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Abstract The probability and structure of co-occurrences of extreme values in multivariate
data may critically depend on auxiliary information provided by covariates. In this contri-
bution, we develop a flexible generalized additive modeling framework based on high thresh-
old exceedances for estimating covariate-dependent joint tail characteristics for regimes of
asymptotic dependence and asymptotic independence. The framework is based on suitably
defined marginal pretransformations and projections of the random vector along the direc-
tions of the unit simplex, which lead to convenient univariate representations of multivariate
exceedances based on the exponential distribution. Good performance of our estimators of
a nonparametrically designed influence of covariates on extremal coefficients and tail de-
pendence coefficients are shown through a simulation study. We illustrate the usefulness of
our modeling framework on a large dataset of nitrogen dioxide measurements recorded in
France between 1999 and 2012, where we use the generalized additive framework for modeling
marginal distributions and tail dependence in monthly maxima. Our results imply asymp-
totic independence of data observed at different stations, and we find that the estimated
coefficients of tail dependence decrease as a function of spatial distance and show distinct
patterns for different years and for different types of stations (traffic vs. background).
Keywords Asymptotic independence, Extreme value theory, Generalized additive models,
Penalized likelihood, Tail dependence.

1 Introduction

Modeling co-occurrence patterns of extreme values arising in multi-component systems is
crucial for an accurate prediction of aggregated risks. The limiting dependence structures
for extreme values do not present a simple parametric form, such as the Gaussian dependence
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arising from the multivariate central limit theorem, which has spawned an extensive litera-
ture covering a wide range of parametric to fully nonparametric dependence models. When
asymptotic independence arises, the limit model has a simple form but does not indicate the
rate of convergence to this limit, suggesting alternative joint tail representations should be
used to model the residual dependence at the observed levels of the process. In this paper, we
use threshold exceedance data, and we develop nonparametric modeling approaches suitable
for characterizing asymptotic dependence and asymptotic independence when the strength
of the dependence and more generally its shape may be governed by additional information
given by covariate data. Only a few approaches exist in the current literature for modeling
and estimating covariate influence on the joint tail structure. In a parametric framework,
Mhalla, de Carvalho & Chavez-Demoulin (2017) proposed integrating covariate information
through the parameters indexing angular density models, but we want to avoid such strong
parametric assumptions. In the asymptotic dependence case, a nonparametric approach
based on a baseline density for the dependence, modified through a density ratio to obtain
a set of different dependence models according to covariate information, was developed by
De Carvalho & Davison (2014). More recently, Mhalla, Chavez-Demoulin & Naveau (2017)
proposed very flexible modeling of the extremal dependence based on a generalized additive
model with shape constraints using blockwise maxima data. In this paper, we extend their
approach from maxima to threshold exceedance data, and we lift the restriction on asymp-
totic dependence by proposing a set of tools that work for both asymptotic dependence
classes.

Classical extreme value theory and practice are founded on max-stable processes, which
are the only non-trivial limits arising from pointwise normalized maxima taken over in-
dependent replicates of a continuous stochastic process X = {X(s)}s∈S , with S a set of
indexes. When observed over a finite-dimensional set, the d-dimensional joint distribution
FZ of a max-stable random vector Z = (Z1, . . . , Zd) is of multivariate extreme value type
with marginal generalized extreme value distributions and a max-stable dependence struc-
ture (de Haan & Ferreira 2006, Section 9.2). A handy representation of FZ is obtained
when the marginal distributions are transformed to a common unit Fréchet distribution
FZi

(z) = exp(−1/z)1[0,∞)(z). The multivariate max-stable distribution is then written as
FZ = exp{−V (z)}1[0,∞)d(z) with the exponent function V measuring the strength and form
of the dependence; the max-stable process Z is then said to be simple. We will assume this
property throughout, without loss of generality. The convergence of the extremal depen-
dence of any distribution F in the domain of attraction of FZ is chacterized by the property
of multivariate regular variation (Resnick 1987):

t{1− F (tz)} → V (z) = − logFZ(z), z > 0, t→∞. (1)

Max-stable models are useful when data are asymptotically dependent. When this assump-
tion does not hold, limiting models are of little practical use as the property (1) fails to
distinguish between asymptotic independence and exact independence (Heffernan & Resnick
2007), and models for the joint tails based on hidden regular variation (Resnick 2002) are
indispensable.

Joint tail characterizations at the interface of asymptotic dependence and independence
are often presented in a bivariate setup. In more than two dimensions, some pairs of com-
ponents may be asymptotically dependent while others are not; for a deeper theoretical
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treatment, see de Haan & Zhou (2011). We say here that a stochastic process is asymp-
totically independent if all of its pairs of components have this property; the only possible
max-stable limit in this case is full independence. In view of our aim of modeling the joint
tail decay while abstracting away from the univariate marginal distributions, we now sup-
pose that the d-dimensional random vector XP = (XP

1 , . . . , X
P
d ) is nonnegative with Pareto

marginal distributions by applying a marginal probability integral transform to X if nec-
essary. The use of unit Fréchet margins (denoted by XF = (XF

1 , . . . , X
F
d )), which are tail

equivalent to XP
i , would yield the same representations in the following.

With asymptotic independence of XP
1 and XP

2 , their dependence strength vanishes as we
move further into the joint tail. A general flexible representation of the joint tail, leading
to a broad class of models suitable for asymptotic independence, was introduced by Ledford
& Tawn (1996, 1997) for bivariate random vectors and then generalized to the multivariate
setup by Wadsworth & Tawn (2013). We denote by ω = (ω1, . . . , ωd) a direction (also called
weight or angle) that is on the unit simplex Sd = {u ∈ Rd

+ | u1 + · · ·+ ud = 1} in Rd
+. Any

positive random vector x = (x1, . . . , xd) > 0 can be represented as x = (xω1 , . . . , xωd) = xω.
The joint tail representation is

Pr
(
XP

1 > xω1 , . . . , XP
d > xωd

)
= `(x;ω)x−λω , x→ +∞, (2)

where ` is a slowly varying function at infinity for any value of ω ∈ Sd held fixed. The function
λω ≤ 1 is called the angular dependence function (Wadsworth & Tawn 2012, 2013). It must
satisfy certain shape constraints and describes the decay rate along rays in direction ω. In
the case of asymptotic dependence, we have λω ≡ 1 and `(x;ω) 6→ 0 as x → ∞. If (1)
holds, then `(x;ω) tends to a limit expressed through values of the exponent function V ,
which for d = 2 is 1/xω1 + 1/xω2 −V (1/xω1 , 1/xω2). In the bivariate case, λω generalizes the
coefficient of tail dependence η introduced by Ledford & Tawn (1996) and the dependence
measure χ (Coles et al. 1999), where η = (1 + χ)/2 = 1/{2λ(1/2, 1/2)} characterizes the
joint tail decay rate along the diagonal of the first hyperoctant. The coefficient η can be
defined in d dimensions as 1/{dλ(1/d, . . . , 1/d)}. In a similar way, the extremal coefficient
θ ∈ [1, d] (Schlather & Tawn 2003) is related to V via θ = V (1, . . . , 1).

In the remainder of the paper, Section 2 introduces projections based on weighted max-
ima and minima of multivariate random vectors leading to convenient univariate represen-
tations with appealing distributional properties for characterizing dependence in the tail. In
Section 3, we develop nonparametric inference for such dependence based on a generalized
additive modeling framework allowing the inclusion of covariate influence. The simulation
study in Section 4 illustrates the good performance of our methods when the model is exact
for the data but also when it represents an asymptotic approximation to the true data dis-
tribution. In the application presented in Section 5, we use our new techniques to reveal the
influence of spatial distance and time on the co-occurrence patterns of extreme values in a
large dataset of French air pollution data. Conclusions with an outlook on future work are
given in Section 6.
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2 Max- and min-projections

We define the notions of max-projection and min-projection of a vector x = (x1, . . . , xd) ≥ 0
with respect to a weight vector ω = (ω1, . . . , ωd) ∈ Sd. The max-projection is given as
maxω(x) = maxdj=1 ωjxj, and the min-projection is defined as minω(x) = mindj=1 xj/ωj. The
link between the two projections is established through the inversion maxω(x) = 1/minω(x)
using the convention that 1/0 =∞ and 1/∞ = 0.

2.1 Asymptotic dependence

We assume that the random vector XF with distribution function F is in the max-domain of
attraction of a simple max-stable process Z. The exponent function V in (1) characterizing
a max-stable random vector Z is positive, continuous, convex, and homogeneous of order
−1 such that V (tz) = t−1V (z) for t > 0. Exploiting the homogeneity of V , an alternative
characterization of the extremal dependence is possible through the Pickands dependence
function A (Pickands 1981), where

V (z) =

(
1

z1

+ · · ·+ 1

zd

)
A

(
1/z1

1/z1 + . . .+ 1/zd
, · · · , 1/zd

1/z1 + · · ·+ 1/zd

)
. (3)

Given ω, (3) implies V (1/ω) = A(ω). We denote byMmax
ω = maxdi=1 ωiZi the max-projection

of the random vector Z. Then Mmax
ω is Fréchet distributed with scale parameter V (1/ω) ≤ 1

reflecting the level of dependence in Z at an angle ω: For z > 0, we get

Pr (Mmax
ω ≤ z) = Pr

(
Z1 ≤

z

ω1

, . . . , Zd ≤
z

ωd

)
= exp

{
−V

(
z

ω1

, . . . ,
z

ωd

)}
= exp

{
−1

z
V

(
1

ω1

, . . . ,
1

ωd

)}
, (4)

From (3), we conclude that the scale parameter is equal to Aω := A(ω), and we remark
that the corresponding min-projection Mmin

ω = 1/Mmax
ω follows an exponential distribution

with rate Aω. As argued by Ledford & Tawn (1997), a censored version of the multi-
variate max-stable distribution is a natural model for asymptotic dependent threshold ex-
ceedances. In view of convergence (1), this corresponds to applying the approximation
F (x) = exp{−V (x)} ≈ 1−V (x) for large values of ‖x‖ or equivalently, to replacing 1−F (tz)
by − logF (tz) using the logarithmic series approximation log(1 − ε) ≈ −ε for small ε > 0.
We propose to consider projected data values Mmin↓

ω = 1/maxdi=1 ωiX
F
i = mindi=1X

E↓
i /ωi

using standard exponentially distributed XE↓
i = 1/XF

i , where we use ”↓” to emphasize the
tail inversion. As left-censoring the upper tail is equivalent to right-censoring the lower tail
after inverting the tails, we model, below a small fixed threshold, the projected values by
the Exp(Aω) distribution, while we censor the values above the threshold.

Our max-projection Mmax
ω is closely related to the max-projection Y (ω) used by Mhalla,

Chavez-Demoulin & Naveau (2017) for estimating max-stable dependence from maxima data
where no censoring is applied. They define

Y (ω1, ω2) = max [exp{−1/(ω2X1)}, exp{−1/(ω1X2)}] (5)
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which corresponds to exp{−max(ω2X1, ω1X2)−1} = exp{−1/Mmax
(ω2,ω1)}. The link between

the distribution functions of the two max-projections arises from the fact that Z ∼ Exp(λ)
implies exp(−Z) ∼ Beta(λ, 1) for a random variable Z. The components of the direction
ω in (5) are inversed as we define the Pickands dependence function Aω differently from
Mhalla, Chavez-Demoulin & Naveau (2017).

2.2 Residual dependence in asymptotic independence

In this section, we consider marginal transformations of the data vector X = (X1, . . . , Xd) to
either standard Pareto margins XP = (XP

1 , . . . , X
P
d ) or to unit exponential margins XE =

(XE
1 , . . . , X

E
d ) = log(XP ). We define the min-projection of XE as Mmin

ω = mindi=1X
E
i /ωi for

a direction ω = (ω1, . . . , ωd) in Sd. Based on the multivariate tail representation (2), the
function

f(x;ω) = Pr
(
XP

1 > xω1 , . . . , XP
d > xωd

)
= Pr

(
Mmin
ω > log x

)
, for x ≥ 1,

is regularly varying at infinity with index λω. Thus,

f(tx;ω)

f(t;ω)
=

Pr
(
Mmin
ω > log x+ log t

)
Pr (Mmin

ω > log t)

= Pr
(
Mmin
ω > log x+ u|Mmin

ω > u
)
→ x−λω , as u→ +∞, (6)

where u = log t→ +∞ as t→ +∞. Equivalently, the excesses of the structure variable Mmin
ω

above a high threshold u are exponentially distributed with rate λω in the limit: Setting
x̃ = log x in (6) yields

Pr
(
Mmin
ω > x̃+ u|Mmin

ω > u
)
→ exp {−x̃λω} , as u→ +∞. (7)

By using the tail structure (2) for characterizing asymptotic independence and appropriate
marginal pretransformations, we can therefore model the positive excess Mmin

ω − u of the
min-projection above a fixed high threshold u through an Exp(λω)-distribution.

A more specific yet still very flexible class of asymptotically independent processes satis-
fying (2) are the inverted max-stable processes discussed in Wadsworth & Tawn (2012). In
unit Pareto margins, the limit relation (2) is exact for those models and can be written

Pr
(
XP

1 > xω1 , . . . , XP
d > xωd

)
= x−Aω , x ≥ 1, (8)

with Aω the Pickands dependence function of the associated max-stable process, which takes
the role of the angular dependence function λω. If XP is an inverted max-stable process,
then the original max-stable process is recovered through the transformation 1/ log(XP ).
The slowly varying function `(.;ω) in (2) is equal to 1 in this special case, such that

Mmin
ω ∼ Exp {Aω} . (9)

Therefore, if we assume an inverted max-stable dependence in the joint tail of XP , we
can model data values of Mmin

ω above a fixed high threshold u through the exponential
distribution in (9) while censoring values below u. This is different from the general setup
with arbitrary unknown `(.;ω) where only the excesses above the threshold are used, not
the information contained in the censoring indicator 1Mmin

ω >u.
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2.3 The case of Gaussian dependence

Suppose that XF
1 and XF

2 are unit Fréchet distributed. On one hand, Ledford & Tawn
(1996) showed that if XF

1 and XF
2 have bivariate normal dependence with correlation ρ < 1 ,

then

Pr(XF
1 > r,XF

2 > r) ∼ (1 + ρ)3/2(1− ρ)−1/2(4π)−ρ/(1+ρ)r−2/(1+ρ)(log r)−ρ/(1+ρ), r →∞.
(10)

On the other hand, if the distribution function of XF = (XF
1 , X

F
2 ) is a bivariate extreme

value distribution F (x1, x2) = exp{−V (x1, x2)} with exponent function V and extremal
coefficient θ = V (1, 1), then

Pr(XF
1 > r,XF

2 > r) ∼ {2− V (1, 1)} r−1 +
[
{V (1, 1)}2 /2− 1

]
r−2, r →∞. (11)

By assuming asymptotic dependence for data from a Gaussian copula with ρ < 1, we would fit
an extreme value model at a sub-asymptotic level. Such model misspecification will result in
biased extremal coefficient estimates smaller than 2, the value for asymptotic independence,
owing to residual dependence in the data at finite levels. We can approximately quantify
this bias by equating (10) and (11). The resulting subsasymptotic extremal coefficient θ(r)
is equal to

θ(r) = r −
{
r2 − 4r + 2 + 2(1 + ρ)3/2(1− ρ)−1/2(4π)−ρ/(1+ρ)r−2/(1+ρ)(log r)−ρ/(1+ρ)

}1/2
,

(12)
with r the marginal threshold. This relationship between r, θ(r), and ρ is displayed in
Figure 1 where the threshold r is set to high quantiles of the unit Fréchet distribution,
r = −1/ log(1−10−q) with q = 1, . . . , 10. For any ρ < 1, the coefficient θ(r) tends to 2 when
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Figure 1: Sub-asymptotic extremal coefficient θ(r) of the Gaussian dependence as a func-
tion of the correlation ρ. Threshold levels are r = −1/ log(1 − 10−q), with higher curves
corresponding to higher levels
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r tends to infinity. This is obtained from an application of the binomial series formula to
approximate the right-hand side of (12).

The extremal coefficient behaves as expected in the limit cases of perfect independence
(ρ = 0) and perfect dependence (ρ = 1). By taking high thresholds such that residual
dependence in the exceedance data vanishes, the extremal coefficient is close to 2 unless the
correlation ρ ≈ 1. Detection of asymptotic independence in the Gaussian dependence case
with finite sample size was studied in Bücher et al. (2011) where the authors proposed new
estimators of the Pickands dependence function.

2.4 An illustration on data

In Sections 2.1 and 2.2, we developed asymptotically justified univariate exponential models
for both classes of asymptotic dependence and independence using projections. Equation
(2) characterizes the joint tail behavior of random vectors with

λω ∈ ] max
1≤i≤d

ωi, 1], or λω = max
1≤i≤d

ωi, `(x;ω)→ 0 (asymptotic independence),

λω = max
1≤i≤d

ωi and `(x;ω) 6→ 0 (asymptotic dependence),

where `(x;ω) has a well-defined positive limit in the asymptotic dependence case if the
regular variation property (1) holds. If we look at data under the assumption of asymptotic
dependence, then we calculate the projections Mmin↓

ω to estimate the values of the Pickands
dependence function. If we start with the assumption of asymptotic independence, then we
calculate Mmin

ω to estimate the values of the angular dependence function. A max-stable
model characterized by the Pickands function A provides an appealing link between the
two dependence classes by the possibility of modeling asymptotic independence with the
corresponding inverted max-stable model whose function `(·;ω) ≡ 1 is known a priori and
whose angular dependence function is A. Notice that the link between the two projections
is as follows, using probability integral transformations:

Mmin↓
ω = −

log
{

1− exp
(
−Mmin

ω
)}

A(ω)
.

Figure 2 illustrates these relationships on bivariate data simulated according to an ex-
treme value distribution, where various marginal scales and projections at ω0 = (1/2, 1/2)
are considered. Empirical thresholds at the 95% and 5% levels are used to censor the upper
and lower tails, respectively.

3 Inference and regression modeling of dependence

The theory above shows that the projection techniques are appropriate for modeling asymp-
totic dependence and asymptotic independence in threshold excesses. In either case, we aim
to develop a dependence model for the upper joint tail of the data distribution. With asymp-
totic independence, we transform the data margins to the exponential distribution, calculate
the min-projection, and model its excesses above a high threshold through an exponential
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Figure 2: Realizations of a bivariate logistic extreme value distribution (n = 2000) with
parameter 0.8 on the unit Fréchet scale (top left) and the standard exponential scale (bot-
tom left), its corresponding max-projection (middle), and its corresponding min-projection
(right). The red points correspond to the deficits of Mmin↓

ω0
below the 5% quantile (top) and

the exceedances of Mmin
ω0

above the 95% quantile (bottom). The dashed black lines indicate

the mean of the random variables Mmin↓
ω0

and Mmin
ω0

, i.e., the inverse of Aω0 for the logistic
model. The dashed red line corresponds to the mean of the excesses of Mmin

ω0
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distribution, whose rate is given by the angular dependence function evaluated at the pro-
jection angle. More specifically, the latter corresponds to the Pickands dependence function
if we utilize an inverted max-stable model. With asymptotic dependence, we transform the
data margins to the unit Fréchet distribution, calculate the max-projection, invert the latter,
and model the resulting deficits below a small fixed threshold through an upper-censored
exponential distribution, whose rate is given by the Pickands dependence function evaluated
at the projection angle.

By using min- and max-projections, inference is based on a univariate variable, which
frees us from handling multivariate censoring schemes in likelihood-based approaches and the
resulting computational burden. A difference between the two dependence regimes arises in
the construction of the projection. On one hand, the max-projection in the case of asymptotic
dependence retains only the highest value, which makes sense since the asymptotic theory
implies that the limit model gives a good approximation for the components that are large.
On the other hand, the min-projection in the case of asymptotic independence retains the
smallest value, which contains crucial information on the faster tail decay rate along various
directions ω, while the max-projection would converge to a unit exponential limit carrying
no useful information in this case.

In either case, inference for the dependence structure is a two-step procedure based on
a univariate structure variable. In the first step, the margins are transformed to the unit
Fréchet scale and then inverted to the unit exponential scale (asymptotic dependence) or
directly to the unit exponential scale (asymptotic independence), and we then calculate
the min-projection. The second step consists of fitting the appropriate exponential model
(4) or (7) to Mmin↓

ω and Mmin
ω , respectively. In the following, we detail the second step of

the inference procedure with a view towards estimating the influence of a set of covariates
y ∈ Rq.

3.1 Inference for the case of asymptotic dependence

Given n observations {xFj }nj=1 of the random vector XF = (XF
1 , . . . , X

F
d ) with unit Fréchet

margins, we suppose that XF is in the max-domain of attraction of an extreme value distri-
bution with Pickands dependence function A. We fix a direction ω = (ω1, . . . , ωd) ∈ Sd and
calculate the observed structure variables mmin↓

ω,j = mindi=1 1/(ωix
F
j,i), j = 1, . . . , n. To put

focus on the dependence of extremes in the second step of the inference procedure, we censor
observations mmin↓

ω,j that are above a low threshold u > 0, for instance, chosen as the empirical

5% quantile of mmin↓
ω,j . The likelihood function is L

(
Aω;mmin↓

ω,1 , . . . ,m
min↓
ω,n

)
=
∏n

j=1 Lj (Aω)

with contributions

Lj (Aω) =

{
Aω exp

(
−Aωmmin↓

ω,j

)
if mmin↓

ω,j < u,

exp (−Aωu) if mmin↓
ω,j ≥ u.

When a set of covariates y ∈ Rq is available, we propose using a generalized additive model
(GAM) structure (Wood 2017) to model the dependence in the extremes, similar to the
approach of Mhalla, Chavez-Demoulin & Naveau (2017), who estimated the Pickands de-
pendence function based on the block maxima approach. The dependence of xF on y is
assumed to be at the extremal dependence level, i.e., the covariates solely influence the
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Pickands dependence function Aω ≡ Aω(y). This assumption implies no loss of generality
as the marginal inference is performed in a separate step. A very general model for Aω(y)
arises from supposing the semi-parametric form

Aω(y; Λ) = h−1

{
uTβ +

K∑
k=1

hk(tk)

}
, (13)

where h is a link function and u ∈ Rs and (t1, . . . , tK) are subvectors of y, or products of
covariates if interactions between some covariates are considered. The column vector β ∈ Rs

gathers linear coefficients whereas hk : Hk → R are smooth functions supported on closed
intervals Hk ⊂ R and admitting a finite quadratic penalty representation (Green & Silverman
1993). The column vector Λ gathers all parameters to be estimated in the model, i.e., the
vector β and the linear basis coefficients of each of the smooth functions hk. Based on a
sample {xFj ,yj}nj=1, we estimate the GAM (13) by maximizing the penalized log-likelihood

`(Λ,γ) = `(Λ)− 1

2

K∑
k=1

γk

∫
Hk

h
′′

k(tk)
2 dtk, (14)

with `(Λ) =
∑n

j=1 `j(m
min↓
ω,j ,yj,Λ),

`j(m
min↓
ω,j ,yj,Λ) =

{
logAω(yj)− Aω(yj)m

min↓
ω,j if mmin↓

ω,j < u,

−Aω(yj)u if mmin↓
ω,j ≥ u.

The integrals in (14) are componentwise roughness penalties with smoothing parameters
γ = (γ1, . . . , γK) that balance between the smoothness of the model and its goodness of fit.
Higher values of γk yield smoother fitted curves. The related effective degrees of freedom
of each smooth function hk are defined as trace (I + γkSk), where Sk is the positive definite
penalty matrix associated to the basis representation of hk (Wood 2017, Chapter 5). The
maximization of the penalized log-likelihood (14) is performed based on an outer-iteration
procedure. At each iteration, Λ and γ are estimated separately by penalized iteratively
re-weighted least squares (PIRLS) and a prediction error method (Generalized Cross Val-
idation), respectively; see Wood (2017) for a detailed description of the available methods
for GAM fitting.
The penalized maximum log-likelihood estimator Λ̂n then defines the estimate Âω(y) =

h−1
{

uT β̂ +
∑K

k=1 ĥk(tk)
}

of the Pickands dependence function evaluated at ω. A vast

amount of literature on GAM-related theory is available and includes Wood (2004, 2006),
Marra & Wood (2011), among others.

3.2 Inference for the case of asymptotic independence

Given n observations {xPj }nj=1 of the random vector XP = (XP
1 , . . . , X

P
d ) with standard

Pareto margins, we suppose that XP has an asymptotic independent tail structure as in (2).
We fix a direction ω = (ω1, . . . , ωd) ∈ Sd and calculate the observed structure variables

mmin
ω,j =

d

min
i=1

log(xPj,i)/ωi, j = 1, . . . , n.

10



We fix a high threshold u, for instance, chosen as the the empirical 95% quantile of mmin
ω,j, and

extract the sample of positive excesses m̃min
ω,je = mmin

ω,je −u > 0, e = 1, . . . , Eu with a positive
number of excesses Eu > 0. Then, we maximize the likelihood composed of contributions

Lje {λω} = λω exp
{
−λω

(
m̃min
ω,je

)}
, e = 1, . . . Eu. (15)

Given covariate vectors yj, we proceed as for the asymptotic dependence case by proposing
a GAM (13) for λω ≡ λω(y), i.e.,

λω(y; Λ) = h−1

{
uTβ +

K∑
k=1

hk(tk)

}
,

which is fitted by maximizing a penalized version of the likelihood (15) similarly to (14) and
results in the estimate λ̂ω(y) of the tail dependence function evaluated at ω.

4 Simulation study

We study the properties of the estimators Âω(y) and λ̂ω(y) when they are related to a
covariate vector y ∈ Rq using the link function h(x) = log{(x−1/2)/(1−x)}, a modification
of the logit link resulting in values within (0.5, 1). We focus on the estimation of these
two dependence functions in the bivariate case at ω0 = (1/2, 1/2), which yields estimates
of the covariate-dependent coefficients of extremal dependence θ̂(y) = 2Âω0(y) and tail
dependence η̂(y) = 1/{2λω0(y)}. Realistic sample sizes are chosen, similar to those in the
subsequent application.

4.1 Case of asymptotic dependence

Suppose that XF is an asymptotically dependent random vector with unit Fréchet margins.
We first consider the max-domain of attraction (MDA) setting where our model represents
an asymptotic approximation of the exact tail behavior in the data.

4.1.1 Data distribution in the maximum domain of attraction

We focus on the bivariate case with XF = (XF
1 , X

F
2 ) a random vector with unit Fréchet

margins and an Archimedean copula C? (Nelsen 2006, Chapter 4) with generator ϕ(t) =
(1/t− 1)1/α for some α ∈ (0, 1), i.e., the distribution function of XF is

F (x1, x2) = ϕ

[
ϕ−1

{
exp

(
− 1

x1

)}
+ ϕ−1

{
exp

(
− 1

x2

)}]
, x1, x2 > 0. (16)

This distribution is in the max-domain of attraction of the logistic bivariate extreme value
distribution (Tawn 1990) with parameter α (Fougères 2004), and can be simulated using the
algorithm from Nelsen (2006, example 4.15, p. 144). We estimate the covariate-dependent
extremal coefficient using deficits of Mmin↓

ω0
by setting ω0 = (1/2, 1/2) and fixing different

threshold levels.

11



Equation (4) holds when at least one variable XF
i exceeds some high threshold, and

the limiting dependence structure in the tails of XF is equal to that of a bivariate logis-
tic extreme value distribution (Coles & Tawn 1991). We empirically study the bias of the
covariate-dependent extremal coefficient estimator resulting from the application of the lim-
iting extreme value model.

We simulate from a covariate-dependent model (16) with the following generator

ϕ(t; y) =

(
1

t
− 1

)1/α(y)

,

where y ∈ [0, 1] is observed at 50 equally spaced values and

α(y) = log

[
1 +

exp {sin(2πy) + y2}
1 + exp {sin(2πy) + y2}

]
/ log(2) ∈ (0, 1).

Thus, the covariate-dependent extremal coefficient is

θ(y) = 2Aω0(y) = 1 +
exp {sin(2πy) + y2}

1 + exp {sin(2πy) + y2}
. (17)

The sample size is chosen between 50000 for a threshold at the 10% level and 500000 at
the 1% level, such that an average of 100 threshold deficits of Mmin↓

ω0
arises for a fixed

value of y. Additionally, we empirically quantify the performance of our estimator in an
overparametrized setting where one of the covariates has no influence on the response by
considering a dummy categorical covariate I with two levels. In the true model (17), the
Pickands dependence function does not depend on I. We simulate the observed values of I
at random and include level-dependent predictors in the GAM structure for Aω0(y); thus,
the estimated model is

h{Âω0(y, I)} = â1 + ŝ1(y)1{I=“Level 1”} + {â2 + ŝ2(y)}1{I=“Level 2”},

where âi, i = 1, 2 are the estimated intercepts and ŝ1, and ŝ2 are the estimated smooth
curves describing the dependence of the Pickands function at ω0 on y and at each level of
I. The Monte Carlo procedure is based on 500 repetitions, and 95% percentile confidence
intervals are constructed. Figure 3 displays the pointwise mean estimates of θ(y, I) in both
levels of I with a threshold set at the 5% level. As expected, the inclusion of I in the model
does not prevent it from recovering the true dependence structure of the extremal coefficient
on y in both levels. Moreover, when considering the point estimates (i.e., the single-run
experiments), the results indicate that the variable I is not statistically significant in the
fitted GAM. Next, we remove this artificial covariate from the model and compare the root
mean squared error (RMSE) of the resulting extremal coefficient fits obtained for different
threshold levels. The RMSE over the 500 samples is defined as

RMSE(y) =

[
500∑
r=1

{θ̂r(y)− θ(y)}2/500

]1/2

,

where θ̂r(y) is the covariate-dependent extremal coefficient estimate obtained from the rth
sample. Figure 4 shows the RMSE of θ̂(y) for different threshold levels. The RMSE tends

12
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Figure 3: Estimation in the max-domain of attraction setting. Estimates (solid) and 95%
bootstrap confidence intervals (dashed) of the extremal coefficient θ(y) in the first and second
levels of I in orange and red lines, respectively. The true values as given by (17) are in solid
black lines

to decrease when we take lower threshold levels. Similar shapes of the RMSE function are
observed for threshold levels below 10%, with a noticeable decrease in the RMSE for values
of y corresponding to weak extremal dependence, i.e., for values of y between 0.2 and 0.4.
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Figure 4: Estimation in the max-domain of attraction setting, with the root mean squared
error of the estimates of θ(y) for y ∈ [0, 1] based on 500 samples and obtained at different
threshold levels
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4.1.2 Max-stable data distribution

We now simulate bivariate samples with max-stable dependence where our asymptotic de-
pendence model class contains the exact model. The observations come from the logistic
extreme value copula with unit Fréchet margins and dependence parameter α(t) = t− 0.05,
t ∈ [0.1, 1]. The covariate-dependent extremal coefficient θ(t) is 2α(t). Figure 5 displays the
RMSE of the extremal coefficient estimates with respect to t for the 10%, 5%, 3%, and 1%
threshold levels. The RMSE is mostly unaffected by the threshold level as our modeling
assumption (4) holds exactly, as opposed to the sub-asymptotic setting in Section 4.1.1.
Therefore, we observe a lower RMSE (see Figure 4), as there is no estimation bias resulting
from penultimate modeling.
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Figure 5: Root mean squared error of the estimates of θ(t) for t ∈ [0.1, 1] with respect to
different threshold levels, for 500 simulations

4.2 Case of asymptotic independence

We consider two models for an asymptotically independent random vector XE = (XE
1 , X

E
2 )

with standard exponential margins. The dependence in the tails of XE depends on the
covariates I and t, where I is a categorical covariate with two levels 1 and 2. Bivariate
Gaussian dependence with correlation ρ(t) is observed in the first level of I, and an inverted
logistic extreme value dependence with dependence parameter α(t) is observed in the second
level of I. The dependence on covariates is as follows:

ρ(t) = t, (18)

α(t) = t− 0.05, (19)

t ∈ [0.1, 1].
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Then,

η(t, I) = 1/{2λω0(t, I)} =

{
{1 + ρ(t)}/2 if I = “Level 1”,
1/{2Aω0(t)} = 2−α(t) if I = “Level 2”.

The strength of the tail dependence varies from low (small values of ρ(t), large values of
α(t)) to strong (large values of ρ(t), small values of α(t)) where η(t, I) < 1 unless ρ(t) ≡ 1
or α(t)→ 0 (perfect dependence).

For assessing the performance of our generalized additive modeling framework for the
coefficient of tail dependence when different strengths of tail dependence are observed, we
construct the following model for the angular dependence function:

h{λω0(t, I)} = λ0 + s1(t)1{I=“Level 1”} + s2(t)1{I=“Level 2”}, (20)

with intercept λ0 and smooth functions s1 and s2 of t. Our simulation study is based on
an average of 100 threshold exceedances of Mmin

ω0
= min(2XE

1 , 2X
E
2 ) for a fixed value of the

covariate vector (t, I); the sample size varies between 105 for a threshold at the 90% level
and 106 at the 99% level. As before, 500 repetitions are carried out. We consider different
threshold levels to quantify the bias resulting from the estimation of η(t, I) based on (7) at
a finite threshold u or equivalently (2) at a finite level x.

The RMSE defined as

RMSE(t, I) =

[
500∑
r=1

{η̂r(t, I)− η(t, I)}2/500

]1/2

,

with η̂r(t, I) the covariate-dependent tail dependence coefficient estimate obtained from the
r−th bootstrap sample, is displayed in Figure 6. In the Gaussian case, the RMSE decreases
when the threshold level increases but increases when stronger dependence is considered, i.e.,
when ρ(t) (or t, equivalently) increases. This is due to the slow convergence of tail measures
at sub-asymptotic levels for the Gaussian dependence; see Coles et al. (1999). In the inverted
extreme value case, the estimator performance is largely unaffected by the threshold level as
Equation (8) entails that the approximation (2) is exact at finite levels.

5 Application to nitrogen dioxide data

We illustrate the modeling of covariate-dependent tail dependence on a nitrogen dioxide
(NO2) [µg/m3] data set, extracted from the European air quality database for pollutants
AirBase1. It comprises 569 measurement stations in France with hourly records of NO2

observed over 14 years between 1999 and 2012; see the map of stations in Figure 7. With
NO2 produced mostly by the burning of fossil fuel and motor vehicle exhaust, we propose
to distinguish traffic stations where the NO2 level is predominantly determined by nearby
traffic (129 stations) from background stations, often located in built-up areas, whose level
of NO2 is influenced by a combination of many sources (440 stations). Figure 8 shows
NO2 measurements in 1999 for two background stations located 3 km apart (“Metz-Centre”
and “Metz-Borny”) and for two traffic stations located 8 km apart (“Auto A1-Saint-Denis”

1https://www.eea.europa.eu/data-and-maps/data/aqereporting-2
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Figure 6: Root mean squared error of the bootstrap estimates of η(t, I) for I = 1, i.e.,
the Gaussian case (solid lines), and for I = 2, i.e., the inverted logistic extreme value case
(dashed lines). Different threshold levels are considered

and “Rue Bonaparte”). The measurements at the two background stations seem to follow
a similar pattern, with large values recorded around the same time periods and low val-
ues observed during the summer season when most of the NO2 is transformed into ozone
through sunlight. The comparison of the NO2 measurements for the two traffic stations is
less straightforward. The magnitude of observations is much higher than for the background
sites. Large observations seem to occur mostly locally although the stations being very close.

Such insights justify the distinction between the two station types when investigating the
co-occurrence of large concentrations measured at pairs of stations. Moreover, it is natural
to ask whether the frequency of co-occurrences of high pollution levels has changed over
time, for instance, as a result of regulatory measures. For the present analysis, we reduce
the dimension of data by considering monthly maxima at each of the 569 stations, which
avoids modeling of hourly patterns in NO2 concentration levels and of intraday dependence
between the measurements (Shi et al. 2014).

At each station, the marginal distribution of monthly maxima is modeled using a gen-
eralized extreme value (GEV) distribution. Its parameters for location µ and scale σ are
allowed to vary smoothly with the year and month of the observed maxima as follows:

µ(t,m) = µ0 + f1(t) + f2(m),

σ(t,m) = σ0 + g1(t) + g2(m),

where t and m denote the year and month of the observed maxima, respectively, f1 and g1

are smooth functions accounting for the trend, and f2 and g2 are cyclic smooth functions
accounting for the seasonal component in the data (Wood 2017, Section 5.3). Likelihood ratio
tests are performed to assess whether we need smoothly varying terms or whether parametric
and sinusoidal terms already provide a good fit. The final fitted model is then used to
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Figure 7: Map of nitrogen dioxide measurement stations in France that are “background”
(blue × symbols) or “traffic” (red + symbols) stations

transform the data at each station to the unit Fréchet distribution using the probability
integral transform.

We focus on modeling the dependence between high NO2 measurements recorded at pairs
of stations. The dependence should naturally tend to decay with the distance between the
stations in each pair. Therefore, we include distance (in kilometers) as a covariate in our
model along with the type of area (traffic/background) and time (year), as discussed above.
We consider the great circle distance between the stations, i.e., the shortest distance over
Earth’s surface, and fix the distance resolution at 10 km, which represents the minimal
distance by which stations must be separated to be distinguishable. This setting leads to 93
distinct values for the distance covariate, 340, 740 pairs of observations for the background
stations and 61, 705 pairs for the traffic stations. Both tail measures, based on the assumption
of either asymptotic dependence or asymptotic independence, are modeled. We construct
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Figure 8: Nitrogen dioxide measurements recorded in 1999 at two background stations in
Metz (top) and two traffic stations in Paris (bottom)

the following “full” models for the extremal coefficient and the tail dependence coefficient:

h{θ(t, d, type)/2} = θ0 + 1{type=“Background”}{f1(t) + f2(d) + f(t, d)}+

1{type=“Traffic”}{θ1 + g1(t) + g2(d) + g(t, d)}, (21)

h
[
{2η(t, d, type)}−1

]
= η0 + 1{type=“Background”}{f̃1(t) + f̃2(d) + f̃(t, d)}+

1{type=“Traffic”}{η1 + g̃1(t) + g̃2(d) + g̃(t, d)}, (22)
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where t represents time (in years), d the distance between the stations in each pair (in km),
and h(x) = log(x−1/2)−log(1−x). The interaction between time and distance is represented
using a tensor product basis (Wood 2017, Section 5.6). We fit models (21) and (22) based
on the deficits of the 5% quantile of Mmin↓

ω0
and the exceedances of the 95% quantile of Mmin

ω0

with ω0 = (0.5, 0.5), respectively.
To start, we conduct a simpler, purely spatial analysis and consider the models without

time effects and such that data are pooled together over the whole period for each pair of
stations during the estimation. Estimated summaries θ̂(d, type) and η̂(d, type) are shown in
Figure 9; they clearly hint at asymptotic independence with estimates and bootstrap-based
pointwise confidence intervals of θ very close to 2, while those of η are clearly bounded away
from 1. Overall, the joint tail decay rates in asymptotic independence appear to be quite
fast with pointwise confidence envelopes of η contained between 0.5 and 0.7 approximately.
A partial explanation for this relatively weak dependence is that our univariate models have
already appropriately removed seasonal trends in the data, such that dependence in the
resulting residuals cannot arise from intermediate-range clustering in space and time. As a
matter of fact, as seasonal patterns are typically spatial, filtering out these patterns would
result in a spatial de-clustering in the region where the seasonal features are observed. We
detect a stronger weakening of dependence with increasing distance in the background sta-
tions, which makes sense because the peaks in the NO2 concentrations are strongly influenced
by nearby traffic.

1.00

1.25

1.50

1.75

2.00

0 50 100 150 200 250
Distance (km)

θ̂

Type
Background
Traffic

 

0.5

0.6

0.7

0.8

0.9

1.0

0 50 100 150 200 250
Distance (km)

η̂

Type
Background
Traffic

 

Figure 9: Estimation of distance-dependent dependence summaries for the nitrogen diox-
ide data. Left: θ̂(d, type), assuming asymptotic dependence. Right: η̂(d, type), assuming
asymptotic independence

Next, we consider regression fits (21) and (21) with spatial and temporal components;
i.e., we have a more complex, higher-dimensional model for the predictors, and we expect
the estimation uncertainty to be higher. Table 1 summarizes both fitted models. All the
considered covariate effects, except for the distance between traffic stations when the tail
dependence coefficient is modeled, are statistically significant.
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Table 1: Estimates (se) of the intercepts and the degrees of freedom (edf) of the smooth
functions in models (21) and (22)

θ̂0 θ̂1 f̂1 ĝ1 f̂2 ĝ2 f̂ ĝ

θ̂(t, d, type)

estimate/edf 12.76(0.39) −2.41(0.69) 3.98 3.55 3.82 0.84 15.55 2.92

p-value < 10−16 4.74× 10−4 < 10−16 < 10−16 < 10−16 1.21× 10−2 < 10−16 < 10−16

η̂0 η̂1
ˆ̃
f1 ˆ̃g1

ˆ̃
f2 ˆ̃g2

ˆ̃
f ˆ̃g

η̂(t, d, type)
estimate/edf 1.86(0.03) −0.46(0.07) 3.88 3.11 3.82 0 9.62 1.66

p-value < 10−16 4.49× 10−10 < 10−16 < 10−16 < 10−16 0.61 < 10−16 2.98× 10−4

This confirms our intuition that high NO2 concentrations are relatively localized for the traf-
fic stations. A block bootstrap procedure treating NO2 measurements from each month and
each year as independent for each type of area is used to assess the uncertainty. Figure 10
shows cross sections of the estimates of the extremal coefficient for the traffic and back-
ground stations; we fix one of the two continuous covariates to show the smooth effect of the
other. For both area types, the estimates are very close to the upper bound of the extremal
coefficient for almost all values of t and d. This result implies weak extremal dependence
between the NO2 measurements at the pairs of stations, and we can suppose asymptotic
independence in the data. We now focus on the estimates of the tail dependence coefficient;
the sub-asymptotic modeling of the tails should be more informative in this case. Figure 11
displays cross sections of the estimate of the tail dependence coefficient η̂(t, d) for the differ-
ent types of area. For the considered years, the residual tail dependence is relatively weak
and largely unaffected by the distance between traffic stations, owing to the very localized
features of traffic pollution inducing high concentrations of NO2. Unreported results with
a distance resolution of 5 km have shown globally higher tail dependence estimates (over
time) for close traffic stations that are at most 5 km apart. The uncertainty in the esti-
mators η̂(t, d, “Traffic”) is relatively high due to the small amount of information available
from the traffic stations. For background stations, the smooth effect of distance on the tail
dependence is more pronounced with a decrease in the dependence at larger distances. The
sharpness of the decrease shows some variation over time, with higher tail dependence for
close background stations observed in 2007. The smooth effect of time on the tail depen-
dence is important mainly for small distances with an overall slight increase over time for
the traffic stations and a bump (increase) in the dependence around 2005 and 2009 for the
background stations. These effects are observable for stations up to 100 km apart although
with a lower magnitude of the dependence measure.

6 Conclusion

Starting from a d-dimensional random vector X with either asymptotic dependence or in-
dependence, we developed min- and max-projection techniques allowing us to simplify the
joint tail characterization problem to univariate modeling with well-understood exponential
distributions for which generalized additive modeling under censoring is feasible and well-
known from survival modeling. The exponential rate carries crucial information about the
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Figure 10: Cross sections of the covariate-dependent θ̂(t, d) with the corresponding 95%
bootstrap uncertainty intervals. The bootstrap is based on 300 bootstrap samples

form and the rate of the joint tail decay in different directions. This setup facilitates flexible
inference for the tail dependence as it is based on the excesses or deficits of a univariate
exponential random variable while censoring observations that do not contribute to the joint
tail, and it allows us to include multiple covariates of different types through the GAM
framework. Although we focused on estimating the covariate influence for a fixed direction,
we can apply the projection technique of Mhalla, Chavez-Demoulin & Naveau (2017) in dif-
ferent directions to obtain smooth and valid estimates of the Pickands dependence function
or the angular dependence function under shape constraints and for a fixed set of covariates.

Our application demonstrates that it is useful to apply both projection techniques in
practice to compare covariate-driven estimates for tail dependence summaries in each of
the two asymptotic regimes. Our pairwise modeling of NO2 measurements in France to
investigate the effect of time and spatial distance on the joint tail behavior showed strong
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Figure 11: Cross sections of the mean bootstrap estimate of η̂(t, d) along with the corre-
sponding 95% bootstrap uncertainty intervals. The bootstrap procedure is based on 300
bootstrap samples

evidence against asymptotic dependence. The results of our application gave strong sup-
port for asymptotic independence with estimated extremal coefficients close to 2 and the
confidence intervals of tail dependence coefficients bounded away from 1. Our methodology
constitutes an important step toward the distinction between asymptotic dependence and
independence, when there is no clear evidence for one of the two models or when different
model classes arise for different covariate configurations. Formal hypothesis testing of asymp-
totic dependence against asymptotic independence for a fixed set of covariates would be an
important extension. As our censoring mechanisms select different observations according to
the two models, likelihood-based tests are not directly applicable, but non-parametric tests
of extremal dependence could provide guidance (e.g., Dey & Yan 2015, Chapters 17 and
18). Finally, depending on the application context, a threshold that varies with covariates
and/or directions could be used to determine excesses and deficits, which could reduce or
homogenize estimation bias and uncertainty.
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Bücher, A., Dette, H. & Volgushev, S. (2011), ‘New estimators of the Pickands dependence
function and a test for extreme-value dependence’, The Annals of Statistics 39, 1963–2006.

Coles, S., Heffernan, J. E. & Tawn, J. A. (1999), ‘Dependence measures for extreme value
analyses’, Extremes 2, 339–365.

Coles, S. & Tawn, J. A. (1991), ‘Modelling extreme multivariate events’, Journal of the Royal
Statistical Society, Series B (Statistical Methodology) 53, 377–392.

De Carvalho, M. & Davison, A. C. (2014), ‘Spectral density ratio models for multivariate
extremes’, Journal of the American Statistical Association (506), 764–776.

de Haan, L. & Ferreira, A. (2006), Extreme Value Theory: An Introduction, Springer, New
York.

de Haan, L. & Zhou, C. (2011), ‘Extreme residual dependence for random vectors and
processes’, Advances in Applied Probability 43, 217–242.

Dey, D. & Yan, J. (2015), Extreme Value Modeling and Risk Analysis, Chapman and
Hall/CRC, New York.

Fougères, A.-L. (2004), ‘Multivariate extremes’, In Extreme Values in Finance, Telecommu-
nications, and the Environment, Ed. Finkenstädt, B. and Rootzén, H., Monographs on
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