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The use of lignocellulosic biomass for animal feed or biorefinery requires the optimization

of its degradability. Moreover, biomass crops need to be better adapted to the changing

climate and in particular to periods of drought. Although the negative impact of water

deficit on biomass yield has often been mentioned, its impact on biomass quality

has only been recently reported in a few species. In the present study, we combined

the mapping power of a maize recombinant inbred line population with robust near

infrared spectroscopy predictive equations to track the response to water deficit of traits

associated with biomass quality. The population was cultivated under two contrasted

water regimes over 3 consecutive years in the south of France and harvested at

silage stage. We showed that cell wall degradability and β-O-4-linked H lignin subunits

were increased in response to water deficit, while lignin and p-coumaric acid contents

were reduced. A mixed linear model was fitted to map quantitative trait loci (QTLs) for

agronomical and cell wall-related traits. These QTLs were categorized as “constitutive”

(QTL with an effect whatever the irrigation condition) or “responsive” (QTL involved in

the response to water deficit) QTLs. Fifteen clusters of QTLs encompassed more than

two third of the 213 constitutive QTLs and 13 clusters encompassed more than 60% of

the 149 responsive QTLs. Interestingly, we showed that only half of the responsive QTLs

co-localized with constitutive and yield QTLs, suggesting that specific genetic factors

support biomass quality response to water deficit. Overall, our results demonstrate that

water deficit favors cell wall degradability and that breeding of varieties that reconcile

improved drought-tolerance and biomass degradability is possible.

Keywords: cell wall composition, cell wall degradability, drought response, quantitative trait locus, constitutive

QTL, responsive QTL, maize

INTRODUCTION

Besides its use as animal feed, lignocellulosic biomass is increasingly used for the production of
second generation biofuel or chemical building blocks (Torres et al., 2015; Vermerris and Abril,
2015; Bichot et al., 2018). Many of these uses require an efficient enzymatic degradation of the
biomass. Degradability is measured as the percentage of lignocellulosic biomass that is assimilated

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2019.00488
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2019.00488&domain=pdf&date_stamp=2019-04-25
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:matthieu.reymond@inra.fr
https://doi.org/10.3389/fpls.2019.00488
https://www.frontiersin.org/articles/10.3389/fpls.2019.00488/full
http://loop.frontiersin.org/people/530548/overview
http://loop.frontiersin.org/people/650195/overview
http://loop.frontiersin.org/people/652250/overview
http://loop.frontiersin.org/people/650204/overview
http://loop.frontiersin.org/people/50049/overview
http://loop.frontiersin.org/people/566388/overview
http://loop.frontiersin.org/people/640708/overview


Virlouvet et al. Biomass Quality and Drought Response

by an animal or converted into sugars in a biorefinery process.
A major limiting factor in these processes is the accessibility of
structural polysaccharides to the hydrolytic enzymes, which is
frequently prevented by the phenolic polymer fraction. In this
context, a major challenge for plant breeding is to limit biomass
recalcitrance without affecting crop yield, pest resistance, or
drought tolerance (van der Weijde et al., 2013).

Lignocellulosic biomass consists primarily of cell wall
polymers. Studies (reported in Vogel, 2008) have shown that
grass cell walls are composed of cellulose, hemicelluloses, and
phenolics approximately in a 45-45-10 ratio. These values vary
between developmental stages, plant tissues and genotypes.
Cell wall degradability was shown to be strongly influenced
by the content of phenolic compounds such as lignin and
p-hydroxycinnamic acids (Hartley, 1972; Grabber et al., 1998;
Casler and Jung, 1999; Méchin et al., 2001; Jung and Casler, 2006;
Zhang et al., 2011; El Hage et al., 2018). In addition, the nature
of the linkages between lignin subunits also plays an important
role as shown for instance by the negative correlation between
the amount of ß-O-4-linkages in the lignin polymers and cell wall
degradability among samples with comparable lignin contents
(Zhang et al., 2011). The influence of the proportion of guiacyl
(G), syringil (S), and p-hydroxyphenyl (H) lignin subunits on
cell wall degradability is still controversial, and conclusions differ
depending one studies lignified cell walls (Grabber et al., 2003;
Jung and Casler, 2006; de Oliveira et al., 2015) in dicotyledons
(Baucher et al., 1999; Casler and Jung, 1999; Goujon et al.,
2003), or in grasses (Méchin et al., 2000; Zhang et al., 2011;
El Hage et al., 2018).

Grasses are particularly rich in p-hydroxycinnamic acids,
among which p-coumaric acids are found mainly esterified
(PCAest) to S lignin units (Ralph et al., 1994; Grabber et al.,
1996; Lu and Ralph, 1999) and ferulic acids (FA) associated
with hemicelluloses and/or lignins through ester (FAest) or
ether (FAeth) linkages, respectively (Hatfield et al., 2017). In
maize, PCAest content was shown to be negatively correlated
with cell wall degradability (Gabrielsen et al., 1990; Méchin
et al., 2000; Taboada et al., 2010; Zhang et al., 2011; El
Hage et al., 2018) and FA content might also affect cell wall
degradability (Barrière et al., 2005).

Biosynthesis and regulatory pathways for cell wall
components have been intensively studied (Boerjan et al.,
2003; Vanholme et al., 2008; Riboulet et al., 2009; Gray et al.,
2012) and numerous genes encoding critical enzymes and
transcription factors have been identified. In addition, over
the last two decades, over 400 quantitative trait loci (QTLs)
underlying natural variation in cell wall composition and
degradability have been identified in maize using mainly bi-
parental populations (Lübberstedt et al., 1997b,c; Bohn et al.,
2000; Barrière et al., 2001, 2008, 2012; Méchin et al., 2001;
Roussel et al., 2002; Cardinal et al., 2003; Fontaine et al., 2003;
Papst et al., 2004; Cardinal and Lee, 2005; Krakowsky et al., 2005,
2006; Riboulet et al., 2008a; Wei et al., 2009; Lorenzana et al.,
2010; Torres et al., 2015; Leng et al., 2018). A QTL meta-analysis
identified 26 meta-QTLs for cell wall degradability and 42
meta-QTLs for cell wall (Truntzler et al., 2010), suggesting a
complex genetic determinism, which however, might be reduced

to a smaller number of genomic regions. Interestingly, only few
major QTLs (which explained more than 20% of the observed
variation) for cell wall-related traits have been found (Roussel
et al., 2002; Courtial et al., 2013) and only less than half of all
the meta-QTLs for cell wall degradability co-localized with
meta-QTLs for cell wall composition, underscoring the fact that
cell wall composition and degradability have complex genetic
determinisms. Despite the fact that yield and degradability are
often negatively correlated (Barrière et al., 2004), breeding forage
maize hybrids for increased cell wall degradability, without
impacting yield turned out to be possible (Baldy et al., 2017).

In the context of global climate change, many scenarios
predict more frequent drought periods, which, together with
dwindling fresh water supplies, are expected to have strong
impacts on crop yields (Samaniego et al., 2018; Webber
et al., 2018). Water deficit affects, within minutes, physiological
processes underlying leaf and root growth, such as cell division,
hydraulics, cell wall mechanics, and primary and secondary
metabolism., This is likely to have long lasting consequences
(days to months) on whole-plant transpiration and water uptake
and as a result, on biomass yield and quality (for reviews
see Reynolds and Langridge, 2016; Tardieu et al., 2018). In
addition, crop plants under water deficit often contain excess
carbon and roots and reproductive organs frequently appear
to experience sink limitation. Furthermore, under agronomical
conditions, deregulation of the synchronization of male and
female flowering time are often reported under water deficit,
leading to grain abortion and massive yield loss (Denmead and
Shaw, 1960; Reynolds and Langridge, 2016; Turc and Tardieu,
2018). The genetic determinism of drought tolerance in maize
grain yield has been extensively studied (Ribaut and Ragot, 2007;
Collins et al., 2008; Ribaut et al., 2010) and interestingly, recent
reports showed that water deficit positively impacts cell wall
degradability in maize (Emerson et al., 2014; El Hage et al.,
2018), sorghum (Perrier et al., 2017), miscanthus (Emerson
et al., 2014; van der Weijde et al., 2017), and sugarcane (dos
Santos et al., 2015). However, so far, no QTL for cell wall
degradability or composition in response to water deficit have
been reported.

In the present study, we performed QTL mapping using
a maize recombinant inbred line (RIL) population derived
from a cross between two parental inbred lines, F271 and
Cm484, to explore the genetic factors underlying variation
of cell wall-related traits in response to water deficit in
maize plant. This population was cultivated in field trials
over three consecutive years under both irrigated and non-
irrigated scenarios. Firstly, we determined the impact of a non-
irrigated scenario on cell wall-related traits using maize stover
and dedicated near infrared spectroscopy (NIRS) predictive
equations. Secondly, analyzing jointly the data from both
irrigation scenarios, we were able to demonstrate that allelic
variation (F271 vs. Cm484) at several loci were responsible
for observed phenotypic variation whatever the irrigation
scenario (constitutive QTLs, Collins et al., 2008). In addition,
we also pointed out loci where allelic variation impacted the
variation of quantified traits in response to irrigation scenario
(responsive QTLs).
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MATERIALS AND METHODS

Plant Materials and Field Experiments
A RIL population consisting of 267 lines was developed at
INRA by single seed descent (SSD) for 6 generations from
a cross between maize inbred early lines F271 (INRA line
bred from Canadian dent; Barrière et al., 2001; Roussel et al.,
2002) and Cm484 (Canada-Morden−1989; Méchin et al., 2000;
Barrière et al., 2007). All the RILs were planted in a randomized
augmented bloc design with one replicate of both parents in each
bloc over 3 years (2013, 2014 and 2015). Field trials were carried
out in the South of Montpellier (France). This localization is
under a Mediterranean climate characterized by warm and dry
summers and humid winters. Over the last 30 years, the annual
mean temperature and precipitation were 15.2◦C and 629mm,
respectively. The mean summer temperature was 29.3◦C (July)
and over the last years, a tendency toward dryer summers was
observed. The water deficit was estimated at 180mm in June and
July and around 100mm in May and August (Delalande et al.,
2017). The soil was of a stony loamy-clay nature, with a depth
reaching up to 200m. Plants were grown in open field under
Irrigated (I) and Non-Irrigated (NI) conditions. Blocs of I and
NI were adjacent in the same experimental fields each year and
localized 15–20m apart in order to prevent irrigation of the non-
irrigated blocs. Fifteen repetitions in 2013 and eight repetitions
in 2014 and 2015 were cultivated in each scenario. Under the I
scenario, the water was supplied with a mobile ramp of sprinklers
twice a week (30mm of water supplied every time), and under the
NI scenario water was no more supplied when the 5th leave of
INRA check early line F2 showed the 5th leave ligulated until 14
days after all the RILs flowered. Each line was grown in a single
4.20m row with 0.80m between rows and a planting density of
80,000 plants/ha. At the silage stage, ears with husks and peduncle
were removed manually from the plants just before the stover
plots were machine-harvested with a forage chopper. In the field,
plant height and biomass yield were determined. A representative
sample of nearly 350 g fresh chopped stover per plot was collected
for dry-matter (DM) content estimation and biochemical and
NIRS analyses. All samples were dried in a forced-air oven at
55◦C and ground with a hammer mill (1 mm grid).

Establishment of Accurate NIRS Predictive
Equations and Biochemical Analyses
Cell wall biochemistry-related traits of all the harvested dried
samples were estimated using NIRS predictive equations. To do
so, these equations were developed at INRA Versailles for maize
plants without ears harvested at silage stage. Depending on the
trait, 60–200 samples of maize stover from inbred lines harvested
at silage stage were biochemically analyzed to calibrate and to
validate the established equations. Out of these 200 samples, 49
were selected from the F271 × Cm484 RIL progeny evaluated in
the I (23 samples) and NI (26 samples) scenarios over 3 years (6
and 9 samples from the I and NI scenarios, respectively, in 2013;
14 and 11 samples from the I and NI scenarios, respectively, in
2014; 3 and 6 samples from the I and NI scenarios, respectively,
in 2015). This selection was carried out to make the predictive
equations accurate for the samples harvested in the present

study. Calibration equations were validated using a set of 20–40
calibration samples for all traits, except for neutral detergent fiber
(NDF), acid detergent lignin (ADL.NDF), and polysaccharides
(CL.NDF and HC.NDF), which were obtained by the Goering
and Van Soest (1970) using a cross validation approach (Table 1).

Concerning the biochemical analyses performed on the
calibration and validation sets, cell wall residue (CWR)
was obtained with a water/ethanol extraction (Soxhlet).
NDF, acid detergent fiber (ADF), ADL, cellulose [CL.NDF
= 100∗(ADF-ADL)/NDF] and hemicellulose [HC.NDF =

100∗(NDF-ADF)/NDF] contents were estimated according to
Goering and Van Soest (1970). Lignin content in the cell wall
(KL.CWR) was estimated using the Klason method according
to Dence (1992). Esterified and etherified p-hydroxycinnamic
acids (PCAest, FAest, FAeth) contents were estimated after
alkaline hydrolysis of the CWRs (Méchin et al., 2000; Culhaoglu
et al., 2011). The monomeric structure and composition of
lignin (units β-O-4.H, β-O-4.S, and β-O-4.G) was determined
through the oxidation of CWRs by thioacidolysis (Lapierre
et al., 1986). Glucose (GLU), Xylose (XYL), and Arabinose
(ARA) contents were determined by acid hydrolysis (Updegraff,
1969; Harholt et al., 2006). The in vitro dry matter degradability
(IVDMD) and cell wall residue degradability (IVCWRD) were
estimated according to a modified protocol derived from Aufrère
and Michalet-Doreau (1983). Briefly, 30mg of dry matter was
pretreated in an acid solution (HCL 0.1N) at 40◦C for 24 h after
which 2M NaOH was added to terminate the reaction. The
sample was then incubated in a cellulase solution (Cellulase
Onozuka R10 8mg.ml−1, NaAc 0.1M pH 4.95, Na2CO3 0.4%)
at 50◦C during 72 h. After centrifugation, the pellet was washed
with water and frozen before lyophilization and the weight loss
was expressed as a percentage of the initial weight (30 mg).

Statistical Analyses of the Cell Wall Dataset
All statistical analyses were performed using R software (R Core
Team, 2014). To eliminate the environmental effects, single-plot
values were corrected by a subtraction of the best linear unbiased
prediction (BLUP) value of the bloc effect for each line, obtained
using the following mixed linear model (1):

Yijkl = µ + gi(1− ti)+ Citi + yj + ek + Bjkl + giyj

+giek + yjek + Eijkl (1)

where Y ijkl is the phenotypic value of the ith line in the jth year,
in the kth irrigation scenario and localized in the lth bloc in field.
In this model, µ is the intercept. The genetic effect of line i is
considered as fixed and noted Ci if i was one of the two parental
lines used as checks and as random and noted gi if i was one of
the RILs. The parameter ti was set to one for checks and zero
otherwise. The genetic effects of the RILs were assumed to be
independent and identically distributed. The Bjkl bloc effects were
considered as random, as well as the interactions between the gi
genetic and the yj year or the ek irrigation scenario effects. The
year yj and irrigation scenario ek effects as well as the interaction
between them yejk were considered as fixed effects.

A principal component analysis (PCA) was carried out in
order to reduce the number of traits to describe the variation of

Frontiers in Plant Science | www.frontiersin.org 3 April 2019 | Volume 10 | Article 488

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Virlouvet et al. Biomass Quality and Drought Response

T
A
B
L
E
1
|
C
h
a
ra
c
te
ris
tic
s
o
f
N
IR
S
c
a
lib
ra
tio

n
s
d
e
ve
lo
p
e
d
fo
r
c
e
ll
w
a
ll
tr
a
its

in
st
o
ve
r
m
a
iz
e
p
la
n
ts

w
ith

o
u
t
e
a
rs
.

C
a
te
g
o
ri
e
s

T
ra
it
s
a

U
n
it
s

R
a
n
g
e

C
a
li
b
ra
ti
o
n

V
a
li
d
a
ti
o
n

n
r

n
r

S
E
C
V

C
e
ll
W
a
ll
re
si
d
u
e
s

N
D
F

%
D
M

4
3
.3
4
–6

9
.2

5
7

0
.9
8
3

0
0
.9
5

1
.7
7

D
e
g
ra
d
a
b
ili
ty

IV
D
M
D

%
D
M

3
2
.3
–6

6
.9

1
6
0

0
.9
6
3

3
8

0
.9
3

2
.2
2

IV
C
W
R
D

%
C
W
R

2
5
.6
7
–5

1
.0
2

1
6
1

0
.8
0
5

3
8

0
.8
1

3
.2
8

L
ig
n
in

c
o
n
te
n
t

K
L
.C
W
R

%
C
W
R

1
1
.0
6
–1

8
.6
7

1
6
7

0
.8
5
2

4
0

0
.8
3

0
.7
7

A
D
L
.N
D
F

%
N
D
F

3
.2
1
–6

.9
1

5
7

0
.9
2
5

0
0
.8
3

0
.4
8

L
ig
n
in

st
ru
c
tu
re

b
O
4

µ
m
o
le
g
−
1
K
L

2
5
5
–1

,0
2
3

1
6
8

0
.8
9
3

4
0

0
.9
0

8
6
.0
0

b
O
4
.H

µ
m
o
le
g
−
1
K
L

3
–2

8
.5

1
6
6

0
.6
3
6

4
0

0
.7
1

4
.0
8

b
O
4
.G

µ
m
o
le
g
−
1
K
L

1
3
2
.1
5
–5

6
4
.2
4

1
6
6

0
.8
6
9

4
0

0
.8
8

5
0
.8
0

b
O
4
.S

µ
m
o
le
g
−
1
K
L

1
1
9
.0
6
–5

4
0
.3
9

1
6
6

0
.8
5
5

4
0

0
.8
6

5
2
.4
0

S
/G

0
.4
6
–1

.6
8

1
6
6

0
.7
0
9

4
0

0
.6
2

0
.1
9

p
-H

yd
ro
xy
c
in
n
a
m
ic
a
c
id
s

P
C
A
e
st

m
g
g
−
1
C
W
R

4
.6
6
–1

7
.9
4

1
6
4

0
.8
6
4

3
9

0
.7
8

1
.7
1

FA
e
st

m
g
g
−
1
C
W
R

2
.0
5
–6

.9
2

1
6
4

0
.8
0
2

3
9

0
.8
3

0
.5
4

F
a
e
th

m
g
g
−
1
C
W
R

1
.5
9
–3

.8
8

1
6
4

0
.4
5
1

3
9

0
.4
5

0
.3
1

S
tr
u
c
tu
ra
ls
u
g
a
rs

C
L
.N
D
F

%
N
D
F

4
3
.4
2
–5

4
.4
8

5
7

0
.9
0
3

0
0
.7
8

1
.5
2

G
L
U

%
C
W
R

2
8
.7
3
–4

3
.3
5

8
1

0
.8
3
5

1
9

0
.7
6

3
.2
2

H
C
.N
D
F

%
N
D
F

3
9
.6
7
–5

1
.8
9

5
7

0
.9
0
5

0
0
.7
7

1
.8
1

A
R
A

%
C
W
R

3
–4

.8
4

8
1

0
.8
4
3

1
9

0
.7
7

0
.2
6

G
A
L

%
C
W
R

0
.6
–2

.0
6

8
1

0
.9
4
5

1
9

0
.9
3

0
.1
5

X
Y
L

%
C
W
R

1
6
.6
4
–2

3
.3
9

8
1

0
.6
2
3

1
9

0
.7
0

1
.0
8

a
N
D
F,
n
e
u
tr
a
l
d
e
te
rg
e
n
t
fib
e
r;
IV
D
M
D
,
in
vi
tr
o
d
ry
m
a
tt
e
r
d
e
g
ra
d
a
b
ili
ty
;
IV
C
W
R
D
,
in
vi
tr
o
c
e
ll
w
a
ll
re
s
id
u
e
s
d
e
g
ra
d
a
b
ili
ty
;
A
D
L
,
a
c
id
d
e
te
rg
e
n
t
lig
n
in
;
K
L
,
K
la
s
o
n
lig
n
in
;
P
C
A
e
s
t,
e
s
te
ri
fie
d
p
a
ra
-c
o
u
m
a
ri
c
a
c
id
;
F
A
e
th
,
e
th
e
ri
fie
d
fe
ru
lic

a
c
id
;

F
A
e
s
t,
e
s
te
ri
fie
d
fe
ru
lic

a
c
id
;
C
L
,
c
e
llu
lo
s
e
;
H
C
,
h
e
m
ic
e
llu
lo
s
e
;
G
L
U
,
g
lu
c
o
s
e
;
A
R
A
,
a
ra
b
in
o
s
e
;
G
A
L
,
g
a
la
c
to
s
e
;
X
Y
L
,
xy
lo
s
e
.

Frontiers in Plant Science | www.frontiersin.org 4 April 2019 | Volume 10 | Article 488

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Virlouvet et al. Biomass Quality and Drought Response

cell wall related traits over the corrected data set. The R package
FactoMineR was used for the PCA (Lè et al., 2008).

Corrected data for each trait for the RILs were then used to
estimate variance components and trait heritabilities, using the
following model (2):

Y ′
ijk = µ + gi + gyij + geik + yj + ek + yejk + Eijk (2)

where Y′
ijk is the corrected phenotypic value of the “i”th line in

the “j”th year, in the “k”th irrigation scenario. In this equation,
the gi represents the genetic effect, the yj and the ek the year and
irrigation scenario effects, and the Eijk the residual error effect.

Broad sense heritability was calculated using the variance
components estimated with the linear model (2) where the gi
genetic effects and the interactions between the gi genetic and
the yj year or the ek irrigation scenario effects were considered
as random effects, as follows:

h2 = σ2g/[σ
2
g + σ2ge/k+ σ2gy/j+ σ2E/(obs/i)]

where σ2g represents the genetic variance, σ2ge the variance of

interaction between genotype and irrigation scenario, σ2gy the

variance of the interaction between genotype and year, σ2E the
residual error variance item, and k, j, obs, i the number of
irrigation scenarios, year, observations and lines, respectively.
The ratio “obs/i” therefore corresponds to the average number
of observations per RIL over the whole experimental design.

The corrected data obtained with the model (1) were also used
to compute least-square means (ls-means) of each recombinant
inbred line using specific models. To obtain ls-means for
lines using both irrigation conditions jointly (“all”), we used a
linear model including genotype, year, irrigation scenario and
the interaction between year and irrigation scenarios effects,
all considered as fixed. For the ls-means of the irrigation
conditions separately (“I” and “NI” for irrigated and non-
irrigated, respectively), we used the linear model including only
the genotype and year effects of the corrected data for irrigated or
non-irrigated conditions, respectively.

Genotyping and Genetic Map Construction
Leaf tissues were collected from all 261 RILs and parental inbred
lines F271 and Cm484 and freeze-dried at −70◦C. Genomic
DNA was extracted using a procedure derived from Dellaporta
et al. (1983), Michaels et al. (1994), and Tai and Tanksley (1990).
Genomic DNA was used for genotyping using the genotyping
by sequencing (GBS) approach (Elshire et al., 2011). Briefly, the
genomic DNA was digested with the restriction enzyme ApeK1
and used to construct GBS libraries in 96-plex. The GBS libraries
were sequenced by Illumina HiSeq2000 and SNP calling was
performed using the TASSEL GBS pipeline with B73 as the
reference genome (Glaubitz et al., 2014).

Initially, 955,720 markers were identified well-distributed
on maize chromosomes 1 to 10. Among those, we selected
2,806 polymorphic markers between parental lines than 15%
missing data among the RILs. These markers were then used
to construct the linkage map using R scripts interacting with
the CarthaGene software (de Givry et al., 2005), as described

in Ganal et al. (2011). Specifically, a scaffold map of 1,775 cM
containing 20 to 39 markers per chromosome was first built with
very stringent criteria for order robustness (minimum spacing
of 5cM between adjacent markers), and then densified with
additional markers to produce a framework map containing 62
to 161 markers per chromosome while keeping a LOD threshold
for order robustness greater or equal to 3.0. In total, 1,000
markers were retained following this procedure. The total length
of the framework map was 2,355 cM with an average spacing
of around 2.4 cM. By looking a posteriori at singletons in the
dataset, we verified that the increase of the genetic map length
when saturating the scaffold with additional markers was not
attributable to genotyping errors, but more likely to the rather
high level of missing data, which introduces a bias in the
imputation procedure (EM algorithm) of CarthaGene as a result
of genetic interference.

QTL Detection
To integrate the response to water treatment, single-marker
analysis was performed on the corrected data for each trait
and the coordinates of the PCA components. The genome was
scanned with the following mixed linear model (3):

Y ′
ijk = µ + gi + yj + ek + yjxek +mpxip +mpxekpxip + Eijkp (3)

where Y′
ijkl is the corrected phenotypic value of the line i in the

year j, in the irrigation scenario k and for the reference allele p
at the tested marker. In this model, µ is the intercept and gi. the
residual genetic effect, which not accounted for by the marker
effect, was considered random. The 1,000 markers identified
on the genetic map were analyzed one by one using their “p”
allele genotype for all the lines. The markers with a p-value
inferior to 0.005% were selected for the marker effect (named
constitutive QTL) and for the interaction between the marker
and the irrigation scenario (named responsive QTL). All the
adjacent markers along the genetic map with a p-value inferior to
0.005%were considered to form aQTL and the confident interval
of each QTL was then estimated by the distance of the most
distant markers with a p-value inferior to 0.005%. To estimate
the percentage of variance (r²) explained by each detected QTL,
we used the linear model (4) including the irrigation scenario, the
marker and the interaction between themarker and the irrigation
scenario effects on the ls-mean data per irrigation scenario.

Y ′
ki = µ + ek +mp +mpxek + Eki (4)

where Y′
ik is the corrected phenotypic value of the line i in the

irrigation scenario k.
To calculate the r² explained by the QTL, we calculated the

difference between r2 from the full model (4) and the r² from the
model (4) without themarker for the constitutive QTL or without
the interaction between themarker and the irrigation scenario for
the responsive QTL.

To calculate the effect of the QTL, we used the ls-mean
data of both irrigation conditions jointly and separately (“I”
and “NI” for irrigated and non-irrigated, respectively). For the
constitutive QTL, the QTL effect was estimated at the marker
position as the difference between the two parental allele effects
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divided by the range of variation of the trait on the recombinant
inbred line population. For the responsive QTL, obtained with
the “mp x ek” factor, the QTL effect was calculated at the
marker position by dividing the difference of the irrigation
scenario response between the two parental allele with the range
of variation of the response of the trait on the recombinant
inbred progeny. Ls-mean data for every traits obtained for both
irrigation conditions separately have been also used to detect
QTL following standard MQM procedure in R proposed by
Broman and Sen (2009).

RESULTS

Two Parental Inbred Lines Have
Contrasting Cell Wall Composition,
Degradability, and Responses to Irrigation
To quantify 19 traits related to cell wall composition and
degradability, we established predictive NIRS equations using
maize stover samples harvested at silage stage over 3 years under
both irrigation scenarios. The range of variation among the
calibration samples was high for most of the traits and allowed
for robust calibrations (Table 1) as shown by the high r values
(ranging from 0.70 to 0.95) for all the traits except for S/G ratio (r
= 0.62) and FAeth (r = 0.45). These equations therefore allowed
a reliable prediction of the cell wall composition and structure of
the samples from the RIL progeny.

Agronomic and cell wall-related traits were then evaluated
for the two parental inbred lines F271 and Cm484 under the I
scenario (Table 2). F271 produced more biomass than Cm484
and all 19 traits related to cell wall composition and degradability,
except for FAest, were found distinct between the two parental
inbred lines. F271 biomass was less degradable (IVDMD) and
had a higher NDF and lignin content (LK.CWR and ADL.NDF)
relative to Cm484. Lignin structure was also different between
the two parental lines, F271 having more ß-O-4-linked lignin,
higher PCAest and FAeth contents than Cm484. IVCWRD was
also lower in F271 than in Cm484. Finally, the structural sugars
GLU and XYL showed higher levels in F271 than Cm484,
while HC.NDF, ARA and GAL levels were lower in F271 than
in Cm484.

Cultivation under the NI scenario significantly altered most
traits, except for the structural sugar levels, relative to the I
scenario, (Table 2). Plant height and biomass yield were much
lower under theNI scenario. NDF increased while lignin contents
in cell wall decreased, paralleled by an increase of both IVDMD
and IVCWRD. The overall ß-O-4 yield decreased under the NI
scenario, the S unit content decreased while the G unit content
remained unchanged, leading to a decrease of the S/G ratio.
In contrast, the H unit content increased, while the PCAest
content decreased under the NI scenario. It is noteworthy that the
scenario explained 49.45% of the observed variation for PCAest
content (Table 2). Finally, under the NI scenario FAest and FAeth
showed only a small reduction and the effect of the irrigation
scenario explained only 8.0 and 6.6% of the observed variation
in FAest and FAeth, respectively (Table 2).

It is worth noting that F271 and Cm484 responded differently
to the irrigation scenarios (Table 2). The agronomical traits were
more impacted by the irrigation scenarios in F271 (reduction of
16.6 and 36.6% of plant height and biomass yield, respectively,
in the NI vs. I scenario) than in Cm484 (reduction of 8.3 and
15.7% of plant height and biomass yield, respectively, in NI vs.
I scenario). The increase in IVDMD and IVCWRD was also
more pronounced in F271 (increase of 8.9 and 26.7% of IVDMD
and IVCWRD, respectively, in the NI vs. I scenario) than in
Cm484 (increase of 1.1 and 18.4% of IVDMD and IVCWRD,
respectively, in the NI vs. I scenario). In contrast, the increase
in NDF under the NI scenario was more pronounced in Cm484
(9.7%) than in F271 (3.3%). Surprisingly, F271 and Cm484
showed similar responses to the irrigation scenarios for the lignin
contents. These findings were in accordance to a low r2 (0.89
and 0.44% for KL.CWR and ADL.NDF, respectively), whereas a
significant interaction between genotype and irrigation scenarios
effect was observed.

In the F271 × Cm484 RIL Progeny, Cell Wall
Composition and Degradability Responded
to the Irrigation Scenario
The agronomic and cell wall-related traits were then evaluated
in the F271 × Cm484 RIL progeny (Table 3). The trait variation
was higher in the RIL progeny than in the parental lines,
illustrating the so-called transgression effect, except for IVDMD
and ARA under the I condition. Moreover, a strong genotypic
effect and medium to high heritabilities were observed for
all traits. Importantly, large genotypic variability among the
F271× Cm484 RIL progeny was found in the general trend
under both irrigation scenarios as shown by the minimal and
maximal values (Table 3). The strongest heritabilities (h² above
0.7) were observed for plant height, biomass yield, IVCWRD,
KL.CWR, ADL.NDF, PCAest, FAest, CL.NDF, HC.NDF, and
ARA. On the other hand, lowest heritabilities (h² < 0.6)
were observed for traits related to lignin structure, GLU, GAL,
and XYL.

Principal component analysis (PCA) was performed with all
the NIRS-estimated values for investigated traits under both
irrigation scenarios (Figure 1) on the RIL progeny. The first
three principal components (PCs) explained 80% of the variation
of all the traits. The traits that contributed the most to the
first principal component (PC1) were IVCWRD, KL.CWR,
ADL.NDF, and PCAest (Figure 1A and Supplemental Table 1).
These traits were strongly correlated (r ranging from 0.71 to 0.95
in both irrigation scenarios; Figure 1C) and the IVCWRD was
negatively correlated to the KL.CWR, ADL.NDF, and PCAest.
It is worth noting that these traits were strongly impacted by
the irrigation scenarios (Table 3). Indeed, for these traits, the
percentage of variance explained by the irrigation scenarios
effect was always higher than that explained by the genotypic
effect (Table 3). Hence, PC1 contributed to 59% of the irrigation
scenario effect (Figure 1B).

The traits that contributed the most to the second principal
component (PC2) were FAest, β-O-4 yield, β-O-4.G, and β-O-4.S
(Figure 1A and Supplemental Table 1). The correlation between
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FIGURE 1 | Principal Component Analysis (PCA) plots and correlation matrix of the investigated traits. (A) Distribution of the cell wall-related traits on the first, second,

and third components, explaining 42.14, 21.84, and 16.01% of the variability observed, respectively. (B) Distribution of the F271 × Cm484 RIL progeny lines in

Irrigated (blue) and Non-Irrigated (red) scenarios on the principal components PC1, PC2, and PC3. (C) Matrix of Pearson correlation in Irrigated (upper triangle) and

Non-Irrigated (lower triangle) scenarios. The positive correlations were in orange and the negative in green, the color scale were from 0 to 1 or −1.

FAest and the other traits was lower (r ranging from 0.32 to 0.36)
than that observed between the β-O-4 yield and the β-O-4.G and
β-O-4.S contents (r ranging from 0.8 to 0.96 in the I scenario;
Figure 1C). Furthermore, the percentage of variance explained
by the irrigation scenarios was strikingly lower than that for the

genotypic effect (Table 3). It should be noted that the irrigation
scenario had no significant impact on β-O-4.G levels in both
F271 × Cm484 RIL progeny and parental inbred lines (Table 2).
Consistently, PC2 did not allow RILs cultivated under the I or the
NI scenario to be distinguished (Figure 1B).
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The traits that contributed most to the third principal
component (PC3) were ß-O-4.H contents and NDF (Figure 1A
and Supplemental Table 1). PC3 contributed to 16% of the
irrigation scenarios effect and allowed a better separation of
RILs cultivated under each irrigation scenario (Figure 1B).
Overall, only a few traits (NDF, KL.CWR, FAest, FAeth, and
GLU) showed strong (r² > 10%) and significant effects for the
interaction between genotype and irrigation scenarios (Table 3),
suggesting that variation of the response to the irrigation
scenario in the F271 × Cm484 RIL progeny occurred only for
these traits.

Fifteen Clusters Encompassed More Than
Two Thirds of the 213 Constitutive QTLs
Detected
Using amixed linear model, we detected constitutive QTLs, when
the “mp” term was significant [see equation (3) in Materials and
Methods section]. Allelic variation present at a constitutive QTL
for a given trait impacted the variation of this trait whatever
the year and the irrigation scenario. For plant height, biomass
yield and the 19 cell wall traits, a total of 213 constitutive
QTLs were detected, spread over the 10 maize chromosomes
(Supplemental Table 2 and Supplemental Figure 1). Among the
213 constitutive QTLs detected, 142 (i.e., two-thirds) mapped
to 15 clusters (Figure 2 and Supplemental Table 2). These 15
clusters contained six to 14 QTLs for the 21 investigated
traits. The 11-const cluster on chromosome 6 included 14
QTLs and showed the highest r2 among the clusters detected.
At the agronomic level, 19 QTLs were detected for plant
height, but only 5 co-localized with the 15 identified cluster.
For biomass yield, 12 QTLs were detected, but none of
them were localized within the 15 identified clusters. The
11 QTLs for IVCWRD, always co-localized with QTLs for
KL.CWR, ADL.NDF, and PCAest, except in clusters 7-const,
9-const and 15-const (Figure 2 and Supplemental Table 2).
Within cluster 7-const, the QTL for IVCWRD co-localized
with QTLs for FAest, CL.NDF, and HC.NDF. At cluster 9-
const, the QTL for IVCWRD co-localized with QTLs for β-O-
4 yield, β-O-4G, β-O-4S, PCAest, FAeth, and GLU. It is worth
noting that most of the constitutive QTLs co-localized with
QTLs detected for every traits under either irrigated or non-
irrigated scenarios (Supplemental Table 3), underlying the fact
that overall, these constitutive QTLs are present whatever the
irrigated scenario.

Interestingly, 12 out of the 13 QTLs for PC1 co-localized with
the 15 identified clusters (Figure 2 and Supplemental Table 2)
and coincided with QTLs detected for IVCWRD, KL.CWR,
ADL.NDF, and PCAest. This was consistent with the fact that
these traits were the major contributors to PC1 (Figure 1A,
Supplemental Table 1). Seven QTLs for PC2 coincided with
those for FAest, β-O-4, β-O-4.G, and β-O-4.S yield in the
15 identified clusters (Figure 2). This was consistent with
the fact that these traits were the major contributors to
PC2 (Figure 1A and Supplemental Table 1). Among the 11
identified QTLs for PC3, 7 co-localized with the 15 identified

clusters (Figure 2). These QTLs coincided with those for ß-
O-4.H and NDF, which were the traits that contributed the
most to PC3 (Figure 1A and Supplemental Table 1). Hence, 26
QTLs for PC1, PC2, and PC3 coordinates summarized the 15
obtained clusters.

Thirteen Clusters Encompassed More Than
60% of the 149 Responsive QTLs Detected
Using the same mixed linear model, we also detected responsive
QTLs, when the “mp x ek′′ term was significant [see equation
(3) in Materials and Methods section]. Allelic variation at a
responsive QTL explained the differences of response found for a
given trait between plants carrying F271 alleles and those carrying
Cm484 alleles depending on the environment. A total of 149
significant responsive QTLs were identified for all the individual
traits (Supplemental Table 2 and Supplemental Figure 1).
Among them, 93 (62%) clustered on 13 loci (Figure 2 and
Supplemental Table 2). At the agronomic level, 6 responsive
QTLs for plant height and 8 responsive QTLs for biomass yield
were detected. However, only 3 responsive QTLs for plant height
and 4 responsive QTLs for biomass yield co-localized with the
13 identified clusters. Interestingly, 5 of the 6 responsive QTLs
for IVCWRD co-localized with responsive QTLs for other traits
in the 13 clusters. The two clusters 7-resp and 9-resp included
responsive QTLs for plant height, biomass yield, IVCWRD,
structural sugars and PCAest. In contrast, the two clusters
4-resp and 5-resp grouped responsive QTLs for IVCWRD, lignin
content, HC.NDF and CL.NDF. The cluster 4-resp also included
responsive QTL for FAest and FAeth.

Responsive QTLs for PCs were also mapped
(Supplemental Table 2 and Figure 2). Seven out of the eight
responsive QTLs for PC1 co-localized in seven cluster (1-resp, 4-
resp, 5-resp, 7-resp, 8-resp, 9-resp, and 12-resp) with responsive
QTLs for traits that were the major contributors to PC1 (namely
IVCWRD, KL.CWR, ADL.NDF, and PCAest; Figure 1A and
Supplemental Table 1). Additionally, seven of the 11 responsive
QTLs for PC2 co-localized with responsive QTLs for FAest
(2-resp, 3-resp, 4-resp, and 8-resp), β-O-4, β-O-4.G, or β-O-4.S
yield (3-resp, 6-resp, 10-resp, and 11-resp). Only three of the
seven responsive QTLs for PC3 co-localized with clusters of
responsive QTLs. At the 8-resp locus, a responsive QTL for PC3
co-localized with responsive QTLs for β-O-4.H and NDF which
were the traits that contributed the most to PC3. However, at
cluster 9-resp, the presence of a responsive QTL for PC3 was not
associated with the presence of responsive QTLs for β-O-4.H nor
for NDF.

It is worth noting that six of the 13 clusters of responsive
QTLs did not co-locate with the 15 clusters of constitutive QTLs
(Figure 2). Furthermore, the traits involved in “constitutive
clusters” co-locating with “responsive clusters,” were not
always the same. As such, the constitutive cluster 4-const,
which encompassed 10 QTLs and the responsive cluster 2-
resp which consisted of 8 QTLs, shared only 5 QTLs for
common traits.

Frontiers in Plant Science | www.frontiersin.org 10 April 2019 | Volume 10 | Article 488

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Virlouvet et al. Biomass Quality and Drought Response

FIGURE 2 | Summary of the clusters of constitutive and responsive QTLs identified for agronomic, cell wall composition, degradability, and PCA coordinate

components traits. The color corresponds to the allele increasing the traits, F271 in magenta and Cm484 in cyan. The scale of colors represented the effect at the

QTL position (Supplemental Table 2) over the variation of the corresponding trait on the RIL progeny lines (see materials and methods). The symbols correspond to

co-localization between constitutive and responsive QTLs. The references correspond to: [1] Méchin et al., 2001; [2] Roussel et al., 2002; [3] Cardinal et al., 2003; [4]

Fontaine et al., 2003; [5] Krakowsky et al., 2005; [6] Krakowsky et al., 2006; [7] Riboulet et al., 2008a; [8] Barrière et al., 2008; [9] Wei et al., 2009; [10] Truntzler et al.,

2010; [11] Lorenzana et al., 2010; [12] Barrière et al., 2012; [13] Courtial et al., 2013; [14] Torres et al., 2015; [15] Leng et al., 2018.

DISCUSSION

Optimized and Accurate NIRS Equations
Enable the Genetic Analysis of a Broad
Number of Cell Wall-Related Traits in a
Large Set of Maize Stover Samples
NIRS is routinely employed in a commercial setting for the
assessment of complex forage quality traits in maize including
the analysis of cell wall digestibility (reviewed in Torres et al.,
2015). Several published examples highlight that cell wall-related
traits can be accurately predicted in maize stover. This is the
case for dry matter and cell wall degradability (Lübberstedt et al.,
1997c; Riboulet et al., 2008b; Jung and Phillips, 2010), as well as
for the traits quantified by the Van Soest chain (Dardenne et al.,
1993; Lorenz et al., 2009; Jung and Phillips, 2010). The established
equations in this study show also a high r of validation for the
above-mentioned traits (r ranging from 0.77 to 0.95).

Lignin content has been estimated using both Van Soest
(ADL.NDF) and Klason (KL.CWR) methods. As discussed
in Zhang et al. (2011) and in accordance with Fukushima
and Hatfield (2004) the KL procedure is more suitable for
the global determination of lignin content, whereas the ADL
procedure allows the proportion of the more condensed lignin

fraction to be determined. Hames et al. (2003) (cited in
Lorenz et al., 2009) reported NIRS predictive equations for
lignin contents measured with both methods. In the present
study, the r of validation or cross-validation for both lignin
contents was high (r = 0.83). It is worth noting that Barrière
et al. (2010) used NIRS equations to predict both lignin
contents in a RIL progeny and detected only 2 common
QTLs for both lignin contents among the 14 detected QTLs.
In the present study, 85% of the QTLs for ADL.NDF and
KL.CWR co-localized.

NIRS predictive equations for p-hydroxycinnamic acids
contents have also been proposed (Riboulet et al., 2008b; Jung
and Phillips, 2010; Lorenzana et al., 2010). All the proposed
equations for PCAest content are satisfying with a r of validation
ranging from 0.87 (Riboulet et al., 2008b) to 0.95 (Lorenzana
et al., 2010). Our predictive equation is in the same order
of magnitude (r of validation = 0.78). In contrast, predictive
equations for FA contents are generally unreliable. Thus, the
equation proposed by Lorenzana et al. (2010) using stover from
the studied mapping population has a r² of calibration of 0.04
for FA content. Jung and Phillips (2010) were able to report a
r² of 0.95 by using for calibration samples from different plant
parts harvested at different maturity stages (from immature leaf
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blade to mature stem samples). This r² of validation allowed FA
content to be distinguished between organs but not the variation
of FA content within the same organ harvested at the same stage.
Riboulet et al. (2008b) proposed NIRS predictive equation for FA
contents for maize stover harvested at silage stage with a r² of
calibration ranging from 0.64 to 0.66. In the present study, the
predictive NIRS equations developed are robust, especially for
FAest content (r of validation= 0.83, thus r²= 0.69).

Thioacidolysis is a biochemical protocol to assess lignin
structure (Lapierre et al., 1986). In this study, we proposed for the
first time NIRS predictive equations for monolignol composition
based on the thioacidolysis analysis of maize stover. β-O-4 yield
and β-O-4 and monolignol content are robustly estimated with
our established equations (r of validation ranging from 0.71 to
0.90). The prediction of the S/G ratio is slightly less robust but is
nevertheless above 0.6 (r = 0.66).

Overall, the NIRS predictive equations proposed herein are
novel, robust and accurate to predict cell wall-related trait on
maize stover harvested at silage stage. They are dedicated to
maize stover samples harvested at silage stage andwere developed
in parallel with those recently presented in El Hage et al. (2018)
dedicated to maize internodes harvested at silage stage.

The NI Scenario Has a Strong Impact on
Agronomic and Cell Wall Related Traits but
Does Not Affect Their Correlation Structure
The irrigation scenario significantly affected both agronomic
and cell wall-related traits. Indeed, average biomass yield and
plant height were reduced up to 27.5 and 14.8%, respectively.
In sorghum, Perrier et al. (2017) noticed a reduction of plant
height ranging from 17.8 to 23.4% when plants were submitted
to a similar NI scenario. Furthermore, we observed a significant
reduction of lignin and the PCAest contents under the NI relative
to I conditions. This is consistent with previous observations
on maize (Emerson et al., 2014; El Hage et al., 2018), sorghum
(Perrier et al., 2017), sugarcane (dos Santos et al., 2015), and
miscanthus (Emerson et al., 2014; van der Weijde et al., 2017).

Although the irrigation scenarios were contrasted enough to
provoke significant agronomic and cell wall modifications, the
overall structure of the correlations between the investigated cell
wall related traits was not affected by the NI scenario (Figure 1C).
Whatever the irrigation scenario, lignin, and PCAest contents
were tightly correlated as previously described (Hatfield et al.,
1999). These two traits were strongly and negatively correlated
to cell wall degradability. Zhang et al. (2011) and El Hage et al.
(2018) have suggested that lignin and PCAest contents may have
distinct roles on cell wall degradability. It is noteworthy that FA
contents were less correlated to cell wall degradability, despite
their established role in cell wall cross linking (Hatfield et al.,
2017) which was reported to be critical for cell wall degradability
(Grabber et al., 1998; Jung and Casler, 2006).

The impact of β-O-4 yield on cell wall degradability is still
subject to debate and has been reported by Besombes and
Mazeau (2005) and Zhang et al. (2011) as limiting. In the
present study, the β-O-4 yield was mildly correlated with cell wall
degradability whatever the irrigation scenario. We observed that

the NI scenario had no impact on β-O-4.G and β-O-4.S subunits,
leading to the same S/G ratio in both irrigation conditions. The
observed modifications on lignin and PCAest contents under the
NI scenario led to a similar expected amount of S units in lignin
acylated by PCAest (16.5 and 14.7% in the I and NI scenarios,
respectively). The amount of H units in lignin, however, was
increased by the NI scenario. This is a signal observed when
plants are submitted to different sources of stress (reviewed in
Cabane et al., 2012). For instance, H subunits increased when
poplar plants were under ozone treatment (Cabané et al., 2004).
H subunits are also terminal units of lignin polymer and their
increase could contribute to the parceling out of the lignin
polymer. In addition, the fact that the FAest content was not
impacted under the NI scenario, while the lignin content was
reduced, could reflect a lignin more fragmented under stress.
Mottiar et al. (2016) suggested that shorter lignin chains should
be more prone to degradability. Hence, the increase in cell
wall degradability under the NI scenario very likely reflects a
decrease in lignin and PCAest contents but might also be due
to modifications of the lignin structure, which appeared to be
more fragmented under the NI scenario. Indeed, etherified ferulic
acids represent the ferulic primers used for lignin anchoring.
Thus, if the number of ferulic bonds is comparable under both
environments while the lignin content is higher in the irrigated
one (Table 3), then the lignin chains on each primer must be
longer to explain the higher lignin content.

A Complex Genetic Architecture of Cell
Wall Composition and Degradability Traits
Over the Irrigation Scenarios and Their
Responses to the NI Scenario
Thus far, numerous QTL studies have been reported on traits
related to cell wall composition and degradability for maize
at silage stage (Lübberstedt et al., 1997a,c; Bohn et al., 2000;
Barrière et al., 2001, 2008, 2012; Méchin et al., 2001; Roussel
et al., 2002; Cardinal et al., 2003; Fontaine et al., 2003; Papst
et al., 2004; Cardinal and Lee, 2005; Krakowsky et al., 2005,
2006; Riboulet et al., 2008a; Wei et al., 2009; Lorenzana et al.,
2010; Courtial et al., 2014; Torres et al., 2015; Leng et al.,
2018). These studies allowed to map over 400 QTLs all over
the maize genome (Barrière et al., 2008). The present study
allows the identification of 15 clusters of constitutive QTLs over
the years and the irrigation scenarios for traits related to cell
wall composition and degradability. All the loci detected were
already mentioned in previous publications (Figure 2). Thus, in
bin 3.05 (cluster 6-const), 60% of the previous studies mapped
a QTL for cell wall degradability or composition. Torres et al.
(2015) already mentioned that this genomic region was often
identified for these types of traits. Using the F271 × Cm484
RIL progeny, the strongest QTL region was localized on bin
6.05 (cluster 11-const). This region has already been identified
as a hotspot in several studies (Roussel et al., 2002; Courtial
et al., 2013, 2014) using the F271 × F288 RIL progeny. This
suggests that the alleles from the parental inbred line F271 used
shared by both RIL populations, confers some common cell wall
properties. Furthermore, the parental line F271 was found to
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be less degradable than the parental line Cm484, in agreement
with previous studies (Méchin et al., 2000; El Hage et al., 2018).
However, it is worth noting that the constitutive QTL alleles
conferring a higher cell wall degradability did not always come
from the better degradable inbred line Cm484. Thus, the allele
from F271 conferred an increase of IVCWRD for three of the 15
detected clusters of constitutive QTLs (2-const, 3-const, and 8-
const).

Several biomass yield QTLs were detected, but none of
them mapped among the constitutive clusters for biomass
quality detected in the present study (Supplemental Figure 1

and Supplemental Table 2). This result suggests that cell wall
degradability and its response to water deficit could be selected
without impacting biomass yield (Baldy et al., 2017; van der
Weijde et al., 2017). Additionally, numerous constitutive QTLs
for IVCWRD, LK.CWR and/or, ADL.NDF co-localized in a
manner that is consistent with the strong correlation observed
between the cell wall degradability and the lignin content.
In contrast, QTLs for IVCWRD were not always co-localized
with QTLs for lignin content in agreement with previous
observations (Truntzler et al., 2010; Penning et al., 2014). We
noticed that QTLs for IVCWRD and PCAest more often co-
localized. For instance, the cluster 9-const encompassed QTLs
for IVCWRD, β-O-4 yield, PCAest, and FAest, suggesting an
independent potential role of these traits in the variation of
the cell wall degradability as previously described (Grabber,
2005; Zhang et al., 2011). Collectively, our results highlight
the complexity of the genetic determinism of cell wall related
traits (Barrière et al., 2008; Torres et al., 2015).

In maize, QTLs for drought tolerance of grain yield have
been largely studied and reported (Ribaut and Ragot, 2007;
Collins et al., 2008; Ribaut et al., 2010; Millet et al., 2016).
The present study identifies for the first time QTLs for traits
related to cell wall degradability and composition in response
to water deficit. It is noteworthy that while the interaction
“genotype x irrigation scenario” among the RIL progeny only
marginally contributed to the observed trait variation, the use of
a mixed linear model (Alimi et al., 2013) allowed the detection
of significant responsive QTLs for all traits. Interestingly, only
half of the responsive QTL clusters co-localized with constitutive
QTL clusters, suggesting that the genetic determinism and the
molecular mechanisms involved in cell wall development are

different from those involved in responses to water deficit.
Furthermore, our results show that the lignin content does not
explain all the variation of the cell wall degradability in response
to the irrigation scenario. Some responsive QTLs for IVCWRD
co-localized with responsive QTLs for biomass yield, and in
each case, alleles that increased IVCWRD in response to the NI
scenario decreased the biomass production. These observations
will be very helpful for the selection of high yielding drought
tolerant lines with improved cell digestibility.
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