

conditions (such as the weather), the detectability of species, the behaviour of animals at 33 

specific and/or individual levels, or the modelling approach (Nichols et al., 2000; Kéry & 34 

Schmid, 2004; Pellet & Schmidt, 2005; Gooch et al., 2006). The identification of the most 35 

appropriate method to answer questions relating to the distribution of a taxon, or the selection 36 

of habitats by that taxon, is a priority before beginning a study (Tyre et al., 2003; Mackenzie, 37 

2005; Mackenzie & Royle, 2005; Lobo et al., 2010; Tanadini & Schmidt, 2011). 38 

For bats most recent studies use ultrasonic detection, a method which overcomes the ethics of 39 

capturing protected species and has the advantage of recording all bat species emitting a 40 

signal likely to be caught by a suitable device (Parsons & Szewczak, 2009; Britzke, Gillam, & 41 

Murray, 2013; Fenton, 2013). In addition, this method can be implemented by an observer or 42 

by passive recording (Adams et al., 2012, Skalak, Sherwin & Brigham, 2012; Stahlschmidt & 43 

Brühl, 2012; Froidevaux et al., 2014; Kubista and Bruckner, 2017). However, studies based 44 

on ultrasonic detection have many methodological biases due to the equipment, the sampling 45 

effort, the acoustic identification and the measurement of activity, which amplify observer 46 

effects (Archaux et al., 2013), making it difficult to compare results (Britzke et al., 2013). In 47 

addition, the probability of detection may be relatively low and very different from one 48 

species to another (Barataud, 2012). For example, specific detection probabilities obtained 49 

over large areas by combining capture and ultrasonic detection, from the historical data of 50 
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presence and pseudo-absence varied from 0.239 for Myotis evotis to 0.532 for M. californicus 51 

(Weller, 2008). Detectability is even more different among groups of species (e.g. 52 

Eptesicus/Nyctalus, Pipistrellus and Myotis, Barataud, 2012; Archaux et al., 2013; 53 

Froidevaux et al., 2016), especially in forests where the signals are generally low due to 54 

attenuation by the foliage, so detection is better in open stands than in dense stands (Patriquin 55 

et al., 2003; Barataud, 2012). Given the different ecology of taxa and their foraging behaviour 56 

which are closely linked to their echolocation strategies (e.g. Aldridge and Rautenbach, 1987; 57 

Barataud, 2012; Müller et al., 2012), we can assume that the ultrasound detection of each bat 58 

will depend on the species, the habitat where the study takes place and the animals’ activity 59 

(related to the season and the weather). Moreover, the information is limited to the number of 60 

contacts per species at each recording station, and does not provide any estimate of the actual 61 

number of individuals (Barataud, 2012). Therefore ultrasonic detection requires an evaluation 62 

of the probability of species detection to assess its usefulness as a survey method for 63 

investigating habitat selection (Gorresen et al., 2008; Weller, 2008; Hayes, Ober & Sherwin, 64 

2009; Archaux et al., 2013; Pauli et al., 2017). 65 

Therefore, we investigated the probability of detecting echolocation calls of two whispering 66 

bats (emitting weak echolocation calls detected at 5-20 m according to Barataud, 2012 and 67 

Skiba, 2009) in forest whilst being sure of their presence by radio telemetry. We detected 68 

simultaneously other species or other individuals of the same species for checking the 69 

efficiency of the bat detector. 70 

 71 

Recording stations were located in the forest of Tronçais (Auvergne, France; 46°39'N, 72 

02°41'E). This forest is dominated by sessile oak (Quercus petraea), which is regularly 73 

accompanied by beech (Fagus sylvatica). The understory is dominated by oak (Quercus 74 

petraea), beech (Fagus sylvatica) and holly (Ilex aquifolium), more rarely by hornbeam 75 
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(Carpinus betulus) and hazel (Corylus avellana). Forest stands can reach more than 40m high, 76 

a height which can therefore limit the detection of bats from the ground when they are hunting 77 

in the canopy. The canopy is closed, and scattered bushes cover between 20% and 50% of the 78 

understory. 79 

 80 

We were able to capture three adult females of M. bechsteinii (8.5, 9.1 and 11.5 g), and six 81 

adult females of P. auritus (7.9 ± 0.3 g) using mist nets across pathways and streams in July 82 

2008 (good weather conditions, temperatures more than 10°C). Following Aldridge & 83 

Brigham (1988), we equipped them with BD2N transmitters (0.43 g, manufactured by Holohil 84 

Systems Ltd., Carp, Ontario, Canada for a total weight, including surgical glue, less than 6% 85 

of each bat weight). This study is part of a broader project licensed by the Ministry of 86 

Environment. These bats were then monitored by radio telemetry (using a Regall 2000 87 

receiver and a three element Yagi antenna manufactured by Titley Inc., Australia), and 88 

located using the “homing in” technique, a close approach method (see Amelon et al., 2009). 89 

When the animal’s position was ascertained, a second grounded operator stood underneath the 90 

foraging animal recorded all bat activity at this station for ten minutes using a Pettersson 91 

D1000x bat detector. Bats were identified using both heterodyne and time expansion (with 92 

Batsound 3.3 software) proposed by Barataud (2012). For M. bechsteinii identification was 93 

ascertained by the context of sequences following Barataud (2005). One contact was counted 94 

every five seconds for all bat species (maximum 120 contacts). Two individuals of one 95 

species recorded at the same time were therefore counted as two contacts. 96 

Using a binomial distribution [B (N, 0.5), where N is the number of radiotracked individuals] 97 

we calculated the probability of acoustic detection of both species p (x ≤ n), where n is the 98 

number of times the species should be detected given that at least one individual with a 99 
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transmitter was present at the recording station (number of possible contacts) and x the 100 

number of times it was detected (number of recorded contacts). 101 

 102 

M. bechsteinii was recorded during 10 minutes at 25 different stations (8.3 ± 4.7 per 103 

individual), four in young plots (trees under 12m), 17 in old-growth plots and four at a border 104 

of old-growth plots. P. auritus was recorded at 35 stations (5.8 ± 1.6 per individual), all in 105 

old-growth plots. 106 

During the twenty-five recording periods conducted in presence of radiotracked Myotis 107 

bechsteinii, this species was contacted four times for a total of 108 contacts (Poisson 108 

distribution mean: 0.036), with 97 contacts in one old-growth plot (Table 1); for the latter we 109 

could not discriminate the presence of one or several individuals. During the thirty-five 110 

recording periods of Plecotus auritus this species was contacted two times with only one 111 

contact (Poisson distribution mean: 4.76E-4). These detection scores are very low. The 112 

probability that Myotis bechsteinii was detected four times is p (x ≤ 4) = 4.55E-4. The 113 

probability that Plecotus auritus was detected two times is p (x ≤ 2) = 1.84E-8. Moreover, we 114 

detected bats of these two species but not necessarily the radiotracked individuals and always 115 

one animal per contact. 116 

At the sixty recording stations we also recorded at least 12 additional bat species and some 117 

Myotis sp. that were not identified (16 contacts at 8 stations). The most detected species was 118 

Pipistrellus pipistrellus (595 contacts at 47 stations), followed by Myotis myotis (32 contacts 119 

at seven stations), and Nyctalus sp. (18 contacts at only two stations). M. nattereri and M. 120 

mystacinus were detected in ten and nine periods respectively for 14 contacts each. Other taxa 121 

were occasionally detected (Table 1). 122 

 123 



 6 

Our results show that gleaning bats were only slightly detected in forest whilst they were 124 

present. In addition, the number of contacts remained very low, except for one recording 125 

station of Myotis bechsteinii with ninety-seven contacts in ten minutes, which means almost a 126 

permanent detection of the likely radiotracked individual. The ultrasound detection of these 127 

gleaner bats is reported to be difficult. Over 38,371 call sequences obtained with ground 128 

automatic detectors, Müller et al. (2012) recorded M. bechsteinii sixty-nine times (for 11530 129 

call sequences only identified as medium-sized Myotis) and Plecotus only three times. Other 130 

tests provided similar results on North American gleaning bats (Skalak et al., 2012; Kennedy, 131 

Sillett & Szewczak, 2014; Luszcz et al., 2016). This possibly explains why Kubista and 132 

Bruckner (2017) found a perplexingly high variability with batcorders placed ca. 10m apart. 133 

Most often we did not detect the target species, even if we detected other taxa, sometimes 134 

with a high number of contacts for P. pipistrellus, but most of the time with only a small 135 

number of contacts, including loud calling species such as E. serotinus. Thus, an absence of 136 

ultrasonic detection or a very small number of contacts does not necessarily mean the absence 137 

or the scarcity of the target species. It is indeed common to confuse the lack of contact with 138 

the absence of species (Mackenzie, 2005; Albert & Thuiller, 2008). We know for example 139 

that populations are often poorly estimated and are even considered absent when the 140 

detectability of species is low, as with some amphibians and birds (Mackenzie & Royle, 2005; 141 

Tanadini & Schmidt, 2011). Integrating detection bias is nevertheless an essential component 142 

for any ecological study, and generally requires methodological adjustments during field 143 

observations (Kéry & Schmid, 2004; Pellet & Schmidt, 2005), in particular for bats (Hayes, 144 

2000; Weller, 2008; Barataud, 2012; Archaux et al., 2013). 145 

Our results are mainly explained by the echolocation parameters and hunting behaviour of the 146 

two studied species. These gleaning bats emit weak echolocation calls and forage in cluttered 147 

habitats. Myotis bechsteinii and Plecotus auritus are two species of forest bats which forage in 148 
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the foliage (Plank et al., 2012). The range of their echolocation calls is low: ten meters for 149 

Myotis bechsteinii and five meters for Plecotus auritus in forest understory (Barataud, 2012). 150 

Moreover, M. bechsteinii can hunt insects directly on foliage without emitting ultrasounds 151 

(Siemers & Swift, 2006), and could prey on insects in the canopy (Plank et al., 2012), 152 

becoming inaudible to a ground observer. P. auritus catch moths flying or resting in the 153 

foliage (Robinson, 1990; Anderson & Racey, 1991; Shiel et al., 1991; Swift, 1998; Ashrafi et 154 

al., 2011), emitting then ultrasonic signals with very low range (Swift, 1998; Barataud, 2012) 155 

or hunt by passive listening (Anderson & Racey, 1993). In most situations, the two studied 156 

bats are poorly audible by a ground observer unless one animal flies near the bat detector. 157 

Our results demonstrate that it is not possible to use acoustic detection from the ground only 158 

to survey and monitor forest bats. The use of automatic detectors could be particularly 159 

relevant as they afford the installation of microphones in the canopy, as suggested by Rieger 160 

& Nagel (2007), Collins & Jones (2009) and Müller et al. (2012). However, while automatic 161 

recorders offer very long listening periods (Skalak et al., 2012; Stahlschmidt & Brühl, 2012), 162 

active detection by an observer can maximize the number of recording stations (Tyre et al., 163 

2003). Moreover, the analysis of recorded calls requires differentiating groups of species, 164 

between those which emit their signals over long distances and therefore are easily detectable, 165 

and those with a very limited signal range (a few meters) (Hayes et al., 2009; Barataud, 166 

2012). Some studies only provide generic results due to the difficulty in obtaining correct 167 

species identification of several groups of taxa, including medium-sized Myotis species 168 

(Rieger & Nagel, 2007; Collins & Jones, 2009, Barataud 2012). This has little consequence 169 

regarding Plecotus whose species share quite similar ecology (Ashrafi et al., 2011; Swift, 170 

1998). This is detrimental for Myotis species which have very different niches and population 171 

trends (Meschede & Heller, 2003; Müller et al., 2012). 172 
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In addition, we can issue two types of recommendations, according to the purpose of the 173 

study. For inventories, as detection rate is locally low for several bat species we recommend 174 

increasing the number of ground recording stations per night in the same forest. For studies of 175 

habitat selection, we support using several automatic detectors recording simultaneously bats 176 

from the ground to the canopy overnight or, depending on target species, ground observers 177 

with microphones also from the ground to the canopy for a long time (one hour or more). One 178 

limit then could be the huge amount of files to analyze and timetable and financial trade-offs 179 

will drive survey protocols depending on the objectives. 180 

 181 
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Table 1: Number of contacts of bat species at recording stations performed in the presence of 311 

Myotis bechsteinii (3 adult females, 25 stations, left – 1-4: young plots, 5-21: old-312 

growth plots, 22-25: border of old-growth plots) and Plecotus auritus (6 adult females, 313 

35 stations in old-growth plots, right) in temperate lowland forests. 314 
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1 1             1        1   5           21         

2 3     5 1    4  2          2    

3 3      1  1  23   3  1         4  4 

4   1           4       2      

5 72        1     5  1     5  1   3 

6 4          1 1  6              

7 5             7             1 

8 21             8    1       1 2  

9 35  3           9  9         1   

10   1    97       10  6            

11     1       4  11  3 2           

12   1      1     12  6            

13 1        1     13  26    1        

14 1       1   1   14      1        

15 4  1      1  3   15  1         1 1 1 

16 37   3          16 1 1            

17              17  23            

18 4 3   1        18  18            

19 4             19           2   

20 9 1    5       20  3        2    

21 7         1    21  19         2   

22 6 1   1         22  8            

23 8   2     3     23  3            

24 31 3 4         1  24  5            

25 7                      25  17 4           

a 263 8 11 5 3 108 2 9 1 28 6  26  11 1         1  

b 20 4 6 2 3 4 2 7 1 4 3  27  23   6         

             28  3   12        1 

             29  5            

             30  42         1   

             31  72       2     

             32  16            

             33  2            

             34  3  2          

             35                   1     

             a 1 332 7 3 18 2 7 23 5 13 4 10 

             b 1 27 3 2 2 2 2 2 3 8 3 5 
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