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Abstract 

Microglia are key players in brain function by maintaining brain homeostasis across lifetime. 

They participate to brain development and maturation through their ability to release 

neurotrophic factors, to remove immature synapses or unnecessary neural progenitors. They 

modulate neuronal activity in healthy adult brains and they also orchestrate the 

neuroinflammatory response in various pathophysiological contexts such as aging and 

neurodegenerative diseases. One of the main features of microglia is their high sensitivity to 

environmental factors, partly via the expression of a wide range of receptors. Recent data 

pinpoint that dietary fatty acids modulate microglia function. Both the quantity and the type of 

fatty acid are potent modulators of microglia physiology. The present review aims at 

dissecting the current knowledge on the direct and indirect mechanisms (focus on gut 

microbiota and hormones) through which fatty acids influence microglial physiology. We 

summarize main discoveries from in vitro and in vivo models on fatty acid-mediated 

microglial modulation. All these studies represent a promising field of research that could 

promote using nutrition as a novel therapeutic or preventive tool in diseases involving 

microglia dysfunctions.  
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Introduction 

Microglia are the resident macrophages of the brain. They have been studied for decades for 

their role as primary immune cells of the central nervous system (CNS)
1
. They orchestrate the 

local inflammatory response to maintain tissue homeostasis. Exaggerated activation of 

microglial inflammation is yet observed in several disorders such as Alzheimer’s Disease 

(AD), Parkinson’s Disease (PD), Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis 

(MS) or obesity, where it can lead to further damage
2
. Microglia are also involved in the 

resolution phase of inflammation by phagocyting dying cells or debris and by releasing 

cytokines and some lipid mediators exerting anti-inflammatory and pro-repair properties
34

.  

More generally, microglia are extremely sensitive to their local environment, which they 

continuously scan with highly motile processes
5,6

. One reason for that is the wide array of 

receptors microglia expressed at their membrane, known as "microglia sensome", that give 

them the ability to “sense” and respond to lots of endogenous as well as exogenous signals
7
. 

Among all receptors identified, several of them can bind to lipids, including membrane 

phospholipids such as phosphatidylserine (PS) or oxidized lipids. This can promote 

phagocytosis of myelin, spines, apoptotic cells, protein aggregates, etc. More generally, many 

factors including nutrition can modulate microglia functions through the activation of their 

sensome
3,8

. Depending on the brain structure, sex and the type of environmental stimulus, 

microglia acquire diverse phenotypes characterized by singular transcriptomic signatures
9–12

. 

The combination of several studies helped to draw the gene profile of microglia, so-called 

“Disease Associated Microglia” or DAM
13–15

. Interestingly, some of these genes, such as 

trem2, apoe, lpl are related to lipid transport and metabolism 
13–15

. Likewise, diseases such as 

obesity and metabolic disorders, characterized by profound alterations in lipid metabolism, 

display microglial inflammatory activation 
16–19

. Overall, regulation of brain homeostasis is 

likely to involve some lipid-mediated mechanisms aimed at modulating microglia functions.  

 

A new field of research has hence emerged, aiming at deciphering how lipids affect microglia 

using a wide variety of protocols (in vitro lipid application or in vivo dietary approaches) and 

analyzing outcomes such as inflammation, phagocytosis, density, proliferation, etc.
20,21

. While 

in vitro experiments address a potential direct effect of fatty acids on microglial function, in 

vivo experiments must considered indirect actions of lipids through "secondary actors", 

including hormones, peripheral immune cells or gut microbiota, that in turn affect microglia 

function. This review summarizes the current knowledge on direct and indirect effects of 

lipids on microglial cells and highlights different aspects of this complex relationship.  
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1. Direct effect of fatty acids on microglia function 

Several lines of evidence suggest a link between microglia and fatty acids: 1) Fatty acids are 

present at high amount in cellular membranes, including microglial cells
22

, and many of them 

can be metabolized into bioactive derivatives 
23,24

, modulate proteins localization and function 

as well as downstream signaling pathways
23

. 2) Microglia express many lipid-sensitive 

receptors such as TREM2, CD36, Toll-Like Receptors (TLRs), receptors for fatty acids 

derivatives such as endocannabinoids, oxylipins, etc.
25

; 3) Macrophages can store fatty acids 

within lipid droplets, that are known to control their inflammatory response and phagocytic 

activity 
26

, suggesting that lipids are potential regulators of microglial function
20

. All these 

observations suggest a potential role of fatty acids on microglial physiology. 

 

Three main families of fatty acids have been studied, based on the number of double bonds: 

the saturated (SFA), monounsaturated (MUFA) or polyunsaturated (PUFA) fatty acids. 

Subfamilies are distinguished by the position of unsaturation and the length of the 

hydrocarbon chain. In the following chapters, we extensively review the literature on the 

effects of SFA, MUFA and PUFA on microglial cells. 

 

1.1. Microglia and SFA 

SFA are present in great quantities in obesity-inducing diets, among which palmitate (C16:0) 

is the most abundant. Hence, high-fat diet (HFD) intake rises brain SFA levels, and more 

specifically those of palmitate
19

. Several studies showed that HFD modulates brain 

inflammatory status
27

, in a body weight-independent 
19,28

 and microglia-dependent 

fashion
16,19,29,30

. This supports the newly developed concept that microglia act as nutrient 

sensors within the brain in basal conditions, so that when levels of dietary nutrients 

suddenly rise, these cells are among the first to react, long before metabolic alterations 

occur
31

. Once obesity develops, the increase in adiposity and associated metabolic 

disturbances and inflammatory processes will contribute to the second phase of 

microglial microglia activation
27

. Microglial activation and neuroinflammatory processes 

are initiated within the hypothalamus, before spreading to other structures such as amygdala, 

hippocampus and cerebellum
32–34

.  

In terms of mechanisms, the pioneer study of Valdearcos and colleagues revealed that in 

animals fed a SFA-rich diet, fatty acids, including palmitic acid, are rapidly conveyed to the 

brain after ingestion. There, they are directly taken up by microglia within the hypothalamus 
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to trigger an inflammatory response
19

. Palmitic acid in return induces central insulin and 

leptin resistance and impairs glucose and lipid metabolism
35,36

. In vitro studies on microglial 

cell cultures confirmed the ability of SFA to initiate an inflammatory reaction, characterized 

by the production of pro-inflammatory cytokines and oxidative stress response
19,37–40

. 

However, a more recent study using a lower dose of palmitate showed that application of this 

fatty acid on BV2 and IMG cells, two immortalized microglial cell lines, induces an anti-

inflammatory response
41

. This study pinpoints the potential neuroprotective action of 

palmitate-treated microglia, that release interleukin-13 (IL-13) and in turn induce an anti-

inflammatory response in co-cultured hypothalamic neurons
41

. Beyond the fact that the 

relevance of in vitro models of microglia, and especially the use of cell lines, must be 

questioned
42

, these results highlight the importance of the dose, duration of treatment and type 

of SFA considered when studying their effects on microglial physiology
41,43

. Moreover, none 

of these studies ever considered and/or studied potential modulations of lipid transport into 

the brain, as well as their local synthesis and metabolism within the CNS. 

How SFA affect microglial phagocytosis is still a matter of debate. While a BV2-based study 

showed that palmitate enhances phagocytosis
38

, this has been recently challenged by another 

study using primary microglia culture
40

. In the latter, they showed that application of 

palmitate does not increase basal phagocytic activity and suppresses interferon-γ (IFN-γ) 

induced phagocytosis
40

. Of note, these two groups used different experimental conditions: 

palmitate dissolved in ethanol vs methanol, different doses (125 µM vs 100-200µM), different 

duration of phagocytic assays (5h vs 1h). Further studies are thus needed to understand how 

palmitate and other SFA, if they do, modulate microglial phagocytosis.  

Of importance, a recent study conducted on macrophages highlighted various pitfalls in 

palmitate studies 
43

. Indeed, fatty acids require specific carriers (e.g. BSA) or solvents (e.g. 

ethanol) to increase their solubility, both factors having a strong effect on cellular activity. 

Moreover, Bohlen et al. demonstrated that the composition of culture medium is a potent 

modulator of microglial function, hence adding another potential bias to in vitro studies
44

. 

Overall, combining different approaches (in vitro, ex vivo and in vivo) as well as using cell 

components (dead neurons, synaptosomes) in phagocytic assay rather than beads seems 

essential to conclude on the (direct) effects of SFA on microglia function. 

 

1.2. Microglia and MUFA 

The beneficial inflammation in BV2 cells
45,46

. Based on the same microglial cell line, Debabbi 

and collaborators reported that oleate (18:1) prevents7-ketocholesterol-inducedcytotoxicity
47

. 
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In microglia primary cultures, oleic acid does not trigger pro-inflammatory cytokines release 

while SFA do
19

. MUFA have greater affinity than SFA for the transcription factor peroxisome 

proliferator-activated receptor (PPAR), that mainly promotes anti-inflammatory processes
48

. 

Thus, it could represent a mechanism through which oleate exerts its anti-inflammatory 

effects. Data also show that the oleate derivatives oleamide increases phagocytic activity of 

microglia towards amyloid beta (Aβ) particles both in vitro and in vivo
49

.  

 

1.3. Microglia and polyunsaturated fatty acids (PUFA) 

We focus here on the two main PUFA families, n-3 and n-6 PUFAs, that differ by the position 

of the first double-bound
23

. The main PUFA that constitute the mammalian brain are the long 

chain (LC) fatty acids arachidonic acid (AA) and docosapentaenoic acid (DPA, 22:5 n-6) 

from n-6 family and docosahexaenoic acid (DHA, 22:6 n-3) from the n-3 group
50

. The n-3 

PUFA eicosapentaenoic acid (EPA, 20:5 n-3) is present at very low oncentration in the CNS, 

yet it is enriched in the membrane of microglial cells
22

. LC-PUFA are either biosynthesized 

from their dietary precursors, respectively linoleic acid (18:2n-6 or LA) and α-linolenic acid 

(18:3n-3 or ALA) or can be directly sourced from the diet (mainly meat and dairy products 

for AA/DPA, fat fishes for DHA/EPA)
51,52

. PUFA are mainly esterified into phospholipids 

within cell membranes
23

. They can also be released from these membranes in a phospholipase 

A2-dependent manner. Once free from the membrane, PUFA can act directly on specifics 

targets or can be enzymatically metabolized, leading to the production of a wide variety of 

derivatives, such as docosanoids, eicosanoids or endocannabinoids
3
. PUFA and their bioactive 

mediators exert numerous biological properties, from immunomodulation to neuronal 

plasticity or regulation of gene expression
3
.  

Westernization of dietary habits not only led to an increase in SFA intake but also to a 

decrease of the n-3/n-6 PUFA ratio (both from a decrease in n-3 PUFA consumption and an 

increase in n-6 PUFA)
53

. Consequently, AA brain concentration rose while DHA content 

diminished
3,53

. Moreover, our data show that lifelong dietary n-3 PUFA deficiency 

specifically alters microglia composition in mice
22

. Numerous groups also studied the effect 

of PUFA on microglia inflammatory activity in vitro, knowing that n-3 PUFAs and their 

derivatives are considered rather anti-inflammatory while n-6 PUFAs and their derivatives are 

anti-inflammatory
3
. DHA, and to a lesser extent EPA, decrease the production and release of 

pro-inflammatory cytokines, oxidative stress and NO production after treatment with LPS, 

cytokines or Aβ
54–58

. In vivo studies confirmed that DHA and/or EPA attenuate 

neuroinflammation and microglial activation triggered by various inflammatory challenge 
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(HFD, LPS, aging, maternal immune activation)
59–68

. Among the pathways activated by n-3 

PUFA, DHA and EPA have been shown to inhibit the inflammatory signaling cascades 

NFκB, and MAPK and to activate the anti-inflammatory factors PPAR, retinoid X receptor 

(RXR) and the G-protein coupled receptor 120 (GPR120) 
3,54,57,58

. Another property of DHA 

is to remodel lipid bodies inside microglia cells, counteracting the effect of inflammation by 

restoring mitochondrial function
69,70

. 

PUFA can also modulate the phagocytic activity of microglia. Two in vitro studies observed 

similar results, i.e. an increase in phagocytic activity against Aβ particles and myelin debris in 

response to EPA or DHA application
55,71

. Moreover, we showed in vivo that perinatal dietary 

n-3 PUFA deficiency increases microglia-mediated phagocytosis of synaptic elements in the 

CA1 region and of apoptotic neurons in the dentate gyrus of juvenile mice
72

. Altogether, these 

data suggest that n-3 PUFA differentially regulates the phagocytic response of microglial cells 

depending on the context (physiology vs pathology, cellular elements vs exogenous stimuli, 

etc.). Further studies are needed to clarify how the n-3/n-6 PUFA balance controls microglial 

phagocytic activity, such as exploring the role of PUFA derivatives that are known to 

influence microglial function as well
3
.  

PUFA derivatives are produced through a wide range of enzymatic and non-enzymatic 

pathways
3
. A positive correlation between DHA and EPA intake and blood level of their 

derivatives has been observed, meaning that dietary PUFA intake directly influences the 

amount of bioactive compounds
73,74

. Oxylipins such as n-6 PUFA-derived prostaglandins, 

thromboxanes or lipoxins and n-3 PUFA-derived resolvins, maresins or neuroprotectin are 

synthesized by the cyclooxygenase (COX), lipoxygenase (LOX), cytochromes P450 (CYP) 

and epoxide hydrolase (EH)
3,24,75

. A differential expression of lipid mediators is observed 

across inflammation in parallel of cytokine expression 
24,76

. Decreasing n-3 PUFA-derived 

pro-resolutive species might have detrimental effects, leading to chronic inflammation
24

. 

Resolvins from the D- (DHA-derived) or the E-series (EPA-derived) decrease 

neuroinflammation and counteract microglial activation
77–80

. The release of neuroprotectins 

and maresins also protect from microglial inflammatory activation. Moreover, maresins 

facilitate phagocytosis of Aβ by microglia
81,82

. The situation is more complex for n-6 PUFA 

derivatives. While prostaglandins can be either pro- or anti-inflammatory, thromboxanes and 

leukotrienes promote microglial activation and neuroinflammation
3
. AA-derived 

prostaglandin E2 (PGE2) for instance has been shown to decrease microglia phagocytosis of 

Aβ through its receptor EP2
83

. Likewise, AA-derived lipoxin A4 is anti-inflammatory in 

various models of CNS inflammation
84–86

. 
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PUFA can also be metabolized into endocannabinoids. Microglia possess all the machinery to 

produce these molecules and express their receptors, namely CB1 and CB2
3,87

. The most 

abundant AA-derived endocannabinoids, anandamide and 2-arachidonoylglycerol, dampen 

microglial inflammation
88

. Endocannabinoids can also be produced from DHA and EPA. The 

DHA-derived DHEA (or synaptamide) and EPA-derived EPEA exert anti-inflammatory 

activity on microglial cells, yet only few data are available in the literature
89,90

. Overall, and 

regardless of their precursor, endocannabinoids are likely to exert anti-inflammatory action on 

microglia notably through CB2 receptors but more extensive studies are needed to decipher 

the mechanisms underlying these effects
87,88

.  

 

1.4. Microglia and other lipids 

Other lipids modulate microglia function. Cholesterol, lipoproteins, lipid-related enzymes or 

receptors can control microglia phenotype and phagocytic activity. As we described above, 

DAM are characterized by altered expression of lipid transport and metabolism related genes 

such as apoe, trem2 or lpl
13–15

. In this part, we explore the literature linking microglia 

functions with these factors. 

 

Trem2 and APOE. TREM2 is specifically expressed by microglial cells in the brain. It binds 

to phospholipids, LPS, lipoproteins such as LDL, and apolipoproteins including APOE and 

APOJ 
7,91,92

. Interaction of TREM2 with apoliporoteins is involved in microglia-mediated Aβ 

phagocytosis and could explain why mutations in trem2 and apoe have been associated with 

neurodegenerative diseases
91,92

. APOE is also pivotal in the polarization of microglial 

phenotype during development, aging and neurodegenerative disorders
42,93

. Concomitantly, its 

expression is high during development and decreases across brain maturation
42

. APOE and 

TREM2 both promote microglia protective effects in contexts such as neurodegenerative 

diseases, stroke, MS or brain development
15,91,92,94–100

. While the specific mechanisms are not 

fully understood, several reports suggest that these molecules are necessary for microglia 

reactivity to injuries, by controlling their inflammatory response and metabolism
91,101–103

.  

 

Lipoprotein lipase (LPL). Another lipid-related gene that appears to modulate microglia 

phenotype and function is lpl
14,17

. This gene encodes the protein LPL, which hydrolyzes 

triglycerides that are bound to lipoproteins. In mice models of neurodegenerative and 

neuroinflammatory diseases, lpl expression is increased
14,104

. These observations were 

confirmed in brain samples of AD patients
14,105

. Increased expression of lpl has been observed 
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during remyelination and its role in promoting microglia phagocytosis has also been 

revealed
104,106–108

. Inhibition or suppression of LPL skews microglia phenotype towards pro-

inflammation and decreases their phagocytic activity
104,107

. HFD increases lpl expression in 

hypothalamic microglia
17

. In this context, inhibiting LPL activity aggravates HFD-induced 

metabolic alterations
17

. 

 

Cholesterol. Cholesterol is synthesized de novo in the brain, mainly by astrocytes
109,110

. It is 

then transferred to surrounding cells through APOE, the main cholesterol-carrier of the CNS, 

that is expressed by both astrocytes and microglia
111,112

. Cholesterol uptake by microglia, that 

follows APOE-TREM2 interaction, ensures survival of cultured cells
44,92

. Even though the 

mechanisms remain unclear, cholesterol metabolism modulates microglial phagocytic 

capacity
44,109,113

. When present at high concentration, engulfed cholesterol (cellular debris, 

myelin), can no longer be digested by microglia so that it accumulates within lipid bodies or 

cholesterol crystals
114

. Cholesterol efflux capacity is overwhelmed in these conditions
114

, 

impairing the normal induction of remyelination processes in a context of lysolecithin-

induced demyelination in aged mice
114

. This maladaptive immune response (cholesterol efflux 

impairment) could explain why alterations in the expression of genes like apoe or trem2 are 

associated with greater risks of neurodegenerative disorders. 

Cholesterol can be metabolized in bioactive derivatives, namely oxysterols. These latter 

modulate microglial inflammatory response in vitro as well as MS and AD brains
111,115,116

. 

Many oxysterols are anti-inflammatory as they decrease LPS-induced inflammatory response 

in microglia primary culture
116

. Conversely, 25-hydroxycholesterol (25-OH) promotes 

neuroinflammation in a model of adrenoleukodystrophy
117

. Mechanisms through which 

oxysterols modulate brain inflammation remain unknown. Some reports suggest that they 

could act through LXRs
116,117

. Interestingly, LXRs activation is beneficial in AD progression 

as it decreases Aβ burden and as a consequence cognitive impairments
118–120

. Oxysterols have 

been recently showed to stimulate microglial expression of ABCA1 and APOE, two targets of 

LXR signaling, hence favoring cholesterol efflux
121–123

. 

 

Other lipid carriers have been studied for their ability to control microglia function. A recent 

paper highlighted the role of Apolipoprotein A-I binding protein (AIBP) in microglial 

activation in a context of neuropathic pain
124

. HDL and APOA-I, its principal protein 

component, are known to bind AIBP which interacts with TLR4, leading to cholesterol efflux 
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and remodeling of lipid rafts
124,125

. Overall AIBP and cholesterol efflux exert anti-

inflammatory action on microglia and macrophages
124,126,127

. 

 

2. Indirect effects of lipids on microglia function 

The levels of body lipids are controlled by two main factors: 1) dietary intake and 2) 

endogenous lipid synthesis and metabolism, which are themselves regulated by a wide variety 

of genetic or environmental factors
128

. Some reports suggest that peripheral lipids can 

influence microglia function as well, through indirect mechanisms including microbial-

derived metabolites, hormonal control and inflammation. In a second part, we are 

summarizing current knowledge on the potential candidates involved in lipid-mediated 

indirect modulation of microglial activity. We concentrate on experimental contexts in which 

lipid intake and/or metabolism are disturbed such, as HFD feeding, obesity and n-3 PUFA 

deficiency. We more specifically discuss the role of hormones and gut-derived messengers in 

these aspects (as the role of inflammation has been extensively reviewed in the past).  

 

2.1. Microglia and gut physiology 

Microbiota and their metabolites. Diet is one of the main modulator of gut microbiota 

composition and function. Relative intake of proteins, lipids and carbohydrates as well as 

fiber consumption not only controls the diversity of microbial species but also their activity 

(e.g. metabolites production)
129–133

. More specifically, the quantity and quality of lipid intake 

can modulate intestinal permeability, low-grade inflammation, fat storage and endocrine 

activity
132,134–136,134,137,138

. Conversely, microbiota controls fat absorption, storage and 

metabolism
139,140

. Furthermore, microbiota composition and function influences behavior, 

neuronal activity and neuroinflammatory processes 
12,141–147

.Notably, microbiota transfer from 

HFD-fed mice to standard chow-fed animals triggers behavioral deficits and 

neuroinflammation in the acceptor mice
148

. Recent studies have shown that microglia are 

sensitive to microbial activity
12,142,145,149

. In a pioneering study, Erny and colleagues showed 

that germ-free mice display alterations in microglial morphology 
142

. Knocking-out TLR 

receptors did not reverse the phenotype, suggesting that the effect of microbiota on microglia 

is independent of microbial ligands recognition 
142

. Authors also showed that short-chain fatty 

acids (SCFA), which are bacterial metabolites, are involved in gut-microglia communication 

through activation of the free-fatty acid receptor 2 (FFAR2)
142

. More recently, Thion et al. 

showed that microbiota modulates microglia transcriptome in a sex and age-dependent 

manner
12

. Moreover, they revealed that maternal microbiota influences the maturation of fetal 
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microglia 
12

. Overall, these studies highlighted for the first time the role of gut bacteria and 

associated metabolites on microglia phenotype. Rothhammer and colleagues showed that 

tryptophan-derived metabolites produced by the commensal flora limits microglial 

inflammatory activation in the experimental autoimmune encephalomyelitis (EAE) mouse 

model of MS. Specific removal of aryl hydrocarbon receptor (AHR) receptor from microglia, 

a receptor for tryptophan metabolites, worsened microglial inflammation and subsequent 

outcomes of EAE 
148

. These 3 pioneering studies lay the foundations for a new field of 

research on the microbiota-microglia axis
141,149

. Yet, previous studies had already shown that 

microbiota-derived molecules (SCFA, AHR ligands) modulate neuroinflammation and 

microglia function. SCFA levels are altered in obese subjects, among which butyrate can 

counteract most of the side-effects of HFD including lipogenesis and inflammation
150,151

. 

Butyrate also decreases LPS-mediated microglial activation in vitro, by blocking NFκB 

pathway and by promoting apoptosis in these cells
152–155

. In vivo, butyrate and high-fiber diet 

(which increases SCFA levels) dampen neuroinflammation in mice models of aging, stroke 

and acute LPS injection
155–157

. The microbiota can also generate conjugated fatty acids from 

dietary fatty acids. A recent study showed that 10-oxo-trans-11-octadecenoic acid and 10-

hydroxy-cis-12-octadecenoic acid, two LA derivatives produced by lactobacillus plantarum, 

exert anti-inflammatory effects in BV2 cells
158

. Beyond these studies, only little is known 

about the mechanisms involved. Yet, it was shown that brain concentration of gut-derived 

tryptophan metabolites, such as the indole family, increases following systemic administration 

of these compounds, suggesting that they can reach the CNS after production by the 

microbiota
159

. Moreover, butyrate is likely to exert its effect by binding to several types of 

receptors: the above-mentioned FFARs but also GPR109a (or HCAR2) and GPR164 (or 

Olfr558)
160

. 

 

Bile acid. Bile acid (BA) synthesis and recycling depends on the tight collaboration between 

the liver and the gut
161,162

, BA being released by the liver and controlling lipid absorption in 

the intestine. The microbiota control liver-derived BA pool size. Moreover, reduced BA levels 

in the gut are associated with bacterial overgrowth and inflammation
163

. Two main receptors 

are thought to mediate their effects, namely the nuclear farnesoid X receptor (FXR) and the 

Takeda G protein-coupled receptor 5 (TGR5). BA-mediated activation of these receptors 

modulates metabolism (lipid and carbohydrate metabolism, energy expenditure) and 

inflammatory processes
161,162,164

. Their role in the control of microglia function has been 

highlighted by recent studies showing that BA per se or targets of BA receptors control 
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microglial activation in animal models of neuroinflammation (hepatic encephalopathy, retinal 

degeneration, LPS or Aβ injection, HFD)
165–172

. BA is likely to indirectly act on the brain by 

activating TGR5 in enteroendocrine cells that in turn release GLP-1, a known modulator of 

brain function
173

. 

 

Overall, all these studies suggest that the microbiota communicates with the brain using 

various, direct and indirect, pathways. If most of above-mentioned gut-derived metabolites 

can theoretically reach the brain, it remains unclear how they modulate microglia function in 

return. Moreover, most of these molecules may act peripherally, by modulating 

neurotransmitter release in the gut, by stimulating vagus nerve terminals or by acting on 

peripheral organs that would lead to the release of secondary messengers (e.g. hormones, 

cytokines or chemokines).  

 

2.2. Hormones and microglia 

Both the quantity and quality (SFA, MUFA, PUFA, short- or long-chain, etc.) of lipids can 

modulate metabolic outcomes including insulin resistance, adiposity, inflammation and 

hormones levels
19,174,175

. PUFA for instance, especially from the n-3 series, decrease 

triglyceridemia, insulin resistance or inflammation
176–180

. A recent study showed that the 

transplantation of microbiota from Fat-1 mice (genetically enriched in n-3 PUFA) prevents 

metabolic disorders triggered by HFD exposure in WT littermates
181

. This suggests that the 

beneficial effects of n-3 PUFA on metabolic deficits are mediated by the microbiota, at least 

partially. Moreover, dietary lipids modulate hormone release by peripheral organs such as the 

gut, liver, stomach and pancreas
178,182

. In this part, we will discuss the link between 

circulating hormones, metabolic status and microglia function as a potential indirect 

mechanism by which lipids may regulate neuroinflammation.  

 

Insulin. Obesity and SFA intake induce insulin resistance and hyperinsulinemia
27

. If the 

effects of insulin on neurons have been extensively studied, how this hormone might regulate 

microglia remains largely unknown. One in vitro study revealed that insulin application on 

microglial cells decreases LPS-induced NO and TNF-α production, and potentiates their 

phagocytic activity, in a dose-dependent manner
212

. Overall, insulin might exert anti-

inflammatory and pro-repair effects, yet this needs to further studies.  
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Insulin like growth factor 1 (IGF-1). IGF-1 is a growth factor that shares structural similarities 

with insulin. Its blood concentration is decreased in metabolic syndrome and obese subjects, 

while PUFA (both n-6 and n-3 series) can increase it
185,186

. Specific microglial populations 

can synthesize and release IGF-1
187–190

. These cells usually support neurodevelopmental 

processes such as neuron survival and myelination among others. 

 

Glucagon-like peptide-1. The peptide GLP-1 is mainly synthesized by enteroendocrine L 

cells. It promotes insulin sensitivity and reduces food intake, plasma glucose levels and body 

weight
191

. Both the type and amount of lipids modulate GLP-1 release
192,193

. Moreover, 

microbiota can also increase GLP-1 levels through the activity of its metabolites
160

. When 

produced, GLP-1 has a very short lifetime as it is rapidly degraded by dipeptidyl-peptidase 4. 

Hence, it is thought that peripheral GLP-1 is mainly acting on brain vagal signaling
194

. 

However, neurons and microglia can also sense and release GLP-1
194,195

. Microglial GLP-1 

production is blunted in LPS-treated microglia or in the context of obesity
195,196

. Moreover, 

administration of GLP-1 receptor agonists (e.g. liraglutide, lixisenatide, exendin-4 or NLY01) 

prevents microglial activation
197,198

. Yun and colleagues recently showed that NLY01 

displays neuroprotective properties in a model of α-synucleinopathy by preventing microglia-

mediated conversion of astrocytes into an A1 (inflammatory) phenotype
198

. The same 

neuroprotective effect of GLP-1 receptor activation has been observed in a wide variety of 

neuroinflammation models
195,199–203

.  

 

Leptin. Leptin originates from the adipose tissue. It is an anorexigenic hormone whose 

production is increased in obese patients (combined to leptin resistance), while a 

supplementation with n-3 PUFA can decrease it
27,204

. Leptin is structurally close to 

interleukins and influences neuroinflammatory processes
205,206

. Under SFA-enriched diet, 

microglia decreases leptin signaling in the hypothalamus as shown by depleting these cells 

with the CSF1R inhibitor PLX5622
19

. Microglia express the leptin receptor and respond to the 

hormone by mounting a proinflammatory response
205–208

. Deletion of microglial leptin 

receptor recapitulates many symptoms observed in mice lacking leptin receptor (db/db mice) 

especially in the context of obesity
209

. Moreover, this specific deletion alters microglia 

morphology and decreases its phagocytic activity
209

. 

 

Amylin. Amylin is a pancreatic peptide that shares several biological effects with GLP-1 and 

exerts neuroimmunomodulatory activity
191

. Amylin treatment regulates microglia 
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inflammatory response, as its application stimulates IL-6 production by microglia which in 

turn increases the sensitivity to leptin, giving amylin the role of "leptin sensitizer"
210,211

. 

 

Adiponectin. Adiponectin originates from adipocytes. Its production is decreased in obese 

patients and increased by n-3 PUFA intake
204,212

. This hormone exerts anti-inflammatory 

effects on microglial cells through its receptor AdipoR1
212–214

. Song and colleagues also 

suggested that adiponectin promotes neuroprotective phenotype of microglia by activating 

PPAR-γ
214

. 

 

Ghrelin. Ghrelin is an orexigenic hormone produced by the stomach and the duodenum
212

. 

Obesity is known to decrease the overall ghrelin levels while it increases its active form, 

namely acyl-ghrelin
212,215

. Ghrelin exerts anti-inflammatory and anti-oxidative effects on 

LPS-stimulated microglia
216

. Moreover, its neuroprotective action has been observed in many 

models of neuroinflammation
205,217–219

. The mechanisms through which ghrelin decreases 

microglial activation remain elusive since these cells do not express the ghrelin receptor. 

Some studies indicate that inhibition of endothelial cells-derived MMP-3 release could 

represent one mechanisms
219,220

. 

 

Conclusion  

All these data demonstrate that dietary lipids affect microglia function, either directly or 

through indirect mechanisms. Yet, many questions remain: 

1- Considering other factors (genetic and environmental) that can influence lipid transport and 

metabolism, including the production of bioactive metabolites.  

2- Using large-scale analyses of microglia, such as lipidomics and transcriptomics, to help 

understanding how lipids regulate microglial function in a wide range of pathophysiological 

situations. 

3- Addressing if and how the peripheral alteration of lipid homeostasis (inflammation, 

metabolic disturbances and gut microbiota alterations) could either alleviate or reinforce the 

effects of fatty acids on microglial cells.  

4- Exploring further whether circulating hormones and gut microbiota composition/function 

represent interesting targets to understand the co-morbidities between metabolic diseases 

(obesity, diabetes) and neuroinflammation.  

5- Defining the impact of other nutrients such as carbohydrates and proteins on microglia 

function especially regarding its role in neuroinflammation.   
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