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SHAPE OPTIMIZATION OF SPATIAL CHEMOSTAT MODELS

M. CRESPO1,∗, B. IVORRA2, A.M. RAMOS2 AND A. RAPAPORT3

Abstract. In this work, we study the shape optimization of a continuous bioreactor in which a substrate is degraded
by a microbial ecosystem in a nonhomogeneous environment. The bioreactor considered here is a three-dimensional
vertically oriented cylindrical tank. The behavior of reactants is described with a spatial chemostat model based on
an Advection-Diffusion-Reaction system while the fluid flow is modeled using incompressible Navier-Stokes equations.

We consider that the reaction rate between biomass and nutrient shows either monotonic or non-monotonic behavior.
We tackle an optimization problem which aims to minimize the considered total reactor volume, with an output
concentration (at stationary state) maintained below a desired threshold, by choosing a suitable bioreactor shape.

We propose a methodology to create three different discrete parametrizations of the bioreactor geometry and obtain
the optimized shapes with the help of a Hybrid Genetic Algorithm. We show that the optimized reactors exhibit
height much larger than width and their exterior wall is concavely curved (the concavity at the upper part of the
exterior wall being more pronounced for non-monotonic functions).

Keywords: Shape optimization; Optimal design; Continuous bioreactor; Spatial chemostat model; Advection-
diffusion-reaction; Hybrid genetic algorithm

AMS Subject Classification 2010: 35Q93; 35K40; 65K10; 92E20

1. Introduction

Shape optimization has been extensively exploited in design engineering [3, 18, 31, 40, 34, 48, 49], particularly
in aeronautical [6, 43, 45] and automotive areas [44, 69]. Traditionally, finding the optimal geometry of a particular
device is based on a trial and error approach, in which, a number of prospective configurations is simulated and
the results are compared. An alternative strategy relays in performing the mathematical modeling of the process,
carrying out numerical simulations and solving the desired optimization problem with an appropriate optimiza-
tion algorithm. Taking into consideration the exponential growth of the available computing power, this second
approach provides a powerful computational tool able to simulate and analyze the efficiency of different geometry
configurations.

In this work, we tackle the shape optimization of a continuous bioreactor. A bioreactor is a vessel in which
microorganisms (e.g., bacteria), called biomass, are used to degrade a considered diluted substrate (e.g., nitrate).
A reactor in which substrate is continually added and product continually removed is called continuous bioreactor.
The influence of the bioreactor design into the process efficiency has received considerable attention in the litera-
ture [21, 51, 58]. Most of the works are developed by experimentalists (see, e.g., [5, 7]) and focus on specific biological
reactions occurring in continuous flow systems. Among the different reactor geometry configurations reviewed in
literature, the most popular are flat-plate reactors [60, 65], torus-shaped reactors [50] and tubular reactors [57, 65].
In 2008, Xia et al. [68] showed that flow conditions (regarding mass transfer, shear stress, mixing, etc.) are strongly
influenced by the reactor geometry, particularly at large scales. Nevertheless, computational fluid dynamics has
not been commonly used to its full capacity to optimize reactor performance. Of particular interest are the works
developed by Ansoni et al. [2] and Coenen et al. [8]. In [2], the authors consider a tubular reactor and model its
hydrodynamics with 3D Navier-Stokes equations. They look for the optimal design (configuration of the inlet and
the outlet pipes) of a given bioreactor, so that the dispersion of the residence time and the shear flow are minimized.
These two concepts, related to fluid dynamics, are linked to the reactor effectiveness. In [8], the authors consider a
cylindrical photobioreactor and model the dynamics of the organic compound with an advection-reaction equation.
They look for the optimal geometry (radius and height) so that the reactant concentration at the outlet of the
bioreactor is minimized.

We aim to solve the following design optimization problem: given the input reactant concentrations and the
flow rate to be processed, what is the minimal reactor volume (and its shape) so that a desired output reactant
concentration is attained? This problem has been modeled using ordinary differential equations (see, e.g., [17, 26,
28, 29, 42]) by approximating the behavior of a tubular device with a bioreactor composed by N well-mixed tanks
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in series. Then, the aim of the optimization becomes to find what are the volumes of the N tanks such that the
total volume of the whole process is minimal. However, these studies suffer of two important drawbacks:

• While the proposed results are valid for small and medium sized systems, they do not describe the diffusion
phenomena or the impact of fluid motions that may occur in larger tanks.

• The dimensioning parameters were not considered; only the total volume of the systems was optimized.
However, in a real case, design parameters such as the diameter or the height of any biological or chemical
system will influence its performance.

In order to overcome these drawbacks, we propose to couple hydrodynamics with biological phenomena occurring
in a diffusive bioreactor. To do so, we use a particular spatial modeling based on Navier-Stokes equation (describing
the fluid dynamics) together with an Advection-Diffusion-Reaction system (describing the behavior of the reactants
in the bioreactor). We give a methodology to create three different discrete parametrizations of the bioreactor
geometry and obtain the optimized shapes with the help of a Genetic Multi-layer Algorithm (GMA), a global
optimization method based on the hybridization of a Multi-layer Secant Algorithm (MSA)[54, 55, 53], finding suit-
able initial conditions for a global optimization algorithm, with a given Genetic Algorithm (GA) [14, 23, 59, 67].
This kind of hybridization has been already tested for solving different optimization problems [24, 39] and, accord-
ing to several numerical experiments, it seems that it achieves better results (in terms of computational time and
precision) than the GA used alone. The optimization problem is solved for monotonic and non-monotonic growth
rate functions, in order to analyze the influence of the reaction into the optimal reactor configuration. In contrast
to the previously cited experimental studies [5, 7, 57, 60], here, we do not specify beforehand a particular type of
biological system but describe, in a general way, a biological substrate-biomass reaction in a continuous reactor.
Compared to the works developed in [2, 8], we couple the fluid flow with the biological phenomena, while in [2, 8]
the authors only model one of the two physics. Furthermore, in this case, the reactor geometry is parametrized
with five variables (compared to the two-dimensional parametrization performed in [2, 8]) to be able to obtain a
broader range of possible bioreactor shapes.

The paper is organized as follows: Section 2 we introduce a mathematical model describing the dynamics of the
bioreactor. In Section 3, we state the optimization problem which aims to minimize the considered reactor volume,
with an outflow substrate concentration maintained to a desired threshold, by choosing a suitable bioreactor shape.
In Section 4, we explain the numerical experiments carried out for the optimization problem and show the results.
Section 5 draws the conclusions after the comparison between the obtained optimized reactors.

2. Mathematical Modeling

Following the notation introduced in other works (see, e.g., [11, 30]) regarding solids of revolution, we consider a
vertical cylinder denoted by Ω∗ as the domain of the bioreactor in consideration. When the problem is initialized,
there is a certain amount of biomass inside Ω∗ that reacts with the polluted water entering the device through the
inlet Γ∗

in (the upper boundary of the cylinder). Treated water leaves the reactor through the outlet Γ∗
out (the lower

boundary of the cylinder). We denote Γ∗
wall = ∂Ω∗ \ (Γ∗

in ∪ Γ∗
out), where null flux is considered.

We present the following model to describe the dynamics in the reactor, which includes advection-diffusion-reaction
phenomena (see [10, 11, 12, 15]):
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dS
dt = ∇ · (DS∇S − uS)− µ(S)B in Ω∗ × (0, T ),

dB
dt = ∇ · (DB∇B − uB) + µ(S)B in Ω∗ × (0, T ),

S(x, 0) = S0(x), B(x, 0) = B0(x) in Ω∗,

n · (−DS∇S + uS) = Sinu3 in Γ∗
in × (0, T ),

n · (−DB∇B + uB) = 0 in Γ∗
in × (0, T ),

n · (−DS∇S) = n · (−DB∇B) = 0 in Γ∗
out × (0, T ),

n · (−DS∇S + uS) = n · (−DB∇B + uB) = 0 in Γ∗
wall × (0, T ),

where T > 0 (s) is the length of the time interval for which we want to model the process, S (kg/m3), B (kg/m3)
are the substrate and biomass concentrations inside the reactor which diffuse throughout the water in the vessel
with diffusion coefficients DS (m2/s) and DB (m2/s), respectively, S0 (kg/m3), B0 (kg/m3) are the concentrations
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of substrate and biomass inside the bioreactor at the initial time, Sin (kg/m3) is the substrate concentration that
enters the reactor and n is the outward unit normal vector on the boundary of the domain Ω∗. Notice that besides
the advection-diffusion terms, we also have a term corresponding to the reaction of biomass and substrate, governed
by the growth rate function µ (s−1). We work with the following growth rate functions, which are extensively used
in the literature – the Monod function [62, 27] is defined in [0,+∞) by

(2) µ(S) = µmax
S

KS + S
,

where µmax (s−1) is the maximum specific growth rate andKS (kg/m3) is the half-saturation constant. The Haldane
function [1, 27] is defined in [0,+∞) by

(3) µ(S) = µ∗ S

KS + S + S2/KI
,

where µ∗ (s−1) is the maximum specific growth rate in the absence of inhibition and KI (kg/m
3) is the inhibition

constant. Finally, vector u = (u1, u2, u3) (m/s) is the flow velocity, which fulfills the following stationary Navier-
Stokes equations for Newtonian incompressible viscous fluids (see, e.g., [22])
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−η∆u+ ρ(u · ∇)u+∇p = 0 in Ω∗,

∇ · u = 0 in Ω∗,

u = 0 in Γ∗
wall,

u = −uin E(x) n in Γ∗
in,

n · (η∇u) = 0 in Γ∗
out,

p(x) = patm in Γ∗
out,

where p is the pressure field (Pa); patm is the atmospheric pressure (Pa); η is the fluid dynamic viscosity (kg/m s);
uin (m/s) is the maximum injection velocity; E is the laminar flow inlet profile (a paraboloid of revolution) equal
to 0 in the inlet border and unity in the inlet center; ρ is the fluid density (kg/ m3), assumed constant through the
reactor (as done, e.g., in [2, 8]).

Remark 2.1. Notice that the flow field u has been considered stationary in order to reduce the computational
complexity met when numerically solving system (1)-(4). This assumption is supported by numerical experiments,
which seem to show that if we solve a time-dependent version of (4) coupled with (1), variable u approximates its
stationary state much faster than variables (S,B).

Remark 2.2. According to [10], if the boundary of Ω∗ is Lipschitz, Sin ∈ L∞(0, T ), Sin ≥ 0 in (0, T ), S0 ∈ L∞(Ω∗),
S0 ≥ 0 in Ω∗, B0 ∈ L∞(Ω∗) and B0 ≥ 0 in Ω∗, there exists a unique solution (S,B) ∈ L2(0, T ;H1(Ω∗))2 ∩
C(0, T, L2(Ω∗))2 ∩ L∞(Ω∗ × (0, T ))2 of system (1).

As we will see in Section 4, we aim to find stationary solutions of system (1), which we denote by (Ŝ, B̂). A

usual way to get them is to solve numerically (1) and then consider its solution for a time value T̂ (large enough) as
the steady-state solution. This is usually computationally easier (see, e.g., [41]) and allows us to recover non-trivial

stationary solutions (different to (Ŝ, B̂) = (Sin, 0)) by choosing appropriate initial conditions.

3. Optimization Problem

Here, we aim to minimize the total reactor volume by choosing suitable design parameters (here, the reactor
shape) with respect to the output concentration. More precisely, in Section (3.1) we introduce the general formula-
tion of the considered continuous optimization problem. Then, in Section (3.2) we propose three particular discrete
implementations of this problem to be solved numerically in Section 4.

3.1. General Problem. Let us consider cylindrical bioreactors Ω∗ which are empty solids of revolution, and so,
they can be described by using a 2D domain Ω ⊂ R

2 (similar to the one depicted by Figure 1) by using cylindrical
coordinates (r, z), where r is the distance to the cylinder axis. The simplified domain Ω is described as follows: H
(m) is the bioreactor height; r (m) is the radius of the inlet Γin and the outlet Γout; h (m) is the height of the inlet
and outlet pipes; R1 (m) and R2 (m) are the radius of the bioreactor wall perpendicular to the inlet and outlet pipes,
respectively; the curve of the exterior wall corresponds to the graph of the function ψ : [h,H −h] → [r,+∞), which
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satisfies ψ(h) = R2 and ψ(H − h) = R1. Since, in practice, the inlet and outlet pipes have standard dimensions
(depending on the desired industrial application), we assume that r and h have fixed values. Similarly, we take into
account that the height and width of the reactor cannot exceed certain values (for example, due to a limitation of
the physical space in an industrial factory).

H

r

R1

R2

r

h

Γin

ψ

h

Γout

Ω

Γwall

Figure 1. Schematic representation of the bioreactor geometries used to solve problem (5). The
exterior curve (depicted in blue), which corresponds to part of the bioreactor exterior wall, is
defined as (z, ψ(z)), where z ∈ [h,H − h].

Given a prescribed output substrate concentration Slim (kg/m3), we state the following optimization problem

(5)







Find φopt ∈ Φ, such that
Vol(φopt) = minφ∈Φ Vol(φ),

Ŝout(φ
opt) ≤ Slim,

where φ = (H,R1, R2, ψ) ∈ Φ defines a particular bioreactor shape and Φ = {[Hmin, Hmax] ×[r,R1,max] ×[r,R2,max]
×Ψ} is the admissible space with Ψ = {ψ ∈ C([h,H − h], [r,Rmax]) such that ψ(h) = R2 and ψ(H − h) = R1};
Vol(φ) (m3) is the volume of the reactor, computed as

(6) Vol(φ) =

∫

Ω∗(φ)

dxdydz,

with Ω ⊂ R
2 being the (r, z)-domain obtained with the set φ and Ω∗(φ) ⊂ R

3 is the corresponding 3D domain; and

Ŝout(φ) (kg/m
3) denotes an average of the concentration of substrate that leaves the bioreactor (at steady state),

computed as

(7) Ŝout(φ) =

∫

Γ∗
out

Sφ(x, y, 0, T̂ )|u3(x, y, 0)|dxdy
∫

Γ∗
out

|u3(x, y, 0)|dxdy
,

with Sφ(·, ·, ·, T̂ ) the solution of system (1), obtained with the 3D domain Ω∗(φ), at time T̂ and u3 the third
component of the velocity vector in (4).

Remark 3.1. In practice, we aim to improve (in terms of reactor volume) a given bioreactor which attains the
prescribed output substrate concentration and we choose the admissible space Φ so that it accounts for the geometry
of the given vessel. Therefore, if problem (5) does not have a solution is because the minimum does not exist (only
an infimum value is ensured). For the numerical experiments considered in Section 4, we look for one of the optimal
solutions of the discretized problems (9), (10) and (13), whose existence is guaranteed because of the compactness

of the admissible spaces Φ̃i (i = 1, 2, 3), defined right after the statement of those problems.
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3.2. Numerical Problem. Here, we present three discrete versions of the optimization problem (5), related to
three different discrete parametrizations of the bioreactor geometry. The parametrization proposed in Section 3.2.1
allows us to model tubular shapes (typically used in the industry sector), while the parametrizations in Sections
3.2.2 and 3.2.1 offer the possibility to obtain a wider range of reactor geometries. We solve the discrete optimization
problems (9), (10) and (13) by using the Hybrid Genetic Algorithm, and its parameters, presented in Section 3.2.4.

For the sake of simplicity, the objective function and the restriction in problem (5) are combined into a new
objective function J(φ) (m3) as

(8) J(φ) = Vol(φ)

(

1 + β
max(Ŝout(φ)− Slim, 0)

Slim

)

,

where β is a free parameter (usually large) and the term multiplied by the coefficient β is a barrier function used to
penalize solutions with Slim smaller than an average of the substrate concentration exiting the bioreactor. Introduc-
ing the penalty term in (8) allows us to solve problem (5) with the unconstrained (low-cost) optimization algorithm
proposed in Section 3.2.4. This approach has been previously used in the literature for solving computationally
expensive industrial optimization problems (see, e.g. [36]). As it is typically done when performing optimization
with a penalty method, the value of the penalty parameter β is usually obtained by performing several tests (see
[Chapter 15.1,[46]]).

3.2.1. Parametrization 1. As a first approach, we consider bioreactor geometries as depicted in Figure 2-(a). The
exterior wall corresponds to the segment [h,H − h]× {R}, where R ∈ [r,Rmax] (m). The variable φ in problem (5)
is taken as φ = (H,R,R, ψ), where

ψ : [h,H − h] −→ [r,Rmax]

z 7−→ ψ(z) = R.

In this case, the bioreactor geometry only depends on parameters H and R and the optimization problem (5) can
be reformulated as

(9)

{

Find φ̃1,opt ∈ Φ̃1, such that

J(φ̃1,opt) = minφ̃1∈Φ̃1 J(φ̃1),

where φ̃1,opt = (Hopt, Ropt) and Φ̃1 := {(H,R) ∈ [Hmin, Hmax]× [r,Rmax]} ⊂ R
2 is the admissible space.

3.2.2. Parametrization 2. As a second approach, we consider bioreactor geometries as depicted in Figure 2-(b). The
exterior wall corresponds to a semi-ellipse with center (r, H2 ) and with lengths of the semi-axis given by the pair

(R− r, H−2h
2 ), where R ∈ [r,Rmax] (m). The variable φ in problem (5) is taken as φ = (H, r, r, ψ), where

ψ : [h,H − h] −→ [r,Rmax]

z 7−→ ψ(z) = r + (R− r)
√

1−
( z−H/2
h−H/2

)2
.

It is straightforward to see that, if R ∈ [r,Rmax], then ψ ∈ Ψ.
As in problem (9), the bioreactor geometry only depends on parameters H and R and the optimization problem

(5) can be reformulated as

(10)

{

Find φ̃2,opt ∈ Φ̃2, such that

J(φ̃2,opt) = minφ̃2∈Φ̃2 J(φ̃2),

where φ̃2,opt = (Hopt, Ropt) and Φ̃2 := {(H,R) ∈ [Hmin, Hmax]× [r,Rmax]} ⊂ R
2 is the admissible space.

3.2.3. Parametrization 3. As a third approach, we consider bioreactor geometries as depicted in Figure 2-(c). The
shape of the exterior wall is a quadratic Bézier curve (see, for example, [19]), associated to the control points
P = (R1, H − h), Q = (R2, h) and E = (E1, E2), where (E1, E2) ∈ [E1,min, E1,max] × [E2,min, E2,max]), by the
formula

(11) B(σ) = (B1(σ), B2(σ)) = (1− σ)2P+ 2(1− σ)σE+ σ2Q, σ ∈ [0, 1].

The variable φ appearing in problem (5) is taken as φ = (H,R1, R2, ψ), where

ψ : [h,H − h] −→ [r,Rmax]

z 7−→ ψ(z) = B1(B
−1
2 (z)).
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Ω

Γout

Γwall

r

r h

h

R

Γin

H

(a) Domain in problem (9)

h

Γout

H

h

R

Ω

r

Γwall

Γin

r

(b) Domain in problem (10)

R1

h

Γin

H

h

r

R2

Γout

Γwall

r

E=(E1,E2)

Ω

(c) Domain in problem (13)

Figure 2. Schematic representation of the bioreactor geometries used to solve the discrete prob-
lems (9), (10) and (13).

In order to assure that ψ([h,H − h]) ⊆ [r,Rmax], we impose the radius expansions R1 and R2 to lie in the segment
[r,Rmax]. Once R1 and R2 have been chosen we take E1,min and E1,max as in Lemma 3.2 below so that B1◦B

−1
2 ∈ Ψ.

Furthermore, we take E2,min = h and E2,max = H − h.

Now, we define two new optimization parameters α1, α2 ∈ [0, 1] such that

(12) E1 = E1,min + α1 · (E1,max − E1,min) and E2 = h+ α2 · (H − 2h).

In that case, the bioreactor geometry only depends on parameters H, R1 R2, α1 and α2. The solution of the
optimization problem (5) is approximated by computing

(13)

{

Find φ̃3,opt ∈ Φ̃3, such that

J(φ̃3,opt) = minφ̃3∈Φ̃3 J(φ̃3),
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where φ̃3,opt = (Hopt, Ropt
1 , Ropt

2 , αopt
1 , αopt

2 ) and

Φ̃3 := {(H,R1, R2, α1, α2) ∈ [Hmin, Hmax]× [r,R1,max]× [r,R2,max]× [0, 1]2} ⊂ R
5

is the admissible space, with Ri,max ≤ Rmax for i = 1, 2.

Lemma 3.2. Let us denote E1,min = r−
√

(R1 − r)(R2 − r) and E1,max = Rmax +
√

(R1 −Rmax)(R2 −Rmax). If

(E1, E2) ∈ [E1,min, E1,max]× [h,H − h], then B1 ◦B
−1
2 ∈ Ψ.

Proof. One can easily check that B(0) = (R1, H − h) and B(1) = (R2, h) and so conclude that B1 ◦ B
−1
2 (h) = R2

and B1 ◦B
−1
2 (H−h) = R1. In order to see that B1 ◦B

−1
2 ∈ C([h,H−h], [r,Rmax]), we divide the proof in four steps:

Step 1. Let us prove that, if E2 ∈ [h,H − h], then B2([0, 1]) = [h,H − h].
In order to obtain the minimum and maximum values of B2(σ), σ ∈ [0, 1], we compute the critical points σ∗

2 satisfying

the equation
dB2

dσ
(σ∗

2) = 0 on the interior of ]0, 1[. When considering E2 as a variable, one can see that σ∗
2 depends

on E2 through the expression σ∗
2(E2) =

E2 −H + h

2E2 −H
, with corresponding value B2(σ

∗
2(E2)) =

E2
2 + h2 −Hh

2E2 − h
. Now,

in order to find the lower and upper bounds for variable E2 (assuring that B2(σ) ∈ [h,H−h] ∀σ ∈ [0, 1]), we respec-
tively solve equations B2(σ

∗
2(E2,m)) = h and B2(σ

∗
2(E2,M)) = H − h. It is easy to prove that the unique solutions

of these equations are E2,m = h and E2,M = H − h. Finally, taking into account that
dB2

2

dσ2
= 2H − 4E2, it follows

that
d2B2

dσ2

∣

∣

E2=h
= 2(H − 2h) > 0 and

d2B2

dσ2

∣

∣

E2=H−h
= 2(2h −H) < 0, and so, one can conclude that E2,min = h

and E2,max = H − h.

Step 2. Let us prove that the function B2 : [0, 1] → [h,H − h] is injective.
Let σ, σ̄ ∈ [0, 1] satisfying B2(σ) = B2(σ̄). By definition, this implies that

(1− σ)2(H − h) + 2(1− σ)σE2 + σ2h = (1− σ̄)2(H − h) + 2(1− σ̄)σ̄E2 + σ̄2h.

Easy calculations lead to

(H − h)
(

σ2 − σ̄2 − 2σ + 2σ̄
)

+ 2E2

(

σ − σ̄ − σ2 + σ̄2
)

+ h
(

σ2 − σ̄2
)

= 0.

Denoting x = σ̄ − σ and y = σ̄ + σ, the previous equation can be rewritten as

x(2− y)(H − h) + 2x(y − 1)E2 − xyh = 0 ⇔ x (2(H − h)− 2E2 + y(2E2 −H)) = 0.

This implies that either x = 0 or y =
2(H − h− E2)

H − 2E2
. In the second case, it is easy to see that y = 1 +

H − 2h

H − 2E2
and, since we assume that E2 > h, it follows that y > 2, but this enters in a contradiction with the definition of y.
Thus, we can conclude that x = 0, so σ = σ̄ and the injectivity is proved.

Step 3. Let us prove that, if E1 ∈ [E1,min, E1,max], then B1([0, 1]) = [r,Rmax].
Similarly to step 1, in order to obtain the minimum and maximum values of B1(σ), σ ∈ [0, 1], we compute

the critical points σ∗
1 satisfying the equation

dB1

dσ
(σ∗

1) = 0 on the interior of the domain. When considering

E1 as a variable, one can see that σ∗
1 depends on E1 through the expression σ∗

1(E1) =
R1 − E1

R1 +R2 − 2E1
, with

corresponding value B1(σ
∗
1(E1)) =

R1R2 − E2
1

R1 +R2 − 2E1
. Now, in order to obtain lower and upper bounds for the

variable E1 (assuring that B1(σ) ∈ [r,Rmax] ∀σ ∈ [0, 1]), we respectively solve equations B1(σ
∗
1(E1,m)) = r and

B1(σ
∗
1(E1,M)) = Rmax. Each of these equations has two solutions, given by E±

1,m = r ±
√

(R1 − r)(R2 − r) and

E±

1,M = Rmax ±
√

(R1 −Rmax)(R2 −Rmax). Taking into account that
d2B1

dσ2
= 2(R1 +R2 − 2E1),

d2B1

dσ2

∣

∣

E1=E±
1,m

= 2(R1 +R2 − 2r)∓ 4
√

(R1 − r)(R2 − r)

and
d2B1

dσ2

∣

∣

E1=E±
1,M

= 2(R1 +R2 − 2Rmax)∓ 4
√

(R1 −Rmax)(R2 −Rmax),
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and so, one can conclude that E1,min = E−

1,m and E1,max = E+
1,M.

Step 4. Let us prove that B1 ◦B
−1
2 ∈ C([h,H − h], [r,Rmax]).

Since B1 : [0, 1] → [r,Rmax] and B2 : [0, 1] → [h,H − h] are continuous functions and B2 is injective, we conclude
that B1 ◦B

−1
2 is well defined and continuous because it is the composition of continuous functions. �

3.2.4. Optimization Algorithm. In this section, we describe in detail the optimization algorithm and the parameters
used to solve numerical problems (9), (10) and (13). For the sake of simplicity, here, we consider a general
optimization problem

(14) min
x∈Θ

J(x)

where J : x → R is the fitness function; x is the optimization parameter, Θ ⊂ R
N , with N ∈ N, is the search

space. Notice that in order to recover problems (9), (10) and (13) one should replace x = φ̃i (i = 1, 2, 3), Θ = Φ̃i

(i = 1, 2, 3) and N = 2, 2, 5 in the general problem formulation (14).
The proposed algorithm, called Genetic Multi-Layer Algorithm (GMA), is a global optimization method based on a
hybridization between a genetic algorithm (GA) [14, 23, 59, 67] (which performs a global search of the solution) and
a Multi-layer Secant Algorithm (MSA) [54, 55, 53] (which provides suitable initial populations for the GA). A com-
plete validation of these algorithms on various industrial problems can be found in [24, 31, 38, 35, 39, 36, 40, 37, 32]
and references therein. Broadly speaking, GAs are search techniques which try to solve problems similar to (14)
through a stochastic process based on a natural selection process that mimics biological evolution. The GAs have
many advantages as, for example, they can solve complex optimization problems (e.g., with high dimensional search
space or function with various with local minima). However, they exhibit lower accuracy than other methods, such
as gradient algorithms. Before explaining the methodology used to enhance these inconveniences, we detail the GA
used in this work.

Genetic Algorithm scheme:

• Step 1. Inputs: The user must define six parameters: Np ∈ N, Ng ∈ N, pc ∈ [0, 1], pm ∈ [0, 1], λ ∈ R and
ĝ ∈ N, the meaning of which is clarified later in the following steps. In addition, the user needs to provide
a first set, called initial population and denoted by X0 = {x0j ∈ Φ, j = 1, ..., Np} ∈ Θ, of Np possible

solutions of the optimization problem (14). Each row x0j in X0 (j = 1, . . . , Np) is called individual, while

each component x0j,k of an individual (k = 1, . . . , N) is called gene. In our case Θ =
∏N

k=1[lk, uk], where lk
and uk are respectively the lower and upper bounds of the gene xij,k.

• Step 2. Generation of new populations: Starting from the initial population X0, we recursively create Ng ∈
N new populations, which we call generations, by applying 4 stochastic steps, called selection, crossover,
mutation and elitism, which are described in Steps 3.1, 3.2, 3.3 and 3.4, respectively. More precisely, let
Xi = {xij ∈ Θ, j = 1, ..., Np} with i = 1, ..., Ng − 1, denotes the population at iteration i. Thus, using the
following (Np, N)-real valued matrix notation

Xi =







xi1(1) · · · xi1(N)
...

...
...

xiNp
(1) · · · xiNp

(N)






,

Xi+1 is obtained by considering

(15) Xi+1 = (IN − E i)(CiSiXi +Mi) + E iXi

where matrices Si, Ci, Mi, E i and IN are described below.

– Step 2.1. Selection: This operator is used to select individuals according to their fitness value. There
exist various selection techniques (see, for instance, [23, 59, 67]), among which we use the Roulette
Wheel Selection method. We randomly select Np individuals from Xi with eventual repetitions. Each
individual xij ∈ Xi, with j = 1, . . . , Np has a probability to be selected during this process which is

given by J(xij)
−1/

∑Np

k=1 J(x
i
k)

−1. This step can be summarized as

Xi+1,1 = SiXi,
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where Si is a binary valued (Np, Np)-matrix satisfying Si
j,k = 1 if the k-th individual in Xi is the j-th

selected individual, and Si
j,k = 0 in other case.

– Step 2.2. Crossover: This operator is used to create a new individual by combining the genes of two

existing individuals from the population Xi (chosen during the previous selection process). There are
several methods for combining individuals (see, for instance, [14, 23, 59]), among which we use the
Arithmetic Crossover method. For each pair of consecutive individuals (rows) 2j− 1 and 2j in Xi+1,1,
with 1 ≤ j ≤ floor(Np/2) (where floor(a) is the nearest integer lower than or equal to a), we determine,
with a probability pc, if those rows exchange data or if they are directly copied into an intermediate
population denoted by Xi+1,2. Thus, matrix Ci is a real valued matrix of size (Np, Np), satisfying

Ci
2j−1,2j−1 = λ1, Ci

2j−1,2j = 1− λ1, Ci
2j,2j = λ2 and Ci

2j,2j−1 = 1− λ2,

where λ1 = λ2 = 1 with probability 1 − pc, or λ1, λ2 are randomly chosen in (0, 1) considering a
uniform distribution, in other case. Other coefficients of Ci are set to 0. If Np is odd, then we also set
Ci(Np, Np) = 1, and then the Np-th row of Xi+1,1 is directly copied into Xi+1,2.

– Step 2.3. Mutation: This operator randomly modifies the value of one or more genes of an individual

from the populationXi+1,2 (obtained during the previous crossover process). It provides diversity in the
population and intends to avoid the premature convergence phenomenon (i.e., population concentrated
near a local minimum, see [23]). Each individual can be mutated with a probability pm given by the
user. There exist different techniques to randomly mutate individuals (see, for instance, [14, 59]),
among which we use the Non-Uniform Mutation method. We decide, with a probability pm, if each
row of Xi+1,2 is randomly perturbed or not. This step is defined by

Xi+1,3 = Xi+1,2 +Mi,

where Mi is a real valued matrix with size (Np, N) and the j-th row satisfies

Mi
j =

{

~0 with probability 1− pm
∆(g, xij) in other case

}

and the k-th component of the vector ∆(g, xij) is defined as

∆(g, xij) =

{

(uk − xij,k)(1− γ
(1− g

Ng
)λ
) if τ = 0

(lk − xij,k)(1− γ
(1− g

Ng
)λ
) if τ = 1

where g is the current generation number, τ is a binary random number, γ is a uniform random number
in [0, 1] and λ is a parameter given by the user, determining the degree of dependency on the iteration
number. This mutation method decreases the mutation rate as the generation number increases.

– Step 2.4. Elitism: This operator ensures that at least one of the best individuals of the current gen-
eration is directly copied to the next generation. The main advantage of elitism is that a decreasing
convergence is guaranteed. For more details about elitism methods see, for instance, [59, 67].

Let xib, where b ∈ 1, ..., Np, be the individual in Xi with the lowest value of the fitness function (or, if
there exist various, one of those individuals selected randomly with a uniform distribution). If xib has
a lower fitness value than all the individuals in Xi+1,3, it is directly copied at the b-th row of Xi+1.
This step can be formalized as

Xi+1 = (IN − E i)(Xi+1,3) + E iXi,

where IN is the identity matrix of size N and E i is a real-valued (Np, Np)-matrix such that E i(b, b) = 1
if xib has a lower fitness value than all the individuals in Xi+1,3 and 0 otherwise, E i = 0 elsewhere.

The genetic search is terminated when Ng generations have been computed, or after a number of generations
specified by the user, ĝ, without improvement of the fitness value (i.e., the fitness of the best element has
not decreased).
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• Step 3. Output: When GA stops, it returns, as an output solution, the individual who has the lowest value
for the objective function J among all the individuals in all the populations considered during the whole
evolving process, i.e.,

GAO(X0;Np;Ng : pm; pc;λ; ĝ) = argmin{J(xji )| x
j
i is the j-th row of Xi, i = 1, . . . , Ng j = 1, . . . , Np}.

As said at the beginning of this section, in order to accelerate the convergence and improve the accuracy of the
above-described GA, we combine it with the MSA described below to build a hybrid algorithm, called GMA. Its
general scheme is as follows:

Genetic Multi-Layer Algorithm scheme:

• Step 1. Inputs: The user must define seven parameters: smax ∈ N, Np ∈ N, Ng ∈ N, pc ∈ [0, 1], pm ∈ [0, 1],
λ ∈ R and ĝ ∈ N. smax denotes the number of iterations of the MSA.

• Step 2. Initial population: A first family of possible solutions of the optimization problem (14), denoted

by X0
1 = {x01,j ∈ Θ, j = 1, ..., Np}, is randomly generated in the search space Θ considering a uniform

distribution.

• Step 3. Main loop: For s from 1 to smax:

– Step 3.1. We run the GA starting from the initial population X0
s and obtain the optimal individual

os = GAO(X0
s , Np, Ng, pm, pc, λ, ĝ).

– Step 3.2. We build a new initial population for the GA, X0
s+1 = {x0s+1,j ∈ Θ, j = 1, ..., Np}, by

considering a secant method between each element in X0
s and the optimal individual os, i.e., for all

j ∈ {1, ..., Np}, if J(os) = J(x0s,j) we set

x0s+1,j = x0s,j ,

else we set

x0s+1,j = projΘ

(

x0s,j − J(os)
os − x0s,j

J(os)− J(x0s,j)

)

,

where projΘ : RN → Θ is the projection function for controlling that the new individuals fit into the
search space Θ, defined as projΘ(x)(k) = min(max(x(k), lk), uk), with k = 1, ..., N .

• Step 4. Output: After smax iterations, the GMA returns the following output:

GMAO(smax, Np, Ng, pm, pc, λ, ĝ) = argmin{J(os)| s = 1, ..., smax}.

This algorithm tries to improve, individual by individual, the initial population of the GA. More precisely, for each
individual in the initial population:

• If there is a significant evolution of the cost function between this individual and os, the secant method
generates a new individual close to os that performs a refined search near the current solution.

• Otherwise, the secant method creates a new individual far from os, to expand the exploration of the
admissible space.

Moreover, when the GMA ends, its solution is improved by performing 10 iterations of the Steepest Descent (SD)
algorithm, in which the descent step size ρ is determined using 10 iterations of a dichotomy method starting from
ρ0 = 1. This last layer of SD is carried out in order to enhance the accuracy of the final solution. This algorithm
has been already tested for solving different computationally expensive industrial optimization problems (see, e.g.,
[24, 40, 34, 33]). Furthermore, it has been compared with other well-known metaheuristic method and it exhibits
better performance for a set of Benchmark problems (see [37]). A Matlab version of the GMA presented in this
paper has been implemented in the free optimization package “Global Optimization Platform” (GOP), which can
be downloaded at http://www.mat.ucm.es/momat/software.htm.

http://www.mat.ucm.es/momat/software.htm
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4. Numerical Experiments

In this section, we first introduce the numerical solver used for computing the solutions of system (1)-(4). Then,
in Section 4.2 we describe the considered numerical experiments based on the optimization problems (9), (10) and
(13). Section 4.3 presents the optimization results, which are analyzed and compared in Section 4.4.

4.1. Numerical implementation of the model. The cylindrical version of system (1)-(4) was solved using the
software COMSOL Multiphysics 5.0‡, based on the Finite Element method (see [52]), with Lagrange P2-P1 elements
to stabilize the pressure and to satisfy the Ladyzhenskaya, Babouska, and Brezzi stability condition. The 2nd-order
Lagrange elements model the velocity and concentration components, while linear elements represent the pressure.
At a first stage, we solve the stationary Navier-Stokes equations (4) using Galerkin least square streamline and
crosswind diffusion methods so as to prevent numerical oscillations. At a second stage, the velocity field (solution of
(4)) is introduced as an input value in the transient advection-diffusion-reaction system (1), which is then solved by
considering an upwind scheme. We use a direct damped Newton method to solve the corresponding linear systems.
A complete description of those techniques can be found in [22]. The numerical experiments were carried out in a
2.8Ghz Intel i7-930 64bits computer with 12Gb of RAM. We used a triangular mesh with around 3000 elements,
which produced significantly accurate results with respect to finer meshes that turned out to be computationally
unreachable. We assumed that the solution of system (1) at finite time T̂ = 107 (s) could be considered as a

reasonable approximation the steady state (Ŝ, B̂) of system (1). Model variables (6) and (7) were estimated using
the functions Domain Integration and Boundary Integration of COMSOL (based on a trapezoidal approximation
of the integral), respectively. Thus, the value of the cost function (8) was an output of the COMSOL model.
After performing several numerical tests (as described in Section 3.1,) we have chosen β = 109 to be the value of
the penalty parameter in the cost function as it has given good results for the considered numerical experiments.
In this work, the GMA has been applied with (smax, Ng, Np, pc, pm, λ, ĝ) = (100, 10, 10, 0.4, 0.2, 1, 25) for solving
numerically problems (9), (10) and (13). Those parameters had previously been successfully used for solving similar
optimization problems in [9, 24, 40, 34]. Depending on the considered case (detailed below), each function evaluation
in problems (9), (10) and (13) may take from 15 up to 60 minutes. With a restriction of 3 months of computational
time to run the GMA, the number of function evaluations carried out to solve problems (9), (10) and (13) ranged
between 2000 and 6000.

4.2. Cases considered in this work. Model parameters were set as follows (see [4, 64]): DS = 4.3 · 10−12(m2/s),
DB = 5 · 10−10 (m2/s), Sin = 15 (kg/m3), B0 = 1 (kg/m3), S0 = 15 (kg/m3), patm = 105 (Pa), ρ = 103 (kg/m3),
η = 10−3 (kg/m s) and uin = 2.2 · 10−4 (m/s). We consider four different reaction rate functions µ1, µ2, µ3 and
µ4, which are described in Table 1 (see pages 132, 182 and 187 in [16]). In Figure 3, we plot those four growth rate
functions. We can observe that they have the same order of magnitude but with different slopes.

0 5 10 15 20
0

2

4

6

8
10-5

Figure 3. Functions µ1(S), µ2(S), µ3(S) and µ4(S) (s
−1), detailed in Table 1, with S ∈ [0, 20] (kg/m3).

When solving problems (9) and (10), design parameters Hmin = 2 (m), Hmax = 10 (m) and Rmax = 5 (m) were

taken to generate the admissible spaces Φ̃1 and Φ̃2. On the other hand, when solving problem (13), the admissible

‡
www.comsol.com

www.comsol.com
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Table 1. Considered growth rate functions

µ1(·) µ2(·) µ3(·) µ4(·)

Monod function (2) Monod function (2) Haldane function (3) Haldane function (3)

µmax = 9.17 · 10−5 s−1, µmax = 5.5 · 10−5 s−1, µmax = 1.39 · 10−4 s−1, µmax = 1.11 · 10−4 s−1,

KS = 5 kg/m3 KS = 0.075 kg/m3 KS = 4 kg/m3, KS = 0.5 kg/m3,

KI = 3 kg/m3 KI = 4 kg/m3

space Φ̃3 was generated with design parameters Hmin = 2 (m) Hmax = 10 (m) and R1,max = R2,max = 3.5 (m). In
order to compute the values E1,min and E1,max, we chose Rmax = 5 (m). In all cases we set r = h = 0.5 (m) and
Slim = 1 (kg/m3).

4.3. Optimization Results. In this section, we present the optimization results obtained when solving problems
(9), (10) and (13). Section 4.3.1 puts together the numerical results obtained when solving problems (9) and (10)
because similar conclusions were obtained. We point out that in all the optimized reactors obtained in Sections
4.3.1 and 4.3.2, the optimal solutions φ̃i,opt are such that the second term in (8) is zero, and therefore, the value

J(φ̃i,opt) corresponds to the reactor volume Vol(φ̃i,opt) (i = 1, 2, 3).

Remark 4.1. We observe from Tables 2-4 that the value Ŝout(φ̃
i,opt) (i = 1, 2, 3) is clearly smaller than the

prescribed value Slim in all the considered cases, which seems to indicate that smaller (and therefore better) domains
could be obtained with this value closer to Slim. This inaccuracy may be due to the lack of numerical precision of
the COMSOL model, which in turn is caused by the restriction on the computational time (see Section 4.1 for more
details). This fact highlights the difficulties tackled during the numerical resolution of our optimization problem.

4.3.1. Parametrizations 1 and 2. Table 2 shows the optimal results when solving problem (9), while the optimized
shapes are depicted in Figure 4. Similarly, Table 3 shows the optimal results when solving problem (10), while the
optimized shapes are depicted in Figure 5.

Table 2. Value of the optimal parameters (Hopt(m) and Ropt(m)) in φ̃1,opt, solution of problem

(9) with functions µi, i = 1, . . . , 4; outflow substrate concentrations (Ŝout(φ̃
1,opt) (kg/m3)); and

reactor volumes (Vol(φ̃1,opt) (m3)).

µ Hopt Ropt Ŝout(φ̃
1,opt) Vol(φ̃1,opt)

µ1 10 0.61 0.9528 11.3063

µ2 9.82 0.66 0.9773 12.8553

µ3 9.92 1.98 0.9718 110.6468

µ4 9.9 1.6 0.9024 72.3634

Table 3. Value of the optimal parameters (Hopt(m) and Ropt(m)) in φ̃2,opt, solution of problem

(10) with functions µi, i = 1, . . . , 4; outflow substrate concentrations (Ŝout(φ̃
2,opt) (kg/m3)); and

reactor volumes (Vol(φ̃2,opt) (m3)).

µ Hopt Ropt Ŝout(φ̃
2,opt) Vol(φ̃2,opt)

µ1 9.28 0.728 0.9893 12.8479

µ2 9.91 0.73 0.9558 13.8268

µ3 9.98 1.96 0.9538 80.2715

µ4 10 1.36 0.9216 40.6650

From Figures 4 and 5 we observe that the optimal reactors have height larger than width. This outcome is in
line with the results found in [57, 65], where the authors performed experimental studies to conclude that the most
efficient reactor was a tubular one with its height much greater than its radius. Nevertheless, this strategy is not
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(a) µ1 (b) µ2 (c) µ3 (d) µ4

Figure 4. Shape of the optimized reactors, Ω(φ̃1,opt), where φ̃1,opt is the solution of problem (9).

(a) µ1 (b) µ2 (c) µ3 (d) µ4

Figure 5. Shape of the optimized reactors, Ω(φ̃2,opt), where φ̃2,opt is the solution of problem (10).

always applicable due to the practical restriction on the reactor height.
When comparing the results obtained with the reaction functions, we observe that the optimized reactors exhibit
similar heights and the main difference lies in the reactor radius. For instance, the value of Vol(φ̃1,opt) (similarly,

the value of Vol(φ̃2,opt)) is higher with µ3 than with µ1. This difference seems to be due to the fact that function µ3

is qualitatively smaller than function µ1 (see Figure 3) and thus, the optimal volume must be bigger to ensure that
the prescribed value Slim is reached. The influence of the reactor width on the bioreactor dynamics is explained in
Remarks 4.3 and 4.4 later on.

4.3.2. Parametrization 3. Table 4 shows the optimal results, while the optimized shapes are depicted in Figure 6.
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Table 4. Value of the optimal parameters (Hopt(m), Ropt
1 (m), Ropt

2 (m), αopt
1 and αopt

2 ) in φ̃3,opt,
solution of problem (13) with functions µi, i = 1, . . . , 4; exterior control point coordinates (E1

(m) and E2 (m)), associated to φ̃3,opt and computed using equation (12) and Lemma 3.2; outflow

substrate concentrations (Ŝout(φ̃
3,opt)(kg/m3)); and reactor volumes (Vol(φ̃3,opt)(m3)).

µ Hopt Ropt
1 Ropt

2 αopt
1 αopt

2 E1 E2 Ŝout(φ̃
3,opt) Vol(φ̃3,opt)

µ1 9.6359 0.5931 0.9214 1.6358 · 10−5 0.0059 0.3022 0.5512 0.9540 10.0790

µ2 9.0814 0.5730 1.1024 0.0064 0.0922 0.4111 1.2451 0.8923 12.0855

µ3 9.8879 2.0432 1.2402 0.0093 0.9940 −0.3928 8.8376 0.9545 27.1679

µ4 9.6401 1.0410 2.0805 1.9301 · 10−4 0.0273 −0.421 0.736 0.9962 22.3042

(a) µ1 (b) µ2 (c) µ3 (d) µ4

Figure 6. Shape of the optimized reactors, Ω(φ̃3,opt), where φ̃3,opt is the solution of problem (13).

From Figure 6 we observe that, as stated in Section 4.3.1, the optimal reactors have height larger than width.
Moreover, the exterior wall of the optimized reactors is concave, with a radius expansion observed at least in some
limited part of the reactor (as said previously, the influence of the reactor radius in the bioreactor dynamics will
be explained in Remarks 4.3 and 4.4 below). When comparing reaction functions, Figures 6-(a) and 6-(c) seem to

show that, for instance, the radius expansion of the domain Ω(φ̃3,opt) is wider for growth rate function µ3 than for
µ1, as observed in Section 4.3.1. On the other hand, the main difference between considering Monod (µ1 and µ2)
or Haldane (µ3 and µ4) reaction functions is observed in the concavity at the upper part of the exterior wall (see
Remark 4.3 for a physical interpretation).

Remark 4.2. One can observe in Figure 6 that, in some cases, the boundary of the obtained domains Ω(φ̃3,opt) shows
cusps (local irregular points), which could cause that the Lipschitz condition required in Remark 2.2 is not satisfied.
However, the proposed numerical method approximates the boundary in the neighborhood of these points by piecewise-
linear functions (with large but bounded slopes), assuring that the hypothesis in Remark 2.2 are accomplished.

4.4. Comparison between the optimized reactors. Here, we compare the solutions obtained when solving the
optimization problems (9), (10) and (13). Figures 4, 5 and 6 seem to show that the optimized reactors have height
larger than width (indeed, Hmax set to 10 (m) limits the optimal shape height and the optimal heights in all the
considered cases approach this limit) and generally, the optimal widths approach its lower bound (the minimum
reactor radius allowed was r = 0.5 (m)). However, in some of the considered cases (see Figures 4-(c), 4-(d), 5-(c),
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5-(d), 6-(c) and 6-(d)), a radius expansion (at least in some limited part of the reactor) is observed. We interpret
that increasing the reactor width favors the reaction due to two main reasons:

(1) It helps that the vertical flow velocity decreases (in absolute value), and so the time that the biomass and
the substrate remain in contact for reacting increases (see Remark 4.3 for a more detailed analysis of the
relation between the reactor width and the vertical flow).

(2) It originates an area of biomass storage. For example, due to the apparition of Dean vortices in this area
(see, e.g., [13]) the biomass located near the device exterior wall remains more time inside the bioreactor
(compared to the biomass located at the reactor center), and so the amount of reaction between biomass
and substrate increases (see Remark 4.4 for an specific explanation about the distribution of substances in
the reactor).

Remark 4.3. In order to understand the influence of the bioreactor width on the vertical flow velocity, we used
four different domains, denoted by Ωi, i = 1, . . . , 4. The first reactor is cylindrical (depicted in Figure 7-(a)) and
the other three present a radius extension on the top, center and bottom parts of the domain, (depicted in Figures
7-(b) to 7-(d), respectively). We solved system (4) with domains Ωi, i = 1, . . . , 4 and denoted u3,Ωi

(m/s) the
vertical flow velocity (third component of the velocity vector) obtained when solving system (4) in the domain Ωi,
evaluated at r = 0 (i.e., symmetry streamline). Figure 7-(e) represents |u3,Ωi

|, i ∈ {1, . . . , 4}, which can be seen
as functions of z. We observe that, in regions where the reactor radius increases, the absolute value of the vertical
velocity decreases. This physical interpretation may explain, for instance, the optimal domains Ω(φ̃3,opt) obtained
with reactions µ3 and µ4 (see Figures 6-(c) and 6-(d)), since the Haldane function shows inhibition for large values
of substrate (see Figure 3) and the maximum value of substrate appears at the reactor inlet.

Remark 4.4. Figures 8-(a) and 8-(b) represent the distributions of substrate and biomass at steady state, respec-

tively, computed with the optimal reactor Ω(φ̃3,opt), obtained for the growth rate function µ3. One observes that the
substrate is mainly agglomerated in the area originated by the inlet streamlines (see Figure 8-(d)). On the other
hand, the biomass becomes withdrawn from this central area and is mainly concentrated around the reactor wall
(where Dean vortices appear [13], see Figure 8-(d)). Thus, a reaction front is created between the central area and
the outer part of the reactor (as shown in Figure 8-(c)) favoring the reaction between the two species. Although
the optimization problems (9), (10) and (13) have been solved for a singular pair of diffusion coefficients (DS, DB),
numerical experiments seem to show that the analysis of the distribution of substances in the reactor, performed
above, is suitable in the range of typical diffusion coefficients DS (from 10−10 to 10−7 (m2/s) [47, 63, 66]) and DB

(from 10−13 to 10−7 (m2/s) [25, 56, 61]).

Now, it is of interest to compare the optimized reactors obtained when solving the optimization problems (9), (10)

and (13). In this direction, we denote by dr(φ̃
i, φ̃j) (i 6= j) the relative difference between the optimal reactor

volumes Vol(φ̃i,opt) and Vol(φ̃j,opt), defined as

(16) dr(φ̃
i, φ̃j) = 100×

Vol(φ̃j,opt)−Vol(φ̃i,opt)

Vol(φ̃i,opt)
.

Table 5 shows the comparison, in terms of reactor volume, between the optimized reactors obtained when creating

the domain with the three proposed parametrizations. Additionally, values dr(φ̃1, φ̃2) (resp. dr(φ̃1, φ̃3)) are included
in Table 5 in order to outline how much can be gained by using non-tubular reactors. One observes that for Monod
growth rate functions (µ1 and µ2), the relative difference dr(φ̃

1, φ̃j) (j = 2, 3) is between −10% and 13%, so one can
conclude that the variation (in terms or reactor volume) between tubular and non-tubular reactors is relatively low.
On the other hand, for Haldane growth rate functions (µ3 and µ4), one observes that by using non-tubular reactors,
one can gain from 27% up to 75% in terms of reactor volume. Additionally, one may notice that the optimized reactor
volumes differ substantially depending on the considered reaction function. Similar results have been obtained in
other works focusing on the analysis of continuous bioreactors modeled through ordinary differential equations (see,
e.g. [17, 26, 28, 29, 42])).

5. Conclusions

We have explored the shape design of a continuous biological reactor. The main objective was to reduce the
reactor volume, ensuring that a prescribed output concentration value was reached at stationary state. As a matter
of generalization, we have not imposed a particular type of biological dynamics in the reactor but proposed a general
methodology to be applied and adapted depending on the considered case. We have used a mathematical model
that couples hydrodynamics (described with the incompressible Navier–Stokes equations in three dimensions) with
biological phenomena (described with an Advection-Diffusion-Reaction system). Using the Finite Element Method,
we have numerically computed the output substrate concentration at steady state and the volume of a reactor
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tained for reactor domains Ωi, i = 1, . . . , 4.

Figure 7. Influence of the reactor width into the vertical flow velocity.

Table 5. Comparison, in terms of reactor volume (m3), between optimized reactors obtained when

solving problems (9) (Vol(φ̃1,opt)), (10) (Vol(φ̃2,opt)) and (13) (Vol(φ̃3,opt)); relative differences

dr(φ̃
1, φ̃j) (%) (j = 2, 3) computed using equation (16).

µ Vol(φ̃1,opt) (m3) Vol(φ̃2,opt) (m3) dr(φ̃
1, φ̃2) (%) Vol(φ̃3,opt) (m3) dr(φ̃

1, φ̃3) (%)

µ1 11.3063 12.8479 +13.63 10.0790 −10.85

µ2 12.8553 13.8268 +7.56 12.0855 −5.98

µ3 110.6468 80.2715 −27.45 27.1679 −75.45

µ4 72.3334 40.6650 −43.78 22.3042 −69.17

associated to a particular set of design parameters. Then, we have defined three discrete optimization problems
related to three different parametrizations of the device geometry and solved them by using a Genetic Multi-layer
Algorithm, a self-implemented global optimization method based on the search of a suitable initial population for
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(a) Ŝ(r, z) (kg/m3) (b) B̂(r, z) (kg/m3) (c) µ(Ŝ)B̂ (kg/m3 h) (d) Streamlines

Figure 8. (a) substrate concentration (at steady state). (b) biomass concentration (at steady
state). (c) reaction (at steady state) (d) streamlines. (a)-(d) associated to the optimal reactor
Ω(φ3,opt) obtained for the growth rate function µ3.

a given genetic algorithm. The optimization problem is solved for monotonic and non-monotonic growth rate func-
tions, in order to analyze the influence of the reaction into the optimal reactor configuration. One of the proposed
parametrizations allows us to model tubular shapes (typically used in the industry sector), while the other two
offer the possibility to obtain a wider range of reactor geometries. We have taken into account that the reaction
between species may be modeled by either monotonic or non-monotonic growth functions, and we have analyzed
the influence of this factor on the optimization results.

From a general point of view, the optimized reactors exhibit height much larger than width and their exterior wall
is concavely curved, with a radius expansion observed at least in some limited part of the reactor. The magnitude
of the radius extension appears to be related to the reaction function. The slower is the reaction the wider should
be the device. The advantage of the radius extensions in the reactor performance could be attributed to two main
factors:

• The width of the reactor helps to decrease the absolute value of the vertical flow velocity, and consequently,
increases the time of potential reaction between substances.

• The reactor corners may act as a biomass storage. The biomass located near the reactor exterior wall is
withdrawn slower from the device than the biomass located near the device center, favoring the reaction
between species.

When comparing the optimized reactors obtained for both monotonic and non-monotonic growth rate functions, one
observes that, if the reactor is modeled with non-monotonic kinetics (e.g., Haldane function), the radius expansion
located at the top of the reactor is more pronounced. We interpret that this difference relays on the fact that for
large values of substrate (i.e., at the inlet of the device) the Haldane reaction shows inhibition, and so the radius
expansion should be bigger to decrease the absolute value of the vertical flow near the reactor inlet.

An interesting message is that when the degrees of freedom on the shape parametrization is large enough,
concavely curved reactors are systematically the best ones, although convexly curved (generated with less degrees
of freedom) could already be better than perfect tubular shapes. The volume of the optimized reactors using
concavely curved geometries (instead of typical tubular geometries) allow us to reduce the reactor volume between
25% and 90% depending on the considered case. This study shows to practitioners how much could be gained
compared to the best cylindrical shapes, and how this gain is related to the reaction rate function (monotonic
versus non-monotonic). Of course, the economic cost relative to the production of non-conventional should be
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taken into consideration for the best choice of the reactor geometry. Including this new (or other) criteria into the
design problem should be tackled by using multi-objective approaches instead of single-objective approaches (see
[20]).
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Universidad Complutense de Madrid. Plaza de Ciencias, 3, 28040 Madrid, Spain.
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