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Introduction

Shape optimization has been extensively exploited in design engineering [START_REF] Antony | Aerodynamic design via control theory[END_REF][START_REF] El-Sayed | Shape optimization with computational fluid dynamics[END_REF][START_REF] Isebe | Shape optimization of geotextile tubes for sandy beach protection[END_REF][START_REF] Ivorra | Two-and three-dimensional modeling and optimization applied to the design of a fast hydrodynamic focusing microfluidic mixer for protein folding[END_REF][START_REF] Ivorra | Design sensitivity and mixing uniformity of a micro-fluidic mixer[END_REF][START_REF] Pironneau | Optimal shape design for elliptic systems[END_REF][START_REF] Poloni | Hybridization of a multi-objective genetic algorithm, a neural network and a classical optimizer for a complex design problem in fluid dynamics[END_REF], particularly in aeronautical [START_REF] Campana | Shape optimization in ship hydrodynamics using computational fluid dynamics[END_REF][START_REF] Mäkinen | Multidisciplinary shape optimization in aerodynamics and electromagnetics using genetic algorithms[END_REF][START_REF] Nejati | Aerodynamics Design and Genetic Algorithms for Optimization of Airship Bodies[END_REF] and automotive areas [START_REF] Muyl | Hybrid method for aerodynamic shape optimization in automotive industry[END_REF][START_REF] Zuo | An object-oriented graphics interface design and optimization software for cross-sectional shape of automobile body[END_REF]. Traditionally, finding the optimal geometry of a particular device is based on a trial and error approach, in which, a number of prospective configurations is simulated and the results are compared. An alternative strategy relays in performing the mathematical modeling of the process, carrying out numerical simulations and solving the desired optimization problem with an appropriate optimization algorithm. Taking into consideration the exponential growth of the available computing power, this second approach provides a powerful computational tool able to simulate and analyze the efficiency of different geometry configurations.

In this work, we tackle the shape optimization of a continuous bioreactor. A bioreactor is a vessel in which microorganisms (e.g., bacteria), called biomass, are used to degrade a considered diluted substrate (e.g., nitrate). A reactor in which substrate is continually added and product continually removed is called continuous bioreactor. The influence of the bioreactor design into the process efficiency has received considerable attention in the literature [START_REF] Gajardo | Minimal time sequential batch reactors with bounded and impulse controls for one or more species[END_REF][START_REF] Ramírez | Productivity optimization of microalgae cultivation in a batch photobioreactor process[END_REF][START_REF] Rodríguez | Optimality of affine control system of several species in competition on a sequential batch reactor[END_REF]. Most of the works are developed by experimentalists (see, e.g., [START_REF] Bitog | Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: A review[END_REF][START_REF] Carvalho | Microalgal reactors: A review of enclosed system designs and performances[END_REF]) and focus on specific biological reactions occurring in continuous flow systems. Among the different reactor geometry configurations reviewed in literature, the most popular are flat-plate reactors [START_REF] Sierra | Characterization of a flat plate photobioreactor for the production of microalgae[END_REF][START_REF] Tredici | Efficiency of sunlight utilization: Tubular versus flat photobioreactors[END_REF], torus-shaped reactors [START_REF] Pramparo | Mixing and hydrodynamics investigation using CFD in a square-sectioned torus reactor in batch and continuous regimes[END_REF] and tubular reactors [START_REF] Richmond | A new tubular reactor for mass production of microalgae outdoors[END_REF][START_REF] Tredici | Efficiency of sunlight utilization: Tubular versus flat photobioreactors[END_REF]. In 2008, Xia et al. [START_REF] Xia | Computational investigation of fluid dynamics in a recently developed centrifugal impeller bioreactor[END_REF] showed that flow conditions (regarding mass transfer, shear stress, mixing, etc.) are strongly influenced by the reactor geometry, particularly at large scales. Nevertheless, computational fluid dynamics has not been commonly used to its full capacity to optimize reactor performance. Of particular interest are the works developed by Ansoni et al. [START_REF] Ansoni | Optimal industrial reactor design: development of a multiobjective optimization method based on a posteriori performance parameters calculated from CFD flow solutions[END_REF] and Coenen et al. [START_REF] Coenen | Modeling and geometry optimization of photochemical reactors: Single-and multi-lamp reactors for UVH 2 O 2 AOP systems[END_REF]. In [START_REF] Ansoni | Optimal industrial reactor design: development of a multiobjective optimization method based on a posteriori performance parameters calculated from CFD flow solutions[END_REF], the authors consider a tubular reactor and model its hydrodynamics with 3D Navier-Stokes equations. They look for the optimal design (configuration of the inlet and the outlet pipes) of a given bioreactor, so that the dispersion of the residence time and the shear flow are minimized. These two concepts, related to fluid dynamics, are linked to the reactor effectiveness. In [START_REF] Coenen | Modeling and geometry optimization of photochemical reactors: Single-and multi-lamp reactors for UVH 2 O 2 AOP systems[END_REF], the authors consider a cylindrical photobioreactor and model the dynamics of the organic compound with an advection-reaction equation. They look for the optimal geometry (radius and height) so that the reactant concentration at the outlet of the bioreactor is minimized.

We aim to solve the following design optimization problem: given the input reactant concentrations and the flow rate to be processed, what is the minimal reactor volume (and its shape) so that a desired output reactant concentration is attained? This problem has been modeled using ordinary differential equations (see, e.g., [START_REF] Dochain | Dynamical modelling and estimation in wastewater treatment processes[END_REF][START_REF] Harmand | The optimal design of two interconnected (bio)chemical reactors revisited[END_REF][START_REF] Harmand | Optimal design of interconnected bioreactors: New results[END_REF][START_REF] Hill | Minimum tank volumes for CFST bioreactors in series[END_REF][START_REF] Ch | Optimal design for continuous stirred tank reactors in series using Michaelis Menten kinetics[END_REF]) by approximating the behavior of a tubular device with a bioreactor composed by N well-mixed tanks 1 in series. Then, the aim of the optimization becomes to find what are the volumes of the N tanks such that the total volume of the whole process is minimal. However, these studies suffer of two important drawbacks:

• While the proposed results are valid for small and medium sized systems, they do not describe the diffusion phenomena or the impact of fluid motions that may occur in larger tanks. • The dimensioning parameters were not considered; only the total volume of the systems was optimized.

However, in a real case, design parameters such as the diameter or the height of any biological or chemical system will influence its performance. In order to overcome these drawbacks, we propose to couple hydrodynamics with biological phenomena occurring in a diffusive bioreactor. To do so, we use a particular spatial modeling based on Navier-Stokes equation (describing the fluid dynamics) together with an Advection-Diffusion-Reaction system (describing the behavior of the reactants in the bioreactor). We give a methodology to create three different discrete parametrizations of the bioreactor geometry and obtain the optimized shapes with the help of a Genetic Multi-layer Algorithm (GMA), a global optimization method based on the hybridization of a Multi-layer Secant Algorithm (MSA) [START_REF]A robust and efficient global optimization algorithm for planar competitive location problems[END_REF][START_REF]Solving the multiple competitive location and design problem on the plane[END_REF][START_REF] Redondo | Parallel algorithms for continuous competitive location problems[END_REF], finding suitable initial conditions for a global optimization algorithm, with a given Genetic Algorithm (GA) [START_REF] Deb | Multi-objective optimization using evolutionary algorithms[END_REF][START_REF] Goldberg | Genetic algorithms in search, optimization, and machine learning[END_REF][START_REF] Sharapov | Genetic algorithms: Basic ideas, variants and analysis[END_REF][START_REF] Weise | Global optimization algorithms -theory and application[END_REF]. This kind of hybridization has been already tested for solving different optimization problems [START_REF] Gomez | Optimization of a pumping ship trajectory to clean oil contamination in the open sea[END_REF][START_REF] Ivorra | Semideterministic global optimization method: Application to a control problem of the burgers equation[END_REF] and, according to several numerical experiments, it seems that it achieves better results (in terms of computational time and precision) than the GA used alone. The optimization problem is solved for monotonic and non-monotonic growth rate functions, in order to analyze the influence of the reaction into the optimal reactor configuration. In contrast to the previously cited experimental studies [START_REF] Bitog | Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: A review[END_REF][START_REF] Carvalho | Microalgal reactors: A review of enclosed system designs and performances[END_REF][START_REF] Richmond | A new tubular reactor for mass production of microalgae outdoors[END_REF][START_REF] Sierra | Characterization of a flat plate photobioreactor for the production of microalgae[END_REF], here, we do not specify beforehand a particular type of biological system but describe, in a general way, a biological substrate-biomass reaction in a continuous reactor. Compared to the works developed in [START_REF] Ansoni | Optimal industrial reactor design: development of a multiobjective optimization method based on a posteriori performance parameters calculated from CFD flow solutions[END_REF][START_REF] Coenen | Modeling and geometry optimization of photochemical reactors: Single-and multi-lamp reactors for UVH 2 O 2 AOP systems[END_REF], we couple the fluid flow with the biological phenomena, while in [START_REF] Ansoni | Optimal industrial reactor design: development of a multiobjective optimization method based on a posteriori performance parameters calculated from CFD flow solutions[END_REF][START_REF] Coenen | Modeling and geometry optimization of photochemical reactors: Single-and multi-lamp reactors for UVH 2 O 2 AOP systems[END_REF] the authors only model one of the two physics. Furthermore, in this case, the reactor geometry is parametrized with five variables (compared to the two-dimensional parametrization performed in [START_REF] Ansoni | Optimal industrial reactor design: development of a multiobjective optimization method based on a posteriori performance parameters calculated from CFD flow solutions[END_REF][START_REF] Coenen | Modeling and geometry optimization of photochemical reactors: Single-and multi-lamp reactors for UVH 2 O 2 AOP systems[END_REF]) to be able to obtain a broader range of possible bioreactor shapes.

The paper is organized as follows: Section 2 we introduce a mathematical model describing the dynamics of the bioreactor. In Section 3, we state the optimization problem which aims to minimize the considered reactor volume, with an outflow substrate concentration maintained to a desired threshold, by choosing a suitable bioreactor shape. In Section 4, we explain the numerical experiments carried out for the optimization problem and show the results. Section 5 draws the conclusions after the comparison between the obtained optimized reactors.

Mathematical Modeling

Following the notation introduced in other works (see, e.g., [START_REF] Crespo | Asymptotic stability of a coupled advection-diffusion-reaction system arising in bioreactor processes[END_REF][START_REF] Infante | On the modelling and simulation of high pressure processes and inactivation of enzymes in food engineering[END_REF]) regarding solids of revolution, we consider a vertical cylinder denoted by Ω * as the domain of the bioreactor in consideration. When the problem is initialized, there is a certain amount of biomass inside Ω * that reacts with the polluted water entering the device through the inlet Γ * in (the upper boundary of the cylinder). Treated water leaves the reactor through the outlet Γ * out (the lower boundary of the cylinder). We denote Γ * wall = ∂Ω * \ (Γ * in ∪ Γ * out ), where null flux is considered. We present the following model to describe the dynamics in the reactor, which includes advection-diffusion-reaction phenomena (see [START_REF] Crespo | Existence and uniqueness of solution of a continuous flow bioreactor model with two species[END_REF][START_REF] Crespo | Asymptotic stability of a coupled advection-diffusion-reaction system arising in bioreactor processes[END_REF][START_REF] Crespo | Modeling and optimization of activated sludge bioreactors for wastewater treatment taking into account spatial inhomogeneities[END_REF][START_REF] Díaz | Remarks on the preceding paper by Crespo, Ivorra and Ramos on the stability of bioreactor processes[END_REF]):

(1)

                                           dS dt = ∇ • (D S ∇S -uS) -µ(S)B in Ω * × (0, T ), dB dt = ∇ • (D B ∇B -uB) + µ(S)B in Ω * × (0, T ), S(x, 0) = S 0 (x), B(x, 0) = B 0 (x) in Ω * , n • (-D S ∇S + uS) = S in u 3 in Γ * in × (0, T ), n • (-D B ∇B + uB) = 0 in Γ * in × (0, T ), n • (-D S ∇S) = n • (-D B ∇B) = 0 in Γ * out × (0, T ), n • (-D S ∇S + uS) = n • (-D B ∇B + uB) = 0 in Γ * wall × (0, T )
, where T > 0 (s) is the length of the time interval for which we want to model the process, S (kg/m 3 ), B (kg/m 3 ) are the substrate and biomass concentrations inside the reactor which diffuse throughout the water in the vessel with diffusion coefficients D S (m 2 /s) and D B (m 2 /s), respectively, S 0 (kg/m 3 ), B 0 (kg/m 3 ) are the concentrations of substrate and biomass inside the bioreactor at the initial time, S in (kg/m 3 ) is the substrate concentration that enters the reactor and n is the outward unit normal vector on the boundary of the domain Ω * . Notice that besides the advection-diffusion terms, we also have a term corresponding to the reaction of biomass and substrate, governed by the growth rate function µ (s -1 ). We work with the following growth rate functions, which are extensively used in the literature -the Monod function [START_REF] Smith | The theory of the chemostat[END_REF][START_REF] Harmand | The chemostat: Mathematical theory of microorganism cultures[END_REF] is defined in [0, +∞) by ( 2)

µ(S) = µ max S K S + S ,
where µ max (s -1 ) is the maximum specific growth rate and K S (kg/m 3 ) is the half-saturation constant. The Haldane function [START_REF] Andrews | A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates[END_REF][START_REF] Harmand | The chemostat: Mathematical theory of microorganism cultures[END_REF] is defined in [0, +∞) by

(3) µ(S) = µ * S K S + S + S 2 /K I ,
where µ * (s -1 ) is the maximum specific growth rate in the absence of inhibition and K I (kg/m 3 ) is the inhibition constant. Finally, vector u = (u 1 , u 2 , u 3 ) (m/s) is the flow velocity, which fulfills the following stationary Navier-Stokes equations for Newtonian incompressible viscous fluids (see, e.g., [START_REF] Glowinski | Numerical methods for nonlinear variational problems[END_REF])

(4)                                    -η∆u + ρ(u • ∇)u + ∇p = 0 in Ω * , ∇ • u = 0 in Ω * , u = 0 in Γ * wall , u = -u in E(x) n in Γ * in , n • (η∇u) = 0 in Γ * out , p(x) = p atm in Γ * out ,
where p is the pressure field (Pa); p atm is the atmospheric pressure (Pa); η is the fluid dynamic viscosity (kg/m s); u in (m/s) is the maximum injection velocity; E is the laminar flow inlet profile (a paraboloid of revolution) equal to 0 in the inlet border and unity in the inlet center; ρ is the fluid density (kg/ m 3 ), assumed constant through the reactor (as done, e.g., in [START_REF] Ansoni | Optimal industrial reactor design: development of a multiobjective optimization method based on a posteriori performance parameters calculated from CFD flow solutions[END_REF][START_REF] Coenen | Modeling and geometry optimization of photochemical reactors: Single-and multi-lamp reactors for UVH 2 O 2 AOP systems[END_REF]).

Remark 2.1. Notice that the flow field u has been considered stationary in order to reduce the computational complexity met when numerically solving system (1)-(4). This assumption is supported by numerical experiments, which seem to show that if we solve a time-dependent version of (4) coupled with (1), variable u approximates its stationary state much faster than variables (S, B). Remark 2.2. According to [START_REF] Crespo | Existence and uniqueness of solution of a continuous flow bioreactor model with two species[END_REF], if the boundary of

Ω * is Lipschitz, S in ∈ L ∞ (0, T ), S in ≥ 0 in (0, T ), S 0 ∈ L ∞ (Ω * ), S 0 ≥ 0 in Ω * , B 0 ∈ L ∞ (Ω * ) and B 0 ≥ 0 in Ω * , there exists a unique solution (S, B) ∈ L 2 (0, T ; H 1 (Ω * )) 2 ∩ C(0, T, L 2 (Ω * )) 2 ∩ L ∞ (Ω * × (0, T )) 2 of system (1).
As we will see in Section 4, we aim to find stationary solutions of system (1), which we denote by ( Ŝ, B). A usual way to get them is to solve numerically (1) and then consider its solution for a time value T (large enough) as the steady-state solution. This is usually computationally easier (see, e.g., [START_REF] Leveque | Finite difference methods for ordinary and partial differential equations: Steady-state and time-dependent problems[END_REF]) and allows us to recover non-trivial stationary solutions (different to ( Ŝ, B) = (S in , 0)) by choosing appropriate initial conditions.

Optimization Problem

Here, we aim to minimize the total reactor volume by choosing suitable design parameters (here, the reactor shape) with respect to the output concentration. More precisely, in Section (3.1) we introduce the general formulation of the considered continuous optimization problem. Then, in Section (3.2) we propose three particular discrete implementations of this problem to be solved numerically in Section 4.

3.1. General Problem. Let us consider cylindrical bioreactors Ω * which are empty solids of revolution, and so, they can be described by using a 2D domain Ω ⊂ R 2 (similar to the one depicted by Figure 1) by using cylindrical coordinates (r, z), where r is the distance to the cylinder axis. The simplified domain Ω is described as follows: H (m) is the bioreactor height; r (m) is the radius of the inlet Γ in and the outlet Γ out ; h (m) is the height of the inlet and outlet pipes; R 1 (m) and R 2 (m) are the radius of the bioreactor wall perpendicular to the inlet and outlet pipes, respectively; the curve of the exterior wall corresponds to the graph of the function ψ : [h, H -h] → [r, +∞), which satisfies ψ(h) = R 2 and ψ(H -h) = R 1 . Since, in practice, the inlet and outlet pipes have standard dimensions (depending on the desired industrial application), we assume that r and h have fixed values. Similarly, we take into account that the height and width of the reactor cannot exceed certain values (for example, due to a limitation of the physical space in an industrial factory).

H r R 1 R 2 r h Γ in ψ h Γ out Ω Γ wall Figure 1
. Schematic representation of the bioreactor geometries used to solve problem [START_REF] Bitog | Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: A review[END_REF]. The exterior curve (depicted in blue), which corresponds to part of the bioreactor exterior wall, is defined as (z, ψ(z)), where z

∈ [h, H -h].
Given a prescribed output substrate concentration S lim (kg/m 3 ), we state the following optimization problem 

= {[H min , H max ] ×[r, R 1,max ] ×[r, R 2,max ] ×Ψ} is the admissible space with Ψ = {ψ ∈ C([h, H -h], [r, R max ]) such that ψ(h) = R 2 and ψ(H -h) = R 1 }; Vol(φ) (m 3
) is the volume of the reactor, computed as [START_REF] Campana | Shape optimization in ship hydrodynamics using computational fluid dynamics[END_REF] Vol(φ) =

Ω * (φ) dxdydz,
with Ω ⊂ R 2 being the (r, z)-domain obtained with the set φ and Ω * (φ) ⊂ R 3 is the corresponding 3D domain; and Ŝout (φ) (kg/m 3 ) denotes an average of the concentration of substrate that leaves the bioreactor (at steady state), computed as Remark 3.1. In practice, we aim to improve (in terms of reactor volume) a given bioreactor which attains the prescribed output substrate concentration and we choose the admissible space Φ so that it accounts for the geometry of the given vessel. Therefore, if problem (5) does not have a solution is because the minimum does not exist (only an infimum value is ensured). For the numerical experiments considered in Section 4, we look for one of the optimal solutions of the discretized problems (9), ( 10) and (13), whose existence is guaranteed because of the compactness of the admissible spaces Φi (i = 1, 2, 3), defined right after the statement of those problems.

3.2. Numerical Problem. Here, we present three discrete versions of the optimization problem (5), related to three different discrete parametrizations of the bioreactor geometry. The parametrization proposed in Section 3.2.1 allows us to model tubular shapes (typically used in the industry sector), while the parametrizations in Sections 3.2.2 and 3.2.1 offer the possibility to obtain a wider range of reactor geometries. We solve the discrete optimization problems ( 9), ( 10) and ( 13) by using the Hybrid Genetic Algorithm, and its parameters, presented in Section 3.2.4.

For the sake of simplicity, the objective function and the restriction in problem ( 5) are combined into a new objective function J(φ) (m 3 ) as ( 8)

J(φ) = Vol(φ) 1 + β max( Ŝout (φ) -S lim , 0) S lim ,
where β is a free parameter (usually large) and the term multiplied by the coefficient β is a barrier function used to penalize solutions with S lim smaller than an average of the substrate concentration exiting the bioreactor. Introducing the penalty term in (8) allows us to solve problem [START_REF] Bitog | Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: A review[END_REF] with the unconstrained (low-cost) optimization algorithm proposed in Section 3.2.4. This approach has been previously used in the literature for solving computationally expensive industrial optimization problems (see, e.g. [START_REF] Ivorra | Optimization strategies in credit portfolio management[END_REF]). As it is typically done when performing optimization with a penalty method, the value of the penalty parameter β is usually obtained by performing several tests (see [Chapter 15.1,[START_REF] Nocedal | Numerical optimization[END_REF]]).

Parametrization 1.

As a first approach, we consider bioreactor geometries as depicted in Figure 2-(a). The exterior wall corresponds to the segment [h,

H -h] × {R}, where R ∈ [r, R max ] (m). The variable φ in problem (5) is taken as φ = (H, R, R, ψ), where ψ : [h, H -h] -→ [r, R max ] z -→ ψ(z) = R.
In this case, the bioreactor geometry only depends on parameters H and R and the optimization problem ( 5) can be reformulated as

(9) Find φ1,opt ∈ Φ1 , such that J( φ1,opt ) = min φ1 ∈ Φ1 J( φ1 ),
where φ1,opt = (H opt , R opt ) and Φ1 :

= {(H, R) ∈ [H min , H max ] × [r, R max ]} ⊂ R 2
is the admissible space.

Parametrization 2.

As a second approach, we consider bioreactor geometries as depicted in Figure 2-(b). The exterior wall corresponds to a semi-ellipse with center (r, H 2 ) and with lengths of the semi-axis given by the pair (R -r, H-2h

2 ), where R ∈ [r, R max ] (m). The variable φ in problem ( 5) is taken as φ = (H, r, r, ψ), where

ψ : [h, H -h] -→ [r, R max ] z -→ ψ(z) = r + (R -r) 1 -z-H/2 h-H/2 2 . It is straightforward to see that, if R ∈ [r, R max ], then ψ ∈ Ψ.
As in problem ( 9), the bioreactor geometry only depends on parameters H and R and the optimization problem (5) can be reformulated as [START_REF] Crespo | Existence and uniqueness of solution of a continuous flow bioreactor model with two species[END_REF] Find φ2,opt ∈ Φ2 , such that

J( φ2,opt ) = min φ2 ∈ Φ2 J( φ2 ),
where φ2,opt = (H opt , R opt ) and Φ2 :

= {(H, R) ∈ [H min , H max ] × [r, R max ]} ⊂ R 2 is the admissible space.
3.2.3. Parametrization 3. As a third approach, we consider bioreactor geometries as depicted in Figure 2-(c). The shape of the exterior wall is a quadratic Bézier curve (see, for example, [START_REF] Farin | Curves and surfaces for computer-aided geometric design: A practical guide[END_REF]), associated to the control points

P = (R 1 , H -h), Q = (R 2 , h) and E = (E 1 , E 2 ), where (E 1 , E 2 ) ∈ [E 1,min , E 1,max ] × [E 2,min , E 2,max ]), by the formula (11) B(σ) = (B 1 (σ), B 2 (σ)) = (1 -σ) 2 P + 2(1 -σ)σE + σ 2 Q, σ ∈ [0, 1].
The variable φ appearing in problem ( 5) is taken as φ = (H, R 1 , R 2 , ψ), where

ψ : [h, H -h] -→ [r, R max ] z -→ ψ(z) = B 1 (B -1 2 (z)). Ω Γ out Γ wall r r h h R Γ in H (a) Domain in problem (9) h Γ out H h R Ω r Γ wall Γ in r (b) Domain in problem (10) R 1 h Γ in H h r R 2 Γ out Γ wall r E=(E 1 ,E 2 ) Ω (c) Domain in problem (13) Figure 2
. Schematic representation of the bioreactor geometries used to solve the discrete problems ( 9), ( 10) and [START_REF] Dean | The stream-line motion of fluid in a curved pipe (2 nd paper)[END_REF].

In order to assure that ψ([h, H -h]) ⊆ [r, R max ], we impose the radius expansions R 1 and R 2 to lie in the segment [r, R max ]. Once R 1 and R 2 have been chosen we take E 1,min and E 1,max as in Lemma 3.2 below so that B 1 •B -1 2 ∈ Ψ. Furthermore, we take E 2,min = h and E 2,max = H -h.

Now, we define two new optimization parameters

α 1 , α 2 ∈ [0, 1] such that (12) E 1 = E 1,min + α 1 • (E 1,max -E 1,min ) and E 2 = h + α 2 • (H -2h).
In that case, the bioreactor geometry only depends on parameters H, R 1 R 2 , α 1 and α 2 . The solution of the optimization problem ( 5) is approximated by computing

(13) Find φ3,opt ∈ Φ3 , such that J( φ3,opt ) = min φ3 ∈ Φ3 J( φ3 ), where φ3,opt = (H opt , R opt 1 , R opt 2 , α opt 1 , α opt 2 ) and Φ3 := {(H, R 1 , R 2 , α 1 , α 2 ) ∈ [H min , H max ] × [r, R 1,max ] × [r, R 2,max ] × [0, 1] 2 } ⊂ R 5 is the admissible space, with R i,max ≤ R max for i = 1, 2. Lemma 3.2. Let us denote E 1,min = r -(R 1 -r)(R 2 -r) and E 1,max = R max + (R 1 -R max )(R 2 -R max ). If (E 1 , E 2 ) ∈ [E 1,min , E 1,max ] × [h, H -h], then B 1 • B -1 2 ∈ Ψ.
Proof. One can easily check that B(0) = (R 1 , H -h) and B(1) = (R 2 , h) and so conclude that

B 1 • B -1 2 (h) = R 2 and B 1 • B -1 2 (H -h) = R 1 . In order to see that B 1 • B -1 2 ∈ C([h, H -h], [r, R max ]
), we divide the proof in four steps:

Step 1. Let us prove that, if 

E 2 ∈ [h, H -h], then B 2 ([0, 1]) = [h, H -h].
(E 2 ) = E 2 -H + h 2E 2 -H , with corresponding value B 2 (σ * 2 (E 2 )) = E 2 2 + h 2 -Hh 2E 2 -h . Now,
in order to find the lower and upper bounds for variable E 2 (assuring that

B 2 (σ) ∈ [h, H -h] ∀σ ∈ [0, 1]), we respec- tively solve equations B 2 (σ * 2 (E 2,m )) = h and B 2 (σ * 2 (E 2,M )) = H -h.
It is easy to prove that the unique solutions of these equations are E 2,m = h and E 2,M = H -h. Finally, taking into account that dB 2 2

dσ 2 = 2H -4E 2 , it follows that d 2 B 2 dσ 2 E2=h = 2(H -2h) > 0 and d 2 B 2 dσ 2 E2=H-h = 2(2h -H) < 0
, and so, one can conclude that E 2,min = h and E 2,max = H -h.

Step 2. Let us prove that the function

B 2 : [0, 1] → [h, H -h] is injective. Let σ, σ ∈ [0, 1] satisfying B 2 (σ) = B 2 (σ). By definition, this implies that (1 -σ) 2 (H -h) + 2(1 -σ)σE 2 + σ 2 h = (1 -σ) 2 (H -h) + 2(1 -σ)σE 2 + σ2 h. Easy calculations lead to (H -h) σ 2 -σ2 -2σ + 2σ + 2E 2 σ -σ -σ 2 + σ2 + h σ 2 -σ2 = 0.
Denoting x = σ -σ and y = σ + σ, the previous equation can be rewritten as

x(2 -y)(H -h) + 2x(y -1)E 2 -xyh = 0 ⇔ x (2(H -h) -2E 2 + y(2E 2 -H)) = 0. This implies that either x = 0 or y = 2(H -h -E 2 ) H -2E 2 .
In the second case, it is easy to see that y = 1 + H -2h H -2E 2 and, since we assume that E 2 > h, it follows that y > 2, but this enters in a contradiction with the definition of y. Thus, we can conclude that x = 0, so σ = σ and the injectivity is proved.

Step 3. Let us prove that, if

E 1 ∈ [E 1,min , E 1,max ], then B 1 ([0, 1]) = [r, R max ].
Similarly to step 1, in order to obtain the minimum and maximum values of B 1 (σ), σ ∈ [0, 1], we compute the critical points σ * 1 satisfying the equation dB 1 dσ (σ * 1 ) = 0 on the interior of the domain. When considering

E 1 as a variable, one can see that σ * 1 depends on E 1 through the expression σ * 1 (E 1 ) = R 1 -E 1 R 1 + R 2 -2E 1 , with corresponding value B 1 (σ * 1 (E 1 )) = R 1 R 2 -E 2 1 R 1 + R 2 -2E 1
. Now, in order to obtain lower and upper bounds for the

variable E 1 (assuring that B 1 (σ) ∈ [r, R max ] ∀σ ∈ [0, 1]), we respectively solve equations B 1 (σ * 1 (E 1,m )) = r and B 1 (σ * 1 (E 1,M )) = R max .
Each of these equations has two solutions, given by

E ± 1,m = r ± (R 1 -r)(R 2 -r) and E ± 1,M = R max ± (R 1 -R max )(R 2 -R max ). Taking into account that d 2 B 1 dσ 2 = 2(R 1 + R 2 -2E 1 ), d 2 B 1 dσ 2 E1=E ± 1,m = 2(R 1 + R 2 -2r) ∓ 4 (R 1 -r)(R 2 -r) and d 2 B 1 dσ 2 E1=E ± 1,M = 2(R 1 + R 2 -2R max ) ∓ 4 (R 1 -R max )(R 2 -R max ),
and so, one can conclude that

E 1,min = E - 1,m and E 1,max = E + 1,M . Step 4. Let us prove that B 1 • B -1 2 ∈ C([h, H -h], [r, R max ]). Since B 1 : [0, 1] → [r, R max ] and B 2 : [0, 1] → [h, H -h] are continuous functions and B 2 is injective, we conclude that B 1 • B -1 2
is well defined and continuous because it is the composition of continuous functions.

3.2.4. Optimization Algorithm. In this section, we describe in detail the optimization algorithm and the parameters used to solve numerical problems ( 9), [START_REF] Crespo | Existence and uniqueness of solution of a continuous flow bioreactor model with two species[END_REF] and [START_REF] Dean | The stream-line motion of fluid in a curved pipe (2 nd paper)[END_REF]. For the sake of simplicity, here, we consider a general optimization problem [START_REF] Deb | Multi-objective optimization using evolutionary algorithms[END_REF] min

x∈Θ J(x)
where J : x → R is the fitness function; x is the optimization parameter, Θ ⊂ R N , with N ∈ N, is the search space. Notice that in order to recover problems ( 9), [START_REF] Crespo | Existence and uniqueness of solution of a continuous flow bioreactor model with two species[END_REF] and ( 13) one should replace x = φi (i = 1, 2, 3), Θ = Φi (i = 1, 2, 3) and N = 2, 2, 5 in the general problem formulation [START_REF] Deb | Multi-objective optimization using evolutionary algorithms[END_REF].

The proposed algorithm, called Genetic Multi-Layer Algorithm (GMA), is a global optimization method based on a hybridization between a genetic algorithm (GA) [START_REF] Deb | Multi-objective optimization using evolutionary algorithms[END_REF][START_REF] Goldberg | Genetic algorithms in search, optimization, and machine learning[END_REF][START_REF] Sharapov | Genetic algorithms: Basic ideas, variants and analysis[END_REF][START_REF] Weise | Global optimization algorithms -theory and application[END_REF] (which performs a global search of the solution) and a Multi-layer Secant Algorithm (MSA) [START_REF]A robust and efficient global optimization algorithm for planar competitive location problems[END_REF][START_REF]Solving the multiple competitive location and design problem on the plane[END_REF][START_REF] Redondo | Parallel algorithms for continuous competitive location problems[END_REF] (which provides suitable initial populations for the GA). A complete validation of these algorithms on various industrial problems can be found in [START_REF] Gomez | Optimization of a pumping ship trajectory to clean oil contamination in the open sea[END_REF][START_REF] Isebe | Shape optimization of geotextile tubes for sandy beach protection[END_REF][START_REF] Ivorra | Semi-deterministic and genetic algorithms for global optimization of microfluidic protein folding devices[END_REF][START_REF] Ivorra | Semi-deterministic vs. genetic algorithms for global optimization of multichannel optical filters[END_REF][START_REF] Ivorra | Semideterministic global optimization method: Application to a control problem of the burgers equation[END_REF][START_REF] Ivorra | Optimization strategies in credit portfolio management[END_REF][START_REF] Ivorra | Two-and three-dimensional modeling and optimization applied to the design of a fast hydrodynamic focusing microfluidic mixer for protein folding[END_REF][START_REF]A multi-layer line search method to improve the initialization of optimization algorithms[END_REF][START_REF] Ivorra | Application of the laminar navier-stokes equations for solving 2d and 3d pathfinding problems with static and dynamic spatial constraints: Implementation and validation in comsol multiphysics[END_REF] and references therein. Broadly speaking, GAs are search techniques which try to solve problems similar to ( 14) through a stochastic process based on a natural selection process that mimics biological evolution. The GAs have many advantages as, for example, they can solve complex optimization problems (e.g., with high dimensional search space or function with various with local minima). However, they exhibit lower accuracy than other methods, such as gradient algorithms. Before explaining the methodology used to enhance these inconveniences, we detail the GA used in this work.

Genetic Algorithm scheme:

• Step 1. Inputs: The user must define six parameters:

N p ∈ N, N g ∈ N, p c ∈ [0, 1], p m ∈ [0, 1], λ ∈ R and ĝ ∈ N,
the meaning of which is clarified later in the following steps. In addition, the user needs to provide a first set, called initial population and denoted by X 0 = {x 0 j ∈ Φ, j = 1, ..., N p } ∈ Θ, of N p possible solutions of the optimization problem [START_REF] Deb | Multi-objective optimization using evolutionary algorithms[END_REF]. Each row x 0 j in X 0 (j = 1, . . . , N p ) is called individual, while each component x 0 j,k of an individual (k = 1, . . . , N ) is called gene. In our case Θ = N k=1 [l k , u k ], where l k and u k are respectively the lower and upper bounds of the gene x i j,k .

• Step 2. Generation of new populations: Starting from the initial population X 0 , we recursively create N g ∈ N new populations, which we call generations, by applying 4 stochastic steps, called selection, crossover, mutation and elitism, which are described in Steps 3.1, 3.2, 3.3 and 3.4, respectively. More precisely, let X i = {x i j ∈ Θ, j = 1, ..., N p } with i = 1, ..., N g -1, denotes the population at iteration i. Thus, using the following (N p , N )-real valued matrix notation

X i =    x i 1 (1) • • • x i 1 (N ) . . . . . . . . . x i Np (1) • • • x i Np (N )    , X i+1 is obtained by considering (15) X i+1 = (I N -E i )(C i S i X i + M i ) + E i X i
where matrices S i , C i , M i , E i and I N are described below.

-Step 2.1. Selection: This operator is used to select individuals according to their fitness value. There exist various selection techniques (see, for instance, [START_REF] Goldberg | Genetic algorithms in search, optimization, and machine learning[END_REF][START_REF] Sharapov | Genetic algorithms: Basic ideas, variants and analysis[END_REF][START_REF] Weise | Global optimization algorithms -theory and application[END_REF]), among which we use the Roulette Wheel Selection method. We randomly select N p individuals from X i with eventual repetitions. Each individual x i j ∈ X i , with j = 1, . . . , N p has a probability to be selected during this process which is given by J(x i j ) -1 / Np k=1 J(x i k ) -1 . This step can be summarized as

X i+1,1 = S i X i ,
where S i is a binary valued (N p , N p )-matrix satisfying S i j,k = 1 if the k-th individual in X i is the j-th selected individual, and S i j,k = 0 in other case.

-Step 2.2. Crossover: This operator is used to create a new individual by combining the genes of two existing individuals from the population X i (chosen during the previous selection process). There are several methods for combining individuals (see, for instance, [START_REF] Deb | Multi-objective optimization using evolutionary algorithms[END_REF][START_REF] Goldberg | Genetic algorithms in search, optimization, and machine learning[END_REF][START_REF] Sharapov | Genetic algorithms: Basic ideas, variants and analysis[END_REF]), among which we use the Arithmetic Crossover method. For each pair of consecutive individuals (rows) 2j -1 and 2j in X i+1,1 , with 1 ≤ j ≤ floor(N p /2) (where floor(a) is the nearest integer lower than or equal to a), we determine, with a probability p c , if those rows exchange data or if they are directly copied into an intermediate population denoted by X i+1,2 . Thus, matrix C i is a real valued matrix of size (N p , N p ), satisfying

C i 2j-1,2j-1 = λ 1 , C i 2j-1,2j = 1 -λ 1 , C i 2j,2j = λ 2 and C i 2j,2j-1 = 1 -λ 2 ,
where λ 1 = λ 2 = 1 with probability 1 -p c , or λ 1 , λ 2 are randomly chosen in (0, 1) considering a uniform distribution, in other case. Other coefficients of C i are set to 0. If N p is odd, then we also set C i (N p , N p ) = 1, and then the N p -th row of X i+1,1 is directly copied into X i+1,2 .

-Step 2.3. Mutation: This operator randomly modifies the value of one or more genes of an individual from the population X i+1,2 (obtained during the previous crossover process). It provides diversity in the population and intends to avoid the premature convergence phenomenon (i.e., population concentrated near a local minimum, see [START_REF] Goldberg | Genetic algorithms in search, optimization, and machine learning[END_REF]). Each individual can be mutated with a probability p m given by the user. There exist different techniques to randomly mutate individuals (see, for instance, [START_REF] Deb | Multi-objective optimization using evolutionary algorithms[END_REF][START_REF] Sharapov | Genetic algorithms: Basic ideas, variants and analysis[END_REF]), among which we use the Non-Uniform Mutation method. We decide, with a probability p m , if each row of X i+1,2 is randomly perturbed or not. This step is defined by

X i+1,3 = X i+1,2 + M i ,
where M i is a real valued matrix with size (N p , N ) and the j-th row satisfies

M i j = 0 with probability 1 -p m ∆(g, x i j )
in other case and the k-th component of the vector ∆(g, x i j ) is defined as

∆(g, x i j ) = (u k -x i j,k )(1 -γ (1-g Ng ) λ ) if τ = 0 (l k -x i j,k )(1 -γ (1-g Ng ) λ ) if τ = 1
where g is the current generation number, τ is a binary random number, γ is a uniform random number in [0, 1] and λ is a parameter given by the user, determining the degree of dependency on the iteration number. This mutation method decreases the mutation rate as the generation number increases.

-Step 2.4. Elitism: This operator ensures that at least one of the best individuals of the current generation is directly copied to the next generation. The main advantage of elitism is that a decreasing convergence is guaranteed. For more details about elitism methods see, for instance, [START_REF] Sharapov | Genetic algorithms: Basic ideas, variants and analysis[END_REF][START_REF] Weise | Global optimization algorithms -theory and application[END_REF].

Let x i b , where b ∈ 1, ..., N p , be the individual in X i with the lowest value of the fitness function (or, if there exist various, one of those individuals selected randomly with a uniform distribution). If x i b has a lower fitness value than all the individuals in X i+1,3 , it is directly copied at the b-th row of X i+1 . This step can be formalized as

X i+1 = (I N -E i )(X i+1,3 ) + E i X i ,
where I N is the identity matrix of size N and E i is a real-valued (N p , N p )-matrix such that E i (b, b) = 1 if x i b has a lower fitness value than all the individuals in X i+1,3 and 0 otherwise, E i = 0 elsewhere. The genetic search is terminated when N g generations have been computed, or after a number of generations specified by the user, ĝ, without improvement of the fitness value (i.e., the fitness of the best element has not decreased).

• Step 3. Output: When GA stops, it returns, as an output solution, the individual who has the lowest value for the objective function J among all the individuals in all the populations considered during the whole evolving process, i.e., GAO(X 0 ; N p ; N g : p m ; p c ; λ; ĝ) = argmin{J(x j i )| x j i is the j-th row of X i , i = 1, . . . , N g j = 1, . . . , N p }.

As said at the beginning of this section, in order to accelerate the convergence and improve the accuracy of the above-described GA, we combine it with the MSA described below to build a hybrid algorithm, called GMA. Its general scheme is as follows:

Genetic Multi-Layer Algorithm scheme:

• Step 1. Inputs: The user must define seven parameters:

s max ∈ N, N p ∈ N, N g ∈ N, p c ∈ [0, 1], p m ∈ [0, 1],
λ ∈ R and ĝ ∈ N. s max denotes the number of iterations of the MSA.

• Step 2. Initial population: A first family of possible solutions of the optimization problem ( 14), denoted by X 0 1 = {x 0 1,j ∈ Θ, j = 1, ..., N p }, is randomly generated in the search space Θ considering a uniform distribution.

• Step 3. Main loop: For s from 1 to s max :

-Step 3.1. We run the GA starting from the initial population X 0 s and obtain the optimal individual o s = GAO(X 0 s , N p , N g , p m , p c , λ, ĝ).

-Step 3.2. We build a new initial population for the GA, X 0 s+1 = {x 0 s+1,j ∈ Θ, j = 1, ..., N p }, by considering a secant method between each element in X 0 s and the optimal individual o s , i.e., for all j ∈ {1, ..., N p }, if J(o s ) = J(x 0 s,j ) we set

x 0 s+1,j = x 0 s,j , else we set

x 0 s+1,j = proj Θ x 0 s,j -J(o s ) o s -x 0 s,j J(o s ) -J(x 0 s,j )
, where proj Θ : R N → Θ is the projection function for controlling that the new individuals fit into the search space Θ, defined as proj Θ (x)(k) = min(max(x(k), l k ), u k ), with k = 1, ..., N .

• Step 4. Output: After s max iterations, the GMA returns the following output:

GM AO(s max , N p , N g , p m , p c , λ, ĝ) = argmin{J(o s )| s = 1, ..., s max }.
This algorithm tries to improve, individual by individual, the initial population of the GA. More precisely, for each individual in the initial population:

• If there is a significant evolution of the cost function between this individual and o s , the secant method generates a new individual close to o s that performs a refined search near the current solution. • Otherwise, the secant method creates a new individual far from o s , to expand the exploration of the admissible space.

Moreover, when the GMA ends, its solution is improved by performing 10 iterations of the Steepest Descent (SD) algorithm, in which the descent step size ρ is determined using 10 iterations of a dichotomy method starting from ρ 0 = 1. This last layer of SD is carried out in order to enhance the accuracy of the final solution. This algorithm has been already tested for solving different computationally expensive industrial optimization problems (see, e.g., [START_REF] Gomez | Optimization of a pumping ship trajectory to clean oil contamination in the open sea[END_REF][START_REF] Ivorra | Two-and three-dimensional modeling and optimization applied to the design of a fast hydrodynamic focusing microfluidic mixer for protein folding[END_REF][START_REF] Ivorra | Design sensitivity and mixing uniformity of a micro-fluidic mixer[END_REF][START_REF] Ivorra | Modelling and optimization applied to the design of fast hydrodynamic focusing microfluidic mixer for protein folding[END_REF]). Furthermore, it has been compared with other well-known metaheuristic method and it exhibits better performance for a set of Benchmark problems (see [START_REF]A multi-layer line search method to improve the initialization of optimization algorithms[END_REF]). A Matlab version of the GMA presented in this paper has been implemented in the free optimization package "Global Optimization Platform" (GOP), which can be downloaded at http://www.mat.ucm.es/momat/software.htm.

Numerical Experiments

In this section, we first introduce the numerical solver used for computing the solutions of system ( 1)-( 4). Then, in Section 4.2 we describe the considered numerical experiments based on the optimization problems ( 9), ( 10) and ( 13). Section 4.3 presents the optimization results, which are analyzed and compared in Section 4.4. 1)-( 4) was solved using the software COMSOL Multiphysics 5.0 ‡ , based on the Finite Element method (see [START_REF] Ramos | Introducción al análisis matemático del método de elementos finitos[END_REF]), with Lagrange P2-P1 elements to stabilize the pressure and to satisfy the Ladyzhenskaya, Babouska, and Brezzi stability condition. The 2nd-order Lagrange elements model the velocity and concentration components, while linear elements represent the pressure. At a first stage, we solve the stationary Navier-Stokes equations (4) using Galerkin least square streamline and crosswind diffusion methods so as to prevent numerical oscillations. At a second stage, the velocity field (solution of ( 4)) is introduced as an input value in the transient advection-diffusion-reaction system (1), which is then solved by considering an upwind scheme. We use a direct damped Newton method to solve the corresponding linear systems. A complete description of those techniques can be found in [START_REF] Glowinski | Numerical methods for nonlinear variational problems[END_REF]. The numerical experiments were carried out in a 2.8Ghz Intel i7-930 64bits computer with 12Gb of RAM. We used a triangular mesh with around 3000 elements, which produced significantly accurate results with respect to finer meshes that turned out to be computationally unreachable. We assumed that the solution of system (1) at finite time T = 10 7 (s) could be considered as a reasonable approximation the steady state ( Ŝ, B) of system [START_REF] Andrews | A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates[END_REF]. Model variables ( 6) and ( 7) were estimated using the functions Domain Integration and Boundary Integration of COMSOL (based on a trapezoidal approximation of the integral), respectively. Thus, the value of the cost function ( 8) was an output of the COMSOL model. After performing several numerical tests (as described in Section 3.1,) we have chosen β = 10 9 to be the value of the penalty parameter in the cost function as it has given good results for the considered numerical experiments. In this work, the GMA has been applied with (s max , N g , N p , p c , p m , λ, ĝ) = (100, 10, 10, 0.4, 0.2, 1, 25) for solving numerically problems ( 9), ( 10) and ( 13). Those parameters had previously been successfully used for solving similar optimization problems in [START_REF] Crespo | Mathematical modeling and optimization of bioreactors and liquid crystals[END_REF][START_REF] Gomez | Optimization of a pumping ship trajectory to clean oil contamination in the open sea[END_REF][START_REF] Ivorra | Two-and three-dimensional modeling and optimization applied to the design of a fast hydrodynamic focusing microfluidic mixer for protein folding[END_REF][START_REF] Ivorra | Design sensitivity and mixing uniformity of a micro-fluidic mixer[END_REF]. Depending on the considered case (detailed below), each function evaluation in problems ( 9), ( 10) and ( 13) may take from 15 up to 60 minutes. With a restriction of 3 months of computational time to run the GMA, the number of function evaluations carried out to solve problems ( 9), ( 10) and ( 13) ranged between 2000 and 6000.

Numerical implementation of the model. The cylindrical version of system (

4.2.

Cases considered in this work. Model parameters were set as follows (see [START_REF] Bello | Bioreactor shape optimisation. modeling, simulation, and shape optimization of a simple bioreactor for water treatment, Les STIC pour l'environnement[END_REF][START_REF] Symon | Mechanics, Addison-Wesley World student series[END_REF]): D S = 4.3 • 10 -12 (m 2 /s), D B = 5 • 10 -10 (m 2 /s), S in = 15 (kg/m 3 ), B 0 = 1 (kg/m 3 ), S 0 = 15 (kg/m 3 ), p atm = 10 5 (Pa), ρ = 10 3 (kg/m 3 ), η = 10 -3 (kg/m s) and u in = 2.2 • 10 -4 (m/s). We consider four different reaction rate functions µ 1 , µ 2 , µ 3 and µ 4 , which are described in Table 1 (see pages 132, 182 and 187 in [START_REF] Dochain | Automatic control of bioprocesses[END_REF]). In Figure 3, we plot those four growth rate functions. We can observe that they have the same order of magnitude but with different slopes. Figure 3. Functions µ 1 (S), µ 2 (S), µ 3 (S) and µ 4 (S) (s -1 ), detailed in Table 1, with S ∈ [0, 20] (kg/m 3 ).

When solving problems ( 9) and [START_REF] Crespo | Existence and uniqueness of solution of a continuous flow bioreactor model with two species[END_REF], design parameters H min = 2 (m), H max = 10 (m) and R max = 5 (m) were taken to generate the admissible spaces Φ1 and Φ2 . On the other hand, when solving problem [START_REF] Dean | The stream-line motion of fluid in a curved pipe (2 nd paper)[END_REF], the admissible ‡ www.comsol.com Table 1. Considered growth rate functions

µ 1 (•) µ 2 (•) µ 3 (•) µ 4 (•) Monod function (2) Monod function (2) Haldane function (3) Haldane function (3) µ max = 9.17 • 10 -5 s -1 , µ max = 5.5 • 10 -5 s -1 , µ max = 1.39 • 10 -4 s -1 , µ max = 1.11 • 10 -4 s -1 , K S = 5 kg/m 3 K S = 0.075 kg/m 3 K S = 4 kg/m 3 , K S = 0.5 kg/m 3 , K I = 3 kg/m 3 K I = 4 kg/m 3
space Φ3 was generated with design parameters H min = 2 (m) H max = 10 (m) and R 1,max = R 2,max = 3.5 (m). In order to compute the values E 1,min and E 1,max , we chose R max = 5 (m). In all cases we set r = h = 0.5 (m) and S lim = 1 (kg/m 3 ).

Optimization Results.

In this section, we present the optimization results obtained when solving problems ( 9), ( 10) and ( 13). Section 4.3.1 puts together the numerical results obtained when solving problems ( 9) and ( 10) because similar conclusions were obtained. We point out that in all the optimized reactors obtained in Sections 4.3.1 and 4.3.2, the optimal solutions φi,opt are such that the second term in ( 8) is zero, and therefore, the value J( φi,opt ) corresponds to the reactor volume Vol( φi,opt ) (i = 1, 2, 3).

Remark 4.1. We observe from Tables 2-4 that the value Ŝout ( φi,opt ) (i = 1, 2, 3) is clearly smaller than the prescribed value S lim in all the considered cases, which seems to indicate that smaller (and therefore better) domains could be obtained with this value closer to S lim . This inaccuracy may be due to the lack of numerical precision of the COMSOL model, which in turn is caused by the restriction on the computational time (see Section 4.1 for more details). This fact highlights the difficulties tackled during the numerical resolution of our optimization problem.

4.3.1. Parametrizations 1 and 2. Table 2 shows the optimal results when solving problem (9), while the optimized shapes are depicted in Figure 4. Similarly, Table 3 shows the optimal results when solving problem [START_REF] Crespo | Existence and uniqueness of solution of a continuous flow bioreactor model with two species[END_REF], while the optimized shapes are depicted in Figure 5. From Figures 4 and5 we observe that the optimal reactors have height larger than width. This outcome is in line with the results found in [START_REF] Richmond | A new tubular reactor for mass production of microalgae outdoors[END_REF][START_REF] Tredici | Efficiency of sunlight utilization: Tubular versus flat photobioreactors[END_REF], where the authors performed experimental studies to conclude that the most efficient reactor was a tubular one with its height much greater than its radius. Nevertheless, this strategy is not always applicable due to the practical restriction on the reactor height.

(a) µ 1 (b) µ 2 (c) µ 3 (d) µ 4
When comparing the results obtained with the reaction functions, we observe that the optimized reactors exhibit similar heights and the main difference lies in the reactor radius. For instance, the value of Vol( φ1,opt ) (similarly, the value of Vol( φ2,opt )) is higher with µ 3 than with µ 1 . This difference seems to be due to the fact that function µ 3 is qualitatively smaller than function µ 1 (see Figure 3) and thus, the optimal volume must be bigger to ensure that the prescribed value S lim is reached. The influence of the reactor width on the bioreactor dynamics is explained in Remarks 4.3 and 4.4 later on.

4.3.2. Parametrization 3. Table 4 shows the optimal results, while the optimized shapes are depicted in Figure 6.

Table 4. Value of the optimal parameters (H opt (m), R opt 1 (m), R opt 2 (m), α opt 1 and α opt 2 ) in φ3,opt , solution of problem ( 13) with functions µ i , i = 1, . . . , 4; exterior control point coordinates (E 1 (m) and E 2 (m)), associated to φ3,opt and computed using equation [START_REF] Crespo | Modeling and optimization of activated sludge bioreactors for wastewater treatment taking into account spatial inhomogeneities[END_REF] and Lemma 3.2; outflow substrate concentrations ( Ŝout ( φ3,opt )(kg/m 3 )); and reactor volumes (Vol( φ3,opt )(m 3 )). From Figure 6 we observe that, as stated in Section 4.3.1, the optimal reactors have height larger than width. Moreover, the exterior wall of the optimized reactors is concave, with a radius expansion observed at least in some limited part of the reactor (as said previously, the influence of the reactor radius in the bioreactor dynamics will be explained in Remarks 4.3 and 4.4 below). When comparing reaction functions, Figures 6-(a) and 6-(c) seem to show that, for instance, the radius expansion of the domain Ω( φ3,opt ) is wider for growth rate function µ 3 than for µ 1 , as observed in Section 4.3.1. On the other hand, the main difference between considering Monod (µ 1 and µ 2 ) or Haldane (µ 3 and µ 4 ) reaction functions is observed in the concavity at the upper part of the exterior wall (see Remark 4.3 for a physical interpretation).

µ H opt R opt 1 R opt 2 α opt 1 α opt 2 E 1 E 2 Ŝout ( φ3,
Remark 4.2. One can observe in Figure 6 that, in some cases, the boundary of the obtained domains Ω( φ3,opt ) shows cusps (local irregular points), which could cause that the Lipschitz condition required in Remark 2.2 is not satisfied. However, the proposed numerical method approximates the boundary in the neighborhood of these points by piecewiselinear functions (with large but bounded slopes), assuring that the hypothesis in Remark 2.2 are accomplished.

4.4.

Comparison between the optimized reactors. Here, we compare the solutions obtained when solving the optimization problems ( 9), [START_REF] Crespo | Existence and uniqueness of solution of a continuous flow bioreactor model with two species[END_REF] and [START_REF] Dean | The stream-line motion of fluid in a curved pipe (2 nd paper)[END_REF]. Figures 4, 5 and 6 seem to show that the optimized reactors have height larger than width (indeed, H max set to 10 (m) limits the optimal shape height and the optimal heights in all the considered cases approach this limit) and generally, the optimal widths approach its lower bound (the minimum reactor radius allowed was r = 0.5 (m)). However, in some of the considered cases (see Figures 4-(c , a radius expansion (at least in some limited part of the reactor) is observed. We interpret that increasing the reactor width favors the reaction due to two main reasons:

(1) It helps that the vertical flow velocity decreases (in absolute value), and so the time that the biomass and the substrate remain in contact for reacting increases (see Remark 4.3 for a more detailed analysis of the relation between the reactor width and the vertical flow). (2) It originates an area of biomass storage. For example, due to the apparition of Dean vortices in this area (see, e.g., [START_REF] Dean | The stream-line motion of fluid in a curved pipe (2 nd paper)[END_REF]) the biomass located near the device exterior wall remains more time inside the bioreactor (compared to the biomass located at the reactor center), and so the amount of reaction between biomass and substrate increases (see Remark 4.4 for an specific explanation about the distribution of substances in the reactor). ). We solved system (4) with domains Ω i , i = 1, . . . , 4 and denoted u 3,Ωi (m/s) the vertical flow velocity (third component of the velocity vector) obtained when solving system (4) in the domain Ω i , evaluated at r = 0 (i.e., symmetry streamline). Figure 7-(e) represents |u 3,Ωi |, i ∈ {1, . . . , 4}, which can be seen as functions of z. We observe that, in regions where the reactor radius increases, the absolute value of the vertical velocity decreases. This physical interpretation may explain, for instance, the optimal domains Ω( φ3,opt ) obtained with reactions µ 3 and µ 4 (see Figures 6-(c) and 6-(d)), since the Haldane function shows inhibition for large values of substrate (see Figure 3) and the maximum value of substrate appears at the reactor inlet.

Remark 4.4. Figures 8-(a) and 8-(b) represent the distributions of substrate and biomass at steady state, respectively, computed with the optimal reactor Ω( φ3,opt ), obtained for the growth rate function µ 3 . One observes that the substrate is mainly agglomerated in the area originated by the inlet streamlines (see Figure 8-(d)). On the other hand, the biomass becomes withdrawn from this central area and is mainly concentrated around the reactor wall (where Dean vortices appear [START_REF] Dean | The stream-line motion of fluid in a curved pipe (2 nd paper)[END_REF], see Figure 8-(d)). Thus, a reaction front is created between the central area and the outer part of the reactor (as shown in Figure 8-(c)) favoring the reaction between the two species. Although the optimization problems (9), ( 10) and (13) have been solved for a singular pair of diffusion coefficients (D S , D B ), numerical experiments seem to show that the analysis of the distribution of substances in the reactor, performed above, is suitable in the range of typical diffusion coefficients D S (from 10 -10 to 10 -7 (m 2 /s) [START_REF] Nogueira | Competition between nitrospira spp. and nitrobacter spp. in nitrite-oxidizing bioreactors[END_REF][START_REF] Stewart | Diffusion in biofilms[END_REF][START_REF] Venterea | Mechanistic modeling of nitrite accumulation and nitrogen oxide gas emissions during nitrification[END_REF]) and D B (from 10 -13 to 10 -7 (m 2 /s) [START_REF] Harding | The brownian diffusion of dormant and germinating spores of bacillus megaterium[END_REF][START_REF] Reiter | Assessment of laboratory methods for quantifying aqueous bacterial diffusion[END_REF][START_REF] Singh | Environmental hydrology[END_REF]). Now, it is of interest to compare the optimized reactors obtained when solving the optimization problems ( 9), [START_REF] Crespo | Existence and uniqueness of solution of a continuous flow bioreactor model with two species[END_REF] and [START_REF] Dean | The stream-line motion of fluid in a curved pipe (2 nd paper)[END_REF]. In this direction, we denote by d r ( φi , φj ) (i = j) the relative difference between the optimal reactor volumes Vol( φi,opt ) and Vol( φj,opt ), defined as (16) d r ( φi , φj ) = 100 × Vol( φj,opt ) -Vol( φi,opt ) Vol( φi,opt ) .

Table 5 shows the comparison, in terms of reactor volume, between the optimized reactors obtained when creating the domain with the three proposed parametrizations. Additionally, values d r ( φ1 , φ2 ) (resp. d r ( φ1 , φ3 )) are included in Table 5 in order to outline how much can be gained by using non-tubular reactors. One observes that for Monod growth rate functions (µ 1 and µ 2 ), the relative difference d r ( φ1 , φj ) (j = 2, 3) is between -10% and 13%, so one can conclude that the variation (in terms or reactor volume) between tubular and non-tubular reactors is relatively low. On the other hand, for Haldane growth rate functions (µ 3 and µ 4 ), one observes that by using non-tubular reactors, one can gain from 27% up to 75% in terms of reactor volume. Additionally, one may notice that the optimized reactor volumes differ substantially depending on the considered reaction function. Similar results have been obtained in other works focusing on the analysis of continuous bioreactors modeled through ordinary differential equations (see, e.g. [START_REF] Dochain | Dynamical modelling and estimation in wastewater treatment processes[END_REF][START_REF] Harmand | The optimal design of two interconnected (bio)chemical reactors revisited[END_REF][START_REF] Harmand | Optimal design of interconnected bioreactors: New results[END_REF][START_REF] Hill | Minimum tank volumes for CFST bioreactors in series[END_REF][START_REF] Ch | Optimal design for continuous stirred tank reactors in series using Michaelis Menten kinetics[END_REF])).

Conclusions

We have explored the shape design of a continuous biological reactor. The main objective was to reduce the reactor volume, ensuring that a prescribed output concentration value was reached at stationary state. As a matter of generalization, we have not imposed a particular type of biological dynamics in the reactor but proposed a general methodology to be applied and adapted depending on the considered case. We have used a mathematical model that couples hydrodynamics (described with the incompressible Navier-Stokes equations in three dimensions) with biological phenomena (described with an Advection-Diffusion-Reaction system). Using the Finite Element Method, we have numerically computed the output substrate concentration at steady state and the volume of a reactor Table 5. Comparison, in terms of reactor volume (m 3 ), between optimized reactors obtained when solving problems (9) (Vol( φ1,opt )), [START_REF] Crespo | Existence and uniqueness of solution of a continuous flow bioreactor model with two species[END_REF] (Vol( φ2,opt )) and (13) (Vol( φ3,opt )); relative differences d r ( φ1 , φj ) (%) (j = 2, 3) computed using equation [START_REF] Dochain | Automatic control of bioprocesses[END_REF].

µ Vol( φ1,opt ) (m 3 ) Vol( φ2,opt ) (m 3 ) d r ( φ1 , φ2 ) (%) Vol( φ3,opt ) (m 3 ) d r ( φ1 , φ3 ) (%) a given genetic algorithm. The optimization problem is solved for monotonic and non-monotonic growth rate functions, in order to analyze the influence of the reaction into the optimal reactor configuration. One of the proposed parametrizations allows us to model tubular shapes (typically used in the industry sector), while the other two offer the possibility to obtain a wider range of reactor geometries. We have taken into account that the reaction between species may be modeled by either monotonic or non-monotonic growth functions, and we have analyzed the influence of this factor on the optimization results.

µ
From a general point of view, the optimized reactors exhibit height much larger than width and their exterior wall is concavely curved, with a radius expansion observed at least in some limited part of the reactor. The magnitude of the radius extension appears to be related to the reaction function. The slower is the reaction the wider should be the device. The advantage of the radius extensions in the reactor performance could be attributed to two main factors:

• The width of the reactor helps to decrease the absolute value of the vertical flow velocity, and consequently, increases the time of potential reaction between substances. • The reactor corners may act as a biomass storage. The biomass located near the reactor exterior wall is withdrawn slower from the device than the biomass located near the device center, favoring the reaction between species.

When comparing the optimized reactors obtained for both monotonic and non-monotonic growth rate functions, one observes that, if the reactor is modeled with non-monotonic kinetics (e.g., Haldane function), the radius expansion located at the top of the reactor is more pronounced. We interpret that this difference relays on the fact that for large values of substrate (i.e., at the inlet of the device) the Haldane reaction shows inhibition, and so the radius expansion should be bigger to decrease the absolute value of the vertical flow near the reactor inlet.

An interesting message is that when the degrees of freedom on the shape parametrization is large enough, concavely curved reactors are systematically the best ones, although convexly curved (generated with less degrees of freedom) could already be better than perfect tubular shapes. The volume of the optimized reactors using concavely curved geometries (instead of typical tubular geometries) allow us to reduce the reactor volume between 25% and 90% depending on the considered case. This study shows to practitioners how much could be gained compared to the best cylindrical shapes, and how this gain is related to the reaction rate function (monotonic versus non-monotonic). Of course, the economic cost relative to the production of non-conventional should be taken into consideration for the best choice of the reactor geometry. Including this new (or other) criteria into the design problem should be tackled by using multi-objective approaches instead of single-objective approaches (see [START_REF] Ferrández | High-performance computing for the optimization of high-pressure thermal treatments in food industry[END_REF]).



  Find φ opt ∈ Φ, such that Vol(φ opt ) = min φ∈Φ Vol(φ), Ŝout (φ opt ) ≤ S lim , where φ = (H, R 1 , R 2 , ψ) ∈ Φ defines a particular bioreactor shape and Φ

  x, y, 0, T )|u 3 (x, y, 0)|dxdyΓ * out |u 3 (x, y, 0)|dxdy ,with S φ (•, •, •, T ) the solution of system (1), obtained with the 3D domain Ω * (φ), at time T and u 3 the third component of the velocity vector in (4).
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 4 Figure 4. Shape of the optimized reactors, Ω( φ1,opt ), where φ1,opt is the solution of problem (9).
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 12345 Figure 5. Shape of the optimized reactors, Ω( φ2,opt ), where φ2,opt is the solution of problem (10).
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 12346 Figure 6. Shape of the optimized reactors, Ω( φ3,opt ), where φ3,opt is the solution of problem (13).

  ), 4-(d), 5-(c), 5-(d), 6-(c) and 6-(d))

Remark 4 . 3 .

 43 In order to understand the influence of the bioreactor width on the vertical flow velocity, we used four different domains, denoted by Ω i , i = 1, . . . , 4. The first reactor is cylindrical (depicted in Figure7-(a)) and the other three present a radius extension on the top, center and bottom parts of the domain, (depicted in Figures 7-(b) to 7-(d), respectively

  Vertical velocity profile along the symmetry streamline obtained for reactor domains Ω i , i = 1, . . . , 4.

Figure 7 .

 7 Figure 7. Influence of the reactor width into the vertical flow velocity.

  associated to a particular set of design parameters. Then, we have defined three discrete optimization problems related to three different parametrizations of the device geometry and solved them by using a Genetic Multi-layer Algorithm, a self-implemented global optimization method based on the search of a suitable initial population for

  (a) Ŝ(r, z) (kg/m 3 ) (b) B(r, z) (kg/m 3 ) (c) µ( Ŝ) B (kg/m 3 h) (d) Streamlines

Figure 8 .

 8 Figure 8. (a) substrate concentration (at steady state). (b) biomass concentration (at steady state). (c) reaction (at steady state) (d) streamlines. (a)-(d) associated to the optimal reactor Ω(φ 3,opt ) obtained for the growth rate function µ 3 .

  In order to obtain the minimum and maximum values of B 2 (σ), σ ∈ [0, 1], we compute the critical points σ *

	the equation	dB 2 dσ	2 satisfying 2 ) = 0 on the interior of ]0, 1[. When considering E 2 as a variable, one can see that σ * (σ * 2 depends
	on E 2 through the expression σ * 2

Table 2 .

 2 Value of the optimal parameters (H

	µ H opt R opt	Ŝout ( φ1,opt ) Vol( φ1,opt )
	µ 1	10	0.61	0.9528	11.3063
	µ 2 9.82 0.66	0.9773	12.8553
	µ 3 9.92 1.98	0.9718	110.6468
	µ 4 9.9	1.6	0.9024	72.3634

opt (m) and R opt (m)) in φ1,opt , solution of problem (9) with functions µ i , i = 1, . . . , 4; outflow substrate concentrations ( Ŝout ( φ1,opt ) (kg/m 3 )); and reactor volumes (Vol( φ1,opt ) (m 3 )).

Table 3 .

 3 Value of the optimal parameters (H opt (m) and R opt (m)) in φ2,opt , solution of problem[START_REF] Crespo | Existence and uniqueness of solution of a continuous flow bioreactor model with two species[END_REF] with functions µ i , i = 1, . . . , 4; outflow substrate concentrations ( Ŝout ( φ2,opt ) (kg/m 3 )); and reactor volumes (Vol( φ2,opt ) (m 3 )).

	µ H opt R opt	Ŝout ( φ2,opt ) Vol( φ2,opt )
	µ 1 9.28 0.728	0.9893	12.8479
	µ 2 9.91 0.73	0.9558	13.8268
	µ 3 9.98 1.96	0.9538	80.2715
	µ 4	10	1.36	0.9216	40.6650

  opt ) Vol( φ3,opt )

	µ 1 9.6359 0.5931 0.9214 1.6358 • 10 -5 0.0059 0.3022 0.5512	0.9540	10.0790
	µ 2 9.0814 0.5730 1.1024	0.0064	0.0922 0.4111 1.2451	0.8923	12.0855
	µ 3 9.8879 2.0432 1.2402	0.0093	0.9940 -0.3928 8.8376	0.9545	27.1679
	µ 4 9.6401 1.0410 2.0805 1.9301 • 10 -4 0.0273 -0.421	0.736	0.9962	22.3042
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