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Abstract Introduction: High levels of plasmatic branched-chain amino acids (BCAA), commonly used as di-
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etary supplements, are linked to metabolic risk factors for Alzheimer’s disease (AD). BCAA directly
influence amino acid transport to the brain and, therefore, neurotransmitter levels. We thus investi-
gated the impact of BCAA on AD neuropathology in a mouse model.
Methods: 3xTg-AD mice were fed either a control diet or a high-fat diet from 6 to 18 months of
age. For the last 2 months, dietary BCAA content was adjusted to high (150%), normal (10%),
or low (250%).
Results: Mice fed a BCAA-supplemented high-fat diet displayed higher tau neuropathology and
only four out of 13 survived. Mice on the low-BCAA diet showed higher threonine and tryptophan
cortical levels while performing better on the novel object recognition task.
Discussion: These preclinical data underscore a potential risk of combining high-fat and high BCAA
consumption, and possible benefits from BCAA restriction in AD.
� 2018 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Alzheimer’s disease (AD) is the most prevalent neurode-
generative disease, and the number of demented patients in
the world is predicted to double within the next 15 years
because of the aging population [1]. Given the lack of
disease-modifying treatments, controlling environmental
risk factors remains an attractive opportunity to reduce the
incidence of AD [2]. Changing dietary habits has been pro-
posed as a means of delaying the onset of the disease either
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through direct effects on brain function or indirectly by
improving peripheral metabolic determinants [3]. Indeed,
common nutrients such as lipids, amino acids, and polyphe-
nols may have significant impact on cognitive performance
[4–6]. However, the optimal diet to be used in prevention
trials remains to be determined.

Branched-chain amino acids (BCAA; leucine, isoleucine,
and valine) are essential amino acids, comprising approxi-
mately 20% of protein intake. BCAA are commonly used
as dietary supplements, by doubling the daily intake of those
amino acids, to increase muscular mass and recovery after
exercise [7,8]. However, a BCAA-related signature is iden-
tifiable in a context of metabolic disorders: circulating
BCAA are increased in people suffering from obesity and
have been shown to predict insulin resistance and other
imer’s Association. This is an open access article under the CC BY-NC-ND
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complications related to metabolic diseases [9,10]. Evidence
from metabolomics studies indicate that high-fat diet (HFD)
acts in synergy with BCAA to induce metabolic disorders, at
least in animal models [11].

BCAA enter the central nervous system via the large
neutral amino acids transporter (LAT1) at the blood-brain
barrier, where they compete with tryptophan and tyrosine,
which are direct precursors to serotonin and dopamine,
respectively [12]. Thus, circulating BCAA can modulate
levels of these key neurotransmitters in the brain, thereby
altering brain function and behavior [13–16]. Because
cognitive impairments observed in AD have been
associated with a neurotransmitter imbalance [17], we hy-
pothesize that BCAA intake can modulate AD-like behavior.
Indeed, the maple syrup urine disease is a neurometabolic
disorder characterized by a toxic accumulation of BCAA
and their metabolites, which leads to severe mental retarda-
tion and encephalopathy [18,19].

It is only recently that studies have provided clues to a po-
tential link between BCAA and AD pathogenesis. A metab-
olomic analysis from the ADNI cohort recently reported
inverse correlations between plasmatic valine concentra-
tions and cognitive deficits, as well as ventricle volume in
symptomatic stages [20]. Another metabolomic study in
large prospective cohorts relates higher levels of plasma
BCAA with a lower risk of dementia [21]. Conversely, a
genome-wide association study suggests that single-
nucleotide polymorphisms (SNPs) associated with higher
plasma isoleucine levels are positively associated with the
risk for developing AD [22]. However, no studies have
focused yet on the effect of BCAA consumption on AD pa-
thology. Thus, we investigated the impact of both BCAA
supplementation and restriction in old 3xTg-AD mice, an
animal model of age-related behavioral impairments and
Ab/tau neuropathologies.
2. Methods

2.1. Animals and diets

The 3xTg-AD (APPswe, PS1M146V, tauP301L) mouse
model of genetically induced AD-like neuropathology
was used with an equal number of males and females in
each group. Mice produced at our animal facility received
either a control diet (CD; 12% kcal fat) or a high-fat diet
(HFD; 60% kcal fat) for a 10-month period starting at
the age of 6 months. At 16 months of age, groups of
mice were exposed until 18 months to the same diets modi-
fied to include high (150%), normal (10%), or low
(250%) BCAA content (Fig. 1A). Table 1 provides a
detailed description of the amino acids measured in the di-
ets using gas chromatography with flame ionization detec-
tor (see methods below), whereas Supplementary Table 1
contains the list of amino acids added to the formulations.
Supplementary Table 2 shows the description of fatty acids
measured in the diets using gas chromatography. Diets
were formulated and custom-made by Research Diets,
Inc. (New Brunswick, NJ) to ensure uniformity between
groups and consistency with our previous studies with
the 3xTg-AD mouse [23,24].

All mice were put under deep anesthesia with a keta-
mine/xylazine i.p. injection (100 mg/kg ketamine, 10 mg/
kg xylazine) and sacrificed by intracardiac perfusion with
50 mL of ice-cold 0.1 M phosphate buffer saline (PBS)
with a cocktail of inhibitors of phosphatases (sodium
pyrophosphate 1 mM and sodium fluoride 50 mM) and pro-
teases (SigmaFAST protease inhibitor tablets; Sigma-
Aldrich, St. Louis, USA) as described elsewhere [23].
Rapidly, one hemisphere of the brain was dissected and
frozen at 280�C until processing for Western blot, ELISA,
or measurements of amino acids and neurotransmitters. All
experiments were performed in accordance with the Cana-
dian Council on Animal Care and were approved by the
Institutional Committee of the Centre Hospitalier de l’Uni-
versit�e Laval (CHUL).

2.2. Biochemical analyses

Aspartate aminotransferase, alanine aminotransferase,
creatine kinase, triglycerides, and cholesterol were analyzed
in plasma from intracardiac blood (centrifuged 5 min,
3000 rpm) sampled just before intracardiac perfusion at sac-
rifice with a modular analyzer (Roche). Only samples with
more than 100 mL of plasma could be analyzed with that
method. When the hemolysis level reached more than
50 g/dL, samples were eliminated from the analysis. Creat-
inine was determined with an ELISA kit (B-Bridge Interna-
tional Inc, Santa Clara, CA, USA) according to the
manufacturer’s instructions.

2.3. Behavioral assessment

Recognition memory and locomotor activity were evalu-
ated with the novel object recognition test and the open field
test, respectively, as previously described (see the
Supplementary Material) [25].

2.4. Amino acid quantification in diet, plasma, and brain

Amino acids in the diets, plasma, and cortex homoge-
nates were analyzed by gas chromatography with flame ioni-
zation detector as described in Supplementary Material [26].

2.5. Quantification of monoamines in the prefrontal cortex
and hippocampus

Dopamine (DA), serotonin (5-HT), 5-hydroxyindolacetic
acid (5-HIAA), homovanillic acid (HVA), and 3,4-
dihydroxyphenylacetic acid (DOPAC) were quantified in
the prefrontal cortex and hippocampus of mice by electro-
chemical high-performance liquid chromatography
(HPLC) following the detailed method described in
Supplementary Material [27].
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Fig. 1. BCAA-supplemented HFD affects the survival of 3xTg-AD mice, increasing hepatic and muscular toxicity. Timeline of experimentation (A). Survival

rate of mice fed the six different diets during a 2-month period (final vertical line indicates sacrifice) (B). Plasmatic concentrations of AST (C), ALT (D), CK (E),

and creatinine (F) from intracardiac blood of 18-month-old 3xTg-ADmice sampled just before perfusion. Samples available and analyzed frommoribund mice
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2.6. Protein extraction and Western immunoblotting

For Western immunoblotting and b-Amyloid ELISA,
proteins were extracted from the parieto-temporal cortex.
The protein extraction method results in a TBS-soluble
fraction (intracellular and extracellular fraction), a
detergent-soluble fraction (membrane fraction) and a
detergent-insoluble fraction (insoluble proteins resus-
pended in formic acid) as previously described [25]. The
detailed method for Western immunoblotting is described
elsewhere [24]. The list of primary antibodies used in our
experiments is available in Supplementary Table 5. Ho-
mogenates were all run on the same gel for each experi-
ment.
2.7. Ab40 and Ab42 quantification

Ab40 and Ab42 were measured in TBS-soluble and
detergent-insoluble fractions from the parieto-temporal cor-
tex using sensitive human b-Amyloid ELISA kits (Wako,
Osaka, Japan) according to the manufacturer’s instructions,
as shown [24]. Plates were read at 450 nm using a Synergy
HT multidetection microplate reader (Biotek, Winooski,
VT, USA).
2.8. Statistics

Data are presented as the mean 6 SEM. Statistical anal-
ysis used and the numbers of mice per group are specified
in each figure or legend. Briefly, one- (one independent var-
iable) or two-way (two independent variables) ANOVAs
were used when more than two groups were compared and
were followed by Tukey’s post hoc (equal variance). In
case of unequal variance, Dunnett’s post hoc was used or a
Kruskal-Wallis followed by Dunn’s. The log-rank Mantel-
Cox test was used for the analysis of the survival curves. Cor-
relations between variables were investigated using linear
regression analyses. All statistical analyses were performed
with Prism 5 (GraphPad software, San Diego, CA, USA) or
JMP (version 12.1.0; SAS Institute Inc., Cary, IL, USA) soft-
wares, and statistical significance was set at P , .05.
3. Results

Experiments were performed in the 3xTg-AD mouse
model of AD, which develops behavioral impairments as
well as Ab and tau neuropathologies with age. Because
age-related factors are essential to the development of AD
[28,29], old 3xTg-AD mice were selected. To evaluate the
impact of BCAA on AD pathogenesis, 3xTg-AD mice were



Table 1

Description of dietary treatments

Content

Control 5% (w/w) fat High fat 35% (w/w) fat

Normal High-BCAA Low-BCAA Normal High-BCAA Low-BCAA

Protein (% w/w) 20.3 23.3 18.4 27.4 31 25

Carbohydrate (% w/w) 66 63.5 67.5 25.3 24.1 26.1

Fat (% w/w) 5 4.8 5.1 35.1 33.4 36.3

Calorie per diet weight (kcal/g) 3.9 3.9 3.9 5.3 5.2 5.3

Ingredient (g/kg)

Amino acids

L-cystine 0.2 1.8 2.5 0.4 3.4 5.2

Isoleucine 6.4 16.2 2.9 8.9 22.2 5.3

Leucine 16.3 38.4 7.3 23.3 49.9 14.2

Lysine 15.2 13.2 13.7 22.9 20.2 24.9

Methionine 7.0 4.1 4.5 9.9 6.6 8.4

Phenylalanine 10.3 10.2 11.2 14.8 14.1 21.1

Threonine 5.2 5.0 5.3 7.5 6.8 9.0

Tryptophan* 0 1.1 1.3 0 1.1 1.3

Valine 7.4 20.6 3.2 11.6 26.8 6.4

Histidine 4.4 3.8 4.3 7.3 5.7 7.2

Alanine 4.9 5.3 5.2 6.6 5.6 6.7

Arginine* 0 3.2 3.9 0 3.2 3.9

Aspartic acid 9.9 9.0 9.9 14.5 13.3 15.9

Glutamic acid 40.9 37.1 39.0 55.9 58.8 61.8

Glycine 2.5 3.1 3.3 3.7 4.6 4.9

Proline 16.6 17.2 18.8 23.8 23.8 30.7

Serine 7.4 7.5 7.4 10.7 15.4 12.2

Tyrosine 10.9 10.3 10.3 13.2 12.8 18.3

Total 166 207 154 235 294 257

Corn starch 150 150 150 25 25 25

Maltodextrin 10 0 0 0 100 100 100

Sucrose 500 500 500 52.5 52.5 52.5

Cellulose, BW200 50 50 50 50 50 50

Corn oil 30 30 30 0 0 0

Safflower oil 0 0 0 125 125 125

Lard 0 0 0 135 135 135

Soybean oil 10 10 10 0 0 0

Canola oil 10 10 10 0 0 0

Mineral (S19101) 35 35 35 35 35 35

Vitamins (V15908) 10 10 10 10 10 10

Choline bitartrate 2 2 2 2 2 2

Cholesterol, USP 0.6 0.6 0.6 3 3 3

Abbreviation: BCAA, branched-chain amino acid.

NOTE. Amino acid content of the diets, accounting for casein and amino acid supplementation, was determined by GC-FID.

*Arginine cannot be determined with the technique used and tryptophan degrades quickly during acid hydrolysis.
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fed a CD or HFD from 6 to 16 months of age and then both
diets were either supplemented or restricted in BCAA by
50% for 2 months (Table 1; Fig. 1A). Animals were exposed
to an HFD because it is more representative of prevalent die-
tary habits in Western societies [30], and also because HFD
has been shown to accelerate AD-like pathology
[23,24,31,32] and to synergize with BCAA to induce
metabolic disorders [11] in animal models.
3.1. BCAA supplementation combined with HFD led to the
premature death of two-thirds of 3xTg-AD mice

At the end of the study, only four out of 13mice (30.8%) in
the group fed the HFD survived the 2-month supplementation
with BCAA, which is significantly less than the group fed an
HFD only, in which 10 mice out of 12 mice (83.3%) survived
(Fig. 1B). Interestingly, no mice restricted in BCAA for the 2-
month period died prematurely, regardless of the base diet.
Although a total of 15 animals from all groups died before
the end of the planned study, we were able to sacrifice a few
(n5 7) in the high-BCAAHFD group while they were in crit-
ical conditions, allowing collection of intracardiac blood and
brains as described in the Methods. These moribund mice
fed the combination of HFD and BCAA (identified with red
circles in Fig. 1) displayed higher aspartate aminotransferase,
alanine aminotransferase, and creatine kinase plasmatic con-
centrations (Fig. 1C, D and E), suggesting major liver,
muscular, or cardiac damage [33]. A two-way ANOVA
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revealed that mice fed the HFD, independently of BCAA
intake, had lowerplasmatic creatinine concentrations, possibly
due to reduced muscle mass (Fig. 1F) [34]. No differences
were found in plasma triglycerides and cholesterol levels be-
tween each group (Supplementary Table 4).
3.2. Titrating BCAA supply modifies plasma and brain
amino acids and monoamines levels in 18-month-old 3xTg-
AD mice

HighBCAA consumptionwas reported to directlymodify
levels of plasmatic BCAA and aromatic amino acids (AAA)
in humans [14]. Because tryptophan, threonine, tyrosine,
valine, leucine, and isoleucine all compete for LAT1 for brain
entry, specific changes in circulating amino acidsmay impact
their balance in the brain, as well as downstream monoamin-
ergic neurotransmitters [13,14]. We thus measured levels of
amino acids in the plasma and parieto-temporal cortex
(Fig. 2). We first confirmed that BCAA restriction decreased
valine, leucine, and isoleucine concentrations in the plasma
in both CD and HFD groups, but not in the cerebral cortex
(Fig. 2A, D). Lower BCAA intake also increased the ratio
of circulating AAA to BCAA and levels of glycine and tyro-
sine under both types of diets (Fig. 2B, C). Although a 50%
higher consumption of BCAA was not reflected in signifi-
cantly higher plasmatic or cortical concentrations, increased
asparagine levels were noted in the plasma of mice supple-
mentedwith BCAA in either the CDorHFD (Fig. 2C).More-
over, threonine levels were markedly modulated in the brain
with higher and lower concentrations following low and high
BCAA intake, respectively, whether in CD or HFD (Fig. 2F).
Changes in cortical tyrosine levelswere not significant, prob-
ably due to interindividual variations (Fig. 2F), whereas
cortical concentrations of tryptophan, but not phenylalanine,
were inversely associated with levels of BCAA in the plasma
in both CD and HFD (Fig. 2F).

To confirm that modulations in plasmatic and brain amino
acids impact neurotransmitter synthesis, we measured cate-
cholamines (dopamine, DA) and indolamines (serotonin, 5-
HT) and their metabolites in the prefrontal cortex and hippo-
campus of the 3xTg-AD mice (Fig. 3). Whereas BCAA
intake did not affect DA concentrations in 3xTg-AD mice,
a trend toward higher 5-HT content was observed in both
the prefrontal cortex and hippocampus of mice fed an
HFD reduced in BCAA compared with mice fed an HFD
only (Fig. 3A, F). In addition, a low BCAA intake led to
higher levels of metabolites 5-hydroxyindoleacetic acid (5-
HIAA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in
both the prefrontal cortex and hippocampus, compared to
the HFD supplemented with BCAA (Fig. 3B, D, G).
3.3. Low BCAA dietary intake improves object recognition
memory in old 3xTg-AD mice

To assess the effect of BCAA dietary intake on memory
function, all groups of mice underwent the novel object
recognition task at 18 months (Fig. 4A). This test requires
minimal movement and induces no anxiety, which makes
it a suitable choice for old 3xTg-AD mice [24]. The test first
confirmed that 18-month-old 3xTg-AD mice, fed either a
CD or a HFD, did not discriminate the novel from the old ob-
ject (Fig. 4B, C), as previously shown [25]. Similarly, 3xTg-
AD mice fed the high BCAA diet failed to recognize the
novel object. In contrast, 3xTg-AD mice fed the low
BCAA diets, either CD-low or HFD-low, spent significantly
more time exploring the novel than the familiar object, sug-
gesting memory improvement after BCAA restriction. The
open field test confirmed that no group of mice demonstrated
impaired voluntary locomotor activity, which could have
affected exploratory behavior (Fig. 4D). The time the mice
spent on a wire confirms that muscular strength was not
affected by dietary treatments (Supplementary Fig.1). Inter-
estingly, cortical threonine levels were correlated with the
recognition index (Fig. 4E).
3.4. BCAA supplementation in an HFD context worsens
tau hyperphosphorylation but not amyloid pathology in old
3xTg-AD mice

Tau hyperphosphorylation is one of the main neuropath-
ological hallmarks of AD, correlating with cognitive deficits
in patients with AD [28,35]. Here, we found that a 2-month
BCAA supplementation combined with HFD was sufficient
to increase soluble tau pSer202 (194%), pSer202/Thr205
(1271%), pThr231 (1680%), and pThr181 (193%)
compared with control mice, without changing the level of
total tau (Fig. 5A–D). Strikingly, phosphorylation of
detergent-insoluble tau at pSer202 was also increased in
the HFD-high group (1151%), whereas tau pSer396/404
and both total tau and total human tau were unchanged
(Fig. 5E–H). In contrast, reducing the BCAA resulted in a
tau phosphorylation status similar to mice fed the CD. How-
ever, we did not find any changes in protein levels of the
main kinases involved in tau phosphorylation
(Supplementary Table 5).

Accumulation of brain Ab peptides and extracellular pla-
ques are key markers of AD replicated in the 3xTg-AD
mouse [25,28]. However, we did not observe any effect of
BCAA consumption on Ab40 or Ab42 peptides in soluble
or detergent-insoluble fractions (Fig. 5I, J). Finally, we
found that the cytochrome oxidase protein, a marker of
cellular activity, was greatly increased in the cortex of
mice fed the HFD supplemented with BCAA (Fig. 5K).
No changes in drebrin (Fig. 5L) or other AD-relevant
markers were noted (Supplementary Table 5).
4. Discussion

The consumption of high levels of BCAA is prevalent in
our contemporary society, but no study to our knowledge has
directly probed for the impact of high or low BCAA intake in
a context of AD and old age [8,36]. Correlative data linking
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BCAA and AD exist [20–22], but conclusions on causality
require controlled intervention difficult to achieve in a
clinical setting. In this study, 3xTg-AD mice were either
supplemented or restricted in BCAA over a CD or HFD
from 16 to 18 months of age. We found that BCAA
supplementation combined with a HFD resulted in a
significant mortality rate and strongly increased tau
neuropathology. In contrast, reducing BCAA in both the
CD and HFD did not result in any premature death,
improved cognitive performance, and led to increased
levels of threonine, tryptophan, 5-HT, 5-HIAA, and DOPAC
in the brain.

4.1. BCAA toxicity

A first striking consequence of BCAA supplementation
when combined with an HFD was a shortening of the life-
span of 3xTg-AD mice. Rises in plasmatic alanine amino-
transferase, aspartate aminotransferase, and creatine kinase
were observed in moribund animals and represent a possible
signature of hepatic and muscular toxicity, corroborating
previous studies reporting BCAA-induced liver injuries in
HFD-fed obese mice, inflammation and oxidative stress
[33,37]. Although the cause of death for all the animals
included in our study is not definitive, major brain
damages (atrophy, edema, etc.) were not observed,
suggesting that hepatic and muscular toxicity played a
more direct role in their premature death. Although little is
known about BCAA metabolism in the elderly, some
studies have revealed that the response to BCAA
supplementation is different in old age [38]. Thus, 18-
month-old 3xTg-AD mice could display a failure in catabo-
lizing BCAA, thus disturbing amino acids homeostasis in
the brain and peripheral tissues.

4.2. Modulation of amino acids by BCAA intake: Plasma
and brain levels

Our results further confirm that BCAA dietary supply
modulates plasma and brain amino acids and catechol-
amines. Perhaps surprisingly, BCAA supplementation was
not accompanied by a significant increase in plasmatic and
cortical concentrations in the 3xTg-AD mouse, but rather
by higher levels of asparagine in the plasma and lower
cortical threonine. It should be kept in mind that the present
measurement reflect an equilibrium reached following 2
months of altered BCAA intake, which is also affected by
other factors such as distribution of amino acids in tissue
where they integrate into proteins and elimination (meta-
bolism and renal clearance). Still, BCAA restriction lowered
lowed by Dunn’s: *P, .05. Abbreviations: CD, control diet; HFD, high-fat

diet; BCAA, branched-chain amino acid; ctl, normal levels of BCAA; high,

BCAA-supplemented diet by 50%; low, BCAA-reduced diet by 50%; 5-HT,

serotonin; 5-HIAA, 5-hydroxyindoleacetic acid; DA, dopamine; DOPAC,

3,4-dihydroxyphenylacetic acid; HVA, homovanillic acid.
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BCAA and increased tyrosine concentrations in the plasma,
whereas in the cortex, levels of threonine and tryptophan
were upregulated, suggesting complex interactions in amino
acid homeostasis.

Previous studies have shown that BCAA administration
decreases cortical tyrosine and tryptophan in the hippocam-
pus of rats [39]. The likely mechanism is competition for
amino acid transporters at the blood-brain barrier [12].
However, despite obvious trends in the means, no signifi-
cant change in brain tyrosine content was detected here
due to interindividual variation. More clearly, increases
and decreases in BCAA intake induced a strong modula-
tion in cortical concentrations of threonine, possibly due
to the fact that brain uptake of threonine is highly sensitive
to competition from BCAA [40]. Finally, although we did
not observe a decrease in serotonin following BCAA sup-
plementation as previously reported [15,39], a 2-month
reduction in dietary BCAA combined to a HFD led to a
trend toward increased serotonin and dopamine levels.
This tendency was supported by significant increases in se-
rotonin metabolite 5-HIAA and dopamine metabolite
DOPAC, changes typically interpreted as signs of increased
secretion and metabolism of these neurotransmitters [41].
Overall, our results confirm that BCAA dietary supply
modulates plasmatic and cerebral amino acids and neuro-
transmitters, thus providing a means by which they can
modify brain homeostasis and function.
4.3. BCAA and memory

The observed failure of 18-month-old 3xTg-AD mice to
recognize the novel object is consistent with previous
work in the same model at similar ages [5,24,25]. As old
transgenic mice did not recognize the novel object, it was
predictable that further deterioration of memory could not
be detected at this age even after BCAA supplementation.
However, a 2-month reduction in BCAA intake improved
recognition memory in mice fed either the CD or HFD.
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These results were intriguing because HFD is known to
worsen cognitive defects in 3xTg-AD mice [24]. The
observed increase in cortical amino acids and monoamines
may underlie these memory improvements, as suggested
by the fact that the animals with the higher levels of brain
threonine performed better at the novel object recognition
task. In particular, threonine, tryptophan, and serotonin are
known to be involved in behavioral changes [15,42].
4.4. BCAA and AD neuropathology

BCAA have been only recently implicated in AD. Plas-
matic valine has been linked to cognitive score and brain
atrophy in an AD cohort [20], while a recent Mendelian
randomization analysis indicates that genetic susceptibility
to high plasmatic isoleucine is associated with a higher risk
of developing the disease [22].APP/PS1mice, amousemodel
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of amyloid pathology, spontaneously display increased plas-
matic BCAA, without obesity, suggesting that AD
pathology potentiates defects in BCAA metabolism, putting
patients with AD at a higher risk of BCAA-induced brain
damages [43,44]. Conversely, tau pathology is one of
the major neuropathological markers of AD, strongly
associated with antemortem cognitive deficits [35,45]. We
found that a 2-month BCAA supplementation combined
with a HFD strongly increased both soluble and detergent-
insoluble tau hyperphosphorylation in the cortex of old
3xTg-AD mice. These results suggest that the combination
of BCAA supplementation and HFD has synergistic delete-
rious effects on AD pathology and neuronal function. To
our knowledge, it is the first time that BCAAsupplementation
has been implicated in tau phosphorylation. Although synap-
tic and amyloid pathologies were unaffected by BCAAmod-
ulation, the rise in cytochrome oxidase 1 protein in cortex
homogenates of mice under BCAA-supplemented HFD
suggests an increase in mitochondrial oxidative activity in
those mice, possibly reflecting a state of neuronal oxidative
stress [46].

5. Conclusion

There is scientific evidence that dietary intervention
can reduce the risk of developing age-related cognitive
impairment or AD [3,47]. Thus, nutritional strategies
aimed at reducing AD pathology are of interest in the
field. This study provides controlled preclinical data
pinpointing the specific role of BCAA in an animal
model of AD. For the first time, our results identify the
potential risks of combining high BCAA consumption
with a HFD, not only regarding peripheral toxicity but
also with respect to the aggravation of AD-like tau neuro-
pathology. On a more positive note, our results suggest
that reducing the BCAA content in the diet supply, while
maintaining protein intake, could have a beneficial effect
on memory and could be considered in nutritional inter-
ventions aimed at improving cognitive performance
and/or reducing the incidence of AD. Thus, it would be
interesting to test whether protein supplementation with
low BCAA concentration could prevent mood and mem-
ory impairment. Another easier intervention for the
elderly would be to promote foods rich in protein but
low in BCAA [36].
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RESEARCH IN CONTEXT

1. Systematic review: We performed an extensive liter-
ature review using PubMed on branched-chain
amino acids (BCAA) and brain function. Although
BCAA are now increasingly studied in metabolic
disorders, very little is known on BCAA in the field
of Alzheimer’s disease (AD).

2. Interpretation: Our findings in a mouse model of AD
reveal that high and low BCAA consumption modu-
lates amino acid and monoamines levels in the brain
as well as AD neuropathology and memory-related
behavior.

3. Future directions: Intervention and observational
studies are needed to confirm whether high or low
BCAA consumption could increase or decrease,
respectively, the risk of developing dementia.
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