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Highlights 5 

● Fractal and multifractal properties were observed on remotely sensed soil moisture products 6 

acquired from SMOS satellite (Soil Moisture and Ocean Salinity), over space scales ranging 7 

from the kilometric field scale to the continental scale 8 

● Two scaling regimes were noticed for the soil moisture data disaggregated with DisPATCh 9 

algorithm (Disaggregation based on Physical And Theoretical scale Change), with a scaling 10 

break observed at about ten kilometers 11 

● Fractality and multifractality were also found on remotely sensed vegetation indices and 12 

surface temperature 13 

Abstract 14 

Soil moisture has a strong impact on climate, hydrology and agronomy at different space scales, 15 

from the continent global scale to the local watershed. Passive microwave sensors, like SMOS 16 

satellite (Soil Moisture and Ocean Salinity), allow a global study of soil moisture on the entire globe. 17 

To have access to kilometric variability, disaggregation algorithms have been developed, such as the 18 

Disaggregation based on Physical And Theoretical scale Change (DisPATCh). This method improves 19 

the space resolution of SMOS soil moisture from 40 km to 1 km. To do this, it combines coarse-scale 20 

(≈40 km) SMOS products with fine-scale (≈1 km) optical/thermal data. Validation studies on specific 21 

scales showed the potential of DisPATCh to enhance the spatio-temporal correlation of 22 

disaggregated SM with in-situ measurements, under low-vegetated semi-arid regions. Although the 23 

efficiency of the method was revealed in these regions, no studies fully explored its statistical 24 

behavior over a continuum of space scales. In this paper, we studied and compared the spatial multi-25 

scale statistics of the different input and output datasets involved in DisPATCh downscaling. To do 26 

this, we applied spectral and multifractal analysis on the respective products for the region of 27 

southeastern Australia, from June to December 2010. Fractal and multifractal properties (in the 28 

framework of the Universal Multifractal model) were observed on inputs of DisPATCh (SMOS soil 29 

moisture, MODIS vegetation indices and surface temperature), which confirmed and completed 30 
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some results reported in existing literature. For the output disaggregated soil moisture, two scaling 31 

regimes were observed, with a transition scale observed at about ten kilometers. Considering 32 

spectral analysis, at large scales (> 10 km), disaggregated soil moisture was found to have the same 33 

scaling as the original SMOS soil moisture. On finer scales (< 10 km), a different behavior was noticed, 34 

with a higher value of the slope of the power spectrum. The same scale break was detected on 35 

statistical moments, showing that both spectral and multifractal properties of DisPATCh soil moisture 36 

are characterized by this twofold scaling signature. 37 

Keywords 38 
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1 Introduction 40 

Soil moisture (SM) is a key component of the climate system and is strongly heterogeneous, at 41 

many time and space scales. Interactions between land surface and atmosphere, such as water, 42 

energy and carbon fluxes, are strongly related to SM (Ochsner et al., 2013). It has a significant role in 43 

the water cycle as it impacts runoff, infiltration and evaporation processes. Thus, SM is an important 44 

variable in several scientific fields such as hydrology (Western et al., 2004), meteorology (Dai et al., 45 

2004), climatology (Anderson et al., 2007) and water resource management (Engman, 1991). 46 

SM is heterogeneously distributed at different space scales, from few centimeters to several 47 

kilometers. This variability is due to environmental factors impacting directly SM at specific scale 48 

ranges (Brocca et al., 2007; Crow et al., 2012; Jana, 2010; Vereecken et al., 2014). For instance, we 49 

could mention here soil properties (texture and structure) acting at the field scale, topography 50 

features at the watershed scale, land cover (vegetation) and meteorological forcing at the regional 51 

and continental scales. 52 

Many ground measurement techniques have been developed to acquire highly resolved SM data 53 

sets, down to centimeters in space and minutes in time (for more details see Dobriyal et al., 2012; 54 

Robinson et al., 2008; Robock et al., 2000). Although these methods are recognized as reliable and 55 

easy to implement, they are not adapted to represent spatial heterogeneity of SM at regional and 56 

continental scales (Collow et al., 2012; Crow et al., 2012). 57 

Regional and global scale variability of SM may be acquired and studied with the help of remote 58 

sensing. Different active and passive microwave satellites allow daily measurement of surface soil 59 

moisture in the first 5 cm of the soil column (Petropoulos et al., 2015; Wigneron et al., 2003). These 60 

satellites acquire SM information thanks to the relationship between the soil dielectric constant and 61 
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water content. Active microwave sensors measure the energy reflected by the soil after sending a 62 

microwave pulse to the surface (backscatter): we find C-band Synthetic Aperture Radars (SAR) like 63 

Sentinel 1 satellite (S1) from European Space Agency (Wagner et al., 2009) and C-band 64 

scatterometers like the Advanced Scatterometer (ASCAT; Bartalis et al., 2007). These active sensors 65 

can provide space resolution from few meters (S1) to tens of kilometers (ASCAT). Their main 66 

drawback is their sensitivity to vegetation and surface roughness, which can alter useful information 67 

(SM) in the signal measured. Passive sensors, however, are less sensitive to scattering conditions. 68 

They measure the self-emission from the land surface (radiances). Good results were obtained by C- 69 

and X- band radiometers like the Advanced Microwave Scanning Radiometer-Earth observing system 70 

(AMSR-E; Njoku et al., 2003; Owe et al., 2001), or by L-band radiometers such as Soil Moisture and 71 

Ocean Salinity (SMOS; Kerr et al., 2010) and the recent Soil Moisture Active Passive (SMAP) mission 72 

(Entekhabi et al., 2010a). 73 

L-band microwaves (1.4 GHz) have the benefit of little sensitivity to vegetation, providing optimal 74 

estimation of SM on a wider range of land cover conditions. L-band based satellite missions deliver 75 

SM products with a revisit time of 2 to 3 days. However, because of technological constraints, the 76 

spatial resolution is coarse (30-55 km), much coarser than the kilometer scale. This is a problem since 77 

hydro-agricultural applications need better resolved information, below kilometric space scales 78 

(Walker and Houser, 2004). 79 

To address this issue, downscaling methods have been created to improve the low spatial 80 

resolution of satellite data. Downscaling algorithms are characterized by their input data (satellite 81 

products, auxiliary ground measurements, etc.) and by the type of method (physical or statistical). 82 

Peng et al. (2017) reviewed the several methods developed so far and proposed a three-group 83 

classification: satellite-based methods, methods using geo-information data and model-based 84 

methods. 85 

The first group (I) gathers downscaling techniques which combines satellite passive microwave 86 

products with satellite highly resolved auxiliary data, such as radar or optical/thermal observations. 87 

This takes advantage of the assets of complementary remote sensing measurement techniques. 88 

Considering the fusion with high resolution radar, a change detection method was proposed by 89 

Njoku et al. (2002) to merge coarse-scale passive microwave soil moisture products and fine-scale 90 

active backscatter data. This technique consists in the linear relationship between soil moisture and 91 

backscatter data assuming the time-invariance of vegetation and surface roughness effects. The 92 

methodology was further tested in other experiments (Narayan et al., 2006; Piles et al., 2009) and 93 

proved its efficiency for improving the spatial details of soil moisture. Statistical tools were also used 94 
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to combine active and passive products, such as Bayesian merging method (Zhan et al., 2006) or 95 

wavelet-based image enhancement method (Montzka et al., 2016). This kind of approach showed 96 

the great potential of radar for improving soil moisture resolution, in particular for higher vegetation 97 

water content and different land cover types (Akbar and Moghaddam, 2015). A possible limitation of 98 

this approach is the time lag between active and passive data, due to the low revisit rate of high 99 

resolution radar. Recently, SMAP satellite was launched to bypass this problem, embedding on board 100 

one radiometer and one radar (Das et al., 2011). Unfortunately, the radar failed and no 101 

active/passive combination could be performed. However, the previous studies made to prepare the 102 

mission showed good capacity to improve spatial resolution of satellite products by merging active 103 

and passive microwave data. Another type of satellite-based method is the combination of passive 104 

microwave data with optical and thermal remote sensing data. The interest is to have the additional 105 

information of high spatial resolution and short revisit time of the optical/thermal products. The 106 

concept is to use highly resolved vegetation cover and surface temperature products to downscale 107 

coarse-scale soil moisture product. Based on the surface temperature/vegetation index triangular 108 

feature space proposed by Carlson (1994, 2007), Zhan et al. (2002) and later Chauhan et al. (2003) 109 

developed and applied this method based on a polynomial function linking high resolution SM with 110 

surface temperature, vegetation cover and surface albedo. At coarse resolution, scaling factors 111 

(regression coefficients) are estimated from this polynomial function and then used at high 112 

resolution in the same function to calculate the high resolution SM using NDVI (Normalized 113 

Difference Vegetation Index) and LST (Land Surface Temperature) obtained from the LST/NDVI 114 

feature space. An improved version was proposed by Piles et al. (2011) using brightness 115 

temperatures instead of albedo, showing better results when comparing downscaled SM with in-situ 116 

measurements. For instance, this downscaling technique was used to improve the resolution of 117 

AMSR-E soil moisture merging it with optical/thermal data measured from MODIS (Moderate 118 

resolution Imaging Spectroradiometer) (Choi and Hur, 2012) or MSG-SEVIRI (Meteosat Second 119 

Generation Enhanced Visible and Infrared Imager) (Zhao and Li, 2013).  The main problem in this 120 

methodology is the non-conservativity of SM between fine-scale and coarse-scale SM. Based on the 121 

same theory, other downscaling algorithms were proposed to relate the downscaled SM with coarse 122 

observations of SM. An operationally implemented method is the downscaling algorithm DisPATCh 123 

(Disaggregation based on Physical And Theoretical scale Change; Merlin et al., 2008a; Molero et al., 124 

2016). This algorithm is more physical because it uses soil evaporation processes to connect 125 

optical/thermal and SM data. Different applications of DisPATCh were realized to increase the ≈40 126 

km resolution of SMOS SM to 1 km and even 100 m respectively with MODIS (Merlin et al., 2012) and 127 

Landsat-7 (Merlin et al., 2013) products. The originality of the method is the estimation of a SM proxy 128 

called Soil Evaporative Efficiency (SEE; sections 4.2 and 6.2). The latter has the advantage, compared 129 
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to land surface temperature or evapotranspiration, to be more linked to SM and to be quite constant 130 

during the day. Some improvements still need to be made about the modelling of SEE, especially on 131 

elevation and illumination effects (Malbéteau et al., 2017) or soil properties and atmospheric 132 

conditions (Merlin et al., 2016). Comparable evaporation-based methods were developed using 133 

different proxies of SM such as the Soil Wetness Index (Kim and Hogue, 2012) or the Vegetation 134 

Temperature Condition Index (Peng et al., 2016), both applied in the simple downscaling method 135 

UCLA. We can also mention algorithms directly improving the resolution of brightness temperature 136 

products (instead of retrieved SM), based on the relation between daily temperature change and 137 

daily average SM (Song et al., 2014). Generally, these downscaling methods present a significant 138 

asset considering the time coherence between the merged products, but some limitations exist. 139 

Indeed, the cloud sensitivity of optical/thermal sensors makes the application of these methods 140 

possible only under clear-sky conditions (Djamai et al., 2016). 141 

Since SM is directly linked to geoinformation data such as topography, soil properties and 142 

vegetation attributes (Werbylo and Niemann, 2014), a second group (II) of downscaling methods 143 

were also proposed. These methods take advantage of highly resolved geoinformation data (giving 144 

information on the local attributes of the zone studied), and could give access to very high spatial 145 

resolution of SM. Topography for example was often used in downscaling approaches as an auxiliary 146 

data (Busch et al., 2012; Pellenq et al., 2003). However, certain types of geoinformation data, like soil 147 

properties, are usually provided by ground observations, which are really specific to the studied area. 148 

Thus, the application is limited to local areas and it may not be suitable for global scale study of SM. 149 

The third class (III) of methods concerns model-based downscaling techniques. There are two 150 

types of models used here. On the one hand, there are hydrological (land surface) models. These 151 

ones are more site-specific because they try to link coarse-scale remotely sensed SM and fine-scale 152 

parameters obtained from local land surface models. The downscaling can be done through 153 

optimization techniques (Ines et al., 2013), linear regressions (Loew and Mauser, 2008) or bivariate 154 

relationships (Verhoest et al., 2015). On the other hand, there are models that analyze and describe 155 

statistics across scales: they are more generic and try to preserve statistical properties across scales. 156 

For example, Kaheil et al. (2008) proposed a wavelet-based downscaling method in order to model 157 

spatial statistical properties of fine-scale SM thanks to coarse-scale airborne SM products. Other 158 

approaches are based on the scaling (or fractal) properties of SM across spatial scales. Bindlish and 159 

Barros (2002) proposed a fractal interpolation method applied on airborne SM products, measured 160 

from Electronically Scanned Thinned Array Radiometer (ESTAR). They used power spectra to 161 

represent the fractal behavior of SM, and could improve spatial resolution from 200 m to 40 m. A 162 

few years later, Mascaro et al. (2010) applied Log-Poisson multifractal cascades on remote sensing 163 
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SM to generate simulations of fine-scale SM. The challenge here is to preserve non-stationarity from 164 

coarse to fine scales. Nevertheless, particular efforts are made to overpass this problem. For 165 

example, Kim and Barros (2002a) adapted the fractal interpolation method applying a sliding window 166 

on specific parts of the original field. They could simulate fractal variability while taking into account 167 

the local statistics of the field. 168 

The downscaling methods of the three groups presented above have their own advantages and 169 

disadvantages, with more or less efficiency according to specific surface or climate conditions. In this 170 

study, we focus on the evaluation of multi-scale variability of SM products generated by the method 171 

DisPATCh (Merlin et al., 2008a; Molero et al., 2016). Despite its limitations related to cloud cover, 172 

this semi-physical downscaling algorithm combines low sensitivity to vegetation of L-band 173 

microwaves, high spatial resolution of optical/thermal data and it is dispensed from estimation errors 174 

commonly generated by land surface models. Several studies have been realized so far to evaluate 175 

and validate this method (Malbéteau et al., 2016; Merlin et al., 2013, 2015; Molero et al., 2016). In 176 

general, the assessment of downscaling algorithms is made comparing fine-scale output products 177 

with ground measurements. Different performance metrics are used, such as correlation, root mean 178 

square error or bias (Albergel et al., 2013; Al Bitar et al., 2012; Entekhabi, 2010b). More recently, 179 

Merlin et al. (2015) proposed a new metric that estimates the gain given by the downscaling method 180 

in terms of representativeness of downscaled data compared to non-downscaled data. To take into 181 

account scale mismatch between downscaled and ground measurements, upscaling techniques have 182 

been developed in order to bring downscaled and ground data together at common space scales 183 

(Crow et al., 2012). For example, Merlin et al. (2013) applied the DisPATCh algorithm on SMOS data 184 

while using both MODIS (Moderate resolution Imaging Spectroradiometer) and Landsat-7 auxiliary 185 

data. Coarse-scale satellite data, downscaled data and aggregated ground measurements were 186 

compared at three different scales: 40 km, 3 km and 100 m. Good results confirmed the potential of 187 

DisPATCh to improve the spatio-temporal correlation of remotely sensed SM with in-situ 188 

measurements. However, the drawback of these validation techniques is that they are restricted to 189 

specific scales. Thus, the validation of disaggregated SM products over a continuum of space scales 190 

has not been fully explored yet. Investigation of the multi-scale statistics and of possible scaling 191 

properties of these products could provide relevant information on this aspect. 192 

During the last thirty years, several studies were carried out to describe the statistical properties 193 

of SM across spatial scales (Famiglietti et al., 2008; Rodriguez-Iturbe et al., 1995). Different analytical 194 

methods were proposed. The most commonly used are spectral-wavelet analysis (Si, 2008) and 195 

multifractal analysis (Kim and Barros, 2002b; Mascaro et al., 2010; Oldak et al., 2002). In 1995, 196 

Rodriguez-Iturbe et al. highlighted for the first time the fractal behavior of SM from remote sensing:  197 
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the spatial variance of SM followed a power law decay as a function of aggregation scales ranging 198 

from 30 m to 1 km (Washita Experiment 1992, USA). Later studies showed that such a scaling 199 

behavior of SM variance could be extended to wider range of scales: up to regional scale (Hu et al., 200 

1997) and even to continental scales (Rötzer et al., 2015). Similar research works demonstrated that 201 

increasing area extent (increasing size of the total area) induced the increase of SM variance 202 

according to a power law function (Famiglietti et al., 2008; Rötzer et al., 2015; Brocca et al., 2012). 203 

Moreover, in Oldak et al. (2002), the fractal scaling of SM was revealed to be multifractal: the power 204 

law was also applicable to the first six statistical moments of airborne SM products for scales ranging 205 

from hundreds of meters to tens of kilometers (Washita’92 Experiment and Southern Great Plains 206 

Experiment 1997, USA). Multifractal scaling was then detected in SM fields (Das and Mohanty, 2006; 207 

Kim and Barros, 2002b; Lovejoy et al., 2008; Mascaro et al., 2010). Since SM variability is directly 208 

related to the amount of soil wetness (Brocca et al., 2007; Famiglietti et al., 2008), it may be 209 

expected that scaling properties of SM may vary according to the state of SM. Indeed, when plotting 210 

SM variance power law in log-log coordinates, Rodriguez-Iturbe et al. (1995) and Manfreda et al. 211 

(2007) found that the corresponding slope of the curve was increased during drier periods, revealing 212 

seasonal variations of SM scaling (Rötzer et al., 2015). Moreover, it was observed that SM variability 213 

was not governed by a single scaling behavior, but by different scaling regimes depending on the 214 

range of scales. At the field scale, SM variability is mainly related to land surface characteristics such 215 

as soil properties or topography, whereas at larger scales it is impacted by meteorological quantities 216 

like rainfall or evapotranspiration (Cayan and Georgakakos, 1995; Entin et al. 2000). Studies based on 217 

semi-variograms (Ryu and Famiglietti, 2006; Korres et al., 2015) and spectral/moments analysis (Kim 218 

and Barros, 2002b) revealed the presence of scale breaks closed to this transition scale between land 219 

surface and meteorological regimes. Though, the aforementioned characteristics of SM highlight its 220 

complexity and its high degree of nonlinearity due to hydrometeorological processes acting at 221 

different space scales, attesting the necessity to better understand the scaling behavior of SM for 222 

applications such as data assimilation or downscaling (Rötzer et al., 2015). 223 

In this paper, we propose an alternative and complementary method for verifying the 224 

multiscaling behavior of DisPATCh products. To do this, we studied and compared the statistical 225 

spatial properties across scales of the downscaled SM, the original SMOS SM and the MODIS auxiliary 226 

data, by applying spectral and multifractal analysis in the framework of the Universal Multifractal 227 

(UM) model (Schertzer and Lovejoy, 1987). The definition of multifractal formalism is given in section 228 

2, with a particular attention paid to UM parametrization. The methodology followed for multifractal 229 

(and spectral) analysis is detailed in section 3. Section 4 describes the case study and the data set. 230 

Then, the different results obtained from spectral and multifractal analysis are presented in section 231 
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5. Finally, section 6 proposes explanations to the multiscaling behaviors of DisPATCh SM, and a 232 

general conclusion of this study is given in section 7. 233 

2 Theory of multifractals 234 

During the last century, several studies showed that many geophysical processes could present 235 

scale invariance properties. This was first anticipated by Richardson (1922) in the case of turbulence: 236 

he described turbulent flows as cascade processes that transfer kinetic energy from large to small 237 

scales. Based on this approach, statistical models of turbulence were proposed such as the famous 238 

Kolmogorov law (1941) to describe velocity increments. Later research works generalized the study 239 

to take into account the heterogeneity of the energy flux (Kolmogorov, 1962; Obukhov, 1962; 240 

Yaglom, 1966). Multi-scale models such as multiplicative cascades were therefore proposed to 241 

reproduce scale invariance properties through the use of fractal geometry. Later, scale invariance 242 

was noticed in other geophysical fields: in his study of the coast of Britain, Mandelbrot (1967) 243 

revealed the presence of fractal properties in topography. 244 

2.1 From fractal sets to multifractal fields 245 

The concept of fractal dimension has been used in many works related to multi-scale analysis and 246 

geophysical modelling. Indeed, the term “fractal” refers to any entity (time series or 2D/3D random 247 

field) in which each part presents similar properties, geometrically or statistically, to the ensemble. In 248 

this manner, the structure of a fractal entity is characterized by scale invariance. Initially, the notion of 249 

fractal was introduced in the late 19th century in geometry with the creation of sets, i.e. mathematical 250 

objects, having unusual properties, especially a non-integer Hausdorff dimension, called later by 251 

Mandelbrot as “fractal dimension” (Mandelbrot, 1967). Scale invariance, in the statistical sense, was 252 

theoretically proposed by Kolmogorov in 1940 with the introduction of the fractional Brownian 253 

motion. This model could generate random time series whose trajectories present fractal properties 254 

in terms of statistical distribution. It illustrates the physical interest of fractal random processes, since 255 

Brownian motions are somewhat ubiquitous in physics. Mandelbrot and Van Ness (1968) made it 256 

famous by introducing it to more physical models. In particular, the first fractal stochastic models of 257 

topography were developed based on this theory (Mandelbrot, 1975). 258 

These stochastic models aim to represent the simple scaling (monofractal) behavior of 259 

geophysical processes. In this context, the fractal dimension or scaling parameter is assumed to be 260 

unique, restricting multi-scale modelling to a specific class of variability. However, most geophysical 261 

processes are characterized by more complex statistics. In case of operational hydrology, rare and 262 

extreme events, present in precipitation or soil moisture for example, correspond to high order 263 
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statistics and need to be detected (Hubert et al., 1993). Therefore, multifractal models, characterized 264 

by an infinite spectrum of fractal dimensions, have been proposed to account for a more exhaustive 265 

set of statistics. Schertzer and Lovejoy (1987), based on the findings of Parisi and Frisch (1985), 266 

initially established the multifractal formalism through the fundamental equation: 267 

                          (1) 268 

where    is a positive normalized random scalar process, time series or random field defined on    269 

or   . The mean of the process is assumed to be statistically conserved across scales. λ is the 270 

observation resolution, here defined as the inverse of the scale that can be seen as the sampling time 271 

or pixel size for time and space domain processes respectively and   indicates an equality within the 272 

limits of slowly varying functions. Eq.1 expresses the fact that for a multifractal process, the 273 

probability of exceeding a threshold varies as a power law of the resolution with exponent c(γ). This 274 

exponent is called as fractal codimension of the process, depending on the amplitude of thresholds. 275 

The thresholds are defined by the following power law: 276 

                (2) 277 

with γ the notion of singularity, characterizing the amplitude of the process independently of the 278 

scale. Each singularity is associated to a fractal codimension c(γ), corresponding to a family of 279 

thresholds of various amplitudes. From a more physical point of view, high singularities (detected by 280 

high thresholds) are related to rare and extreme events, with high fractal codimensions and inversely 281 

low (box-counting) fractal dimensions    (Mandelbrot, 1967). Indeed, the latter are related to the 282 

dimension of space D through the relation          . Therefore, c(γ) can be described as a 283 

codimension function, increasing with γ, which completely characterizes the multi-scale statistical 284 

properties of the field   . In general, if the field is multifractal, c(γ) is found to be convex and 285 

positive (with a fixed point    imposed by the condition of canonical conservation), whereas 286 

monofractality is associated to the trivial case           . 287 

Since probability distributions and statistical moments are related by a Mellin transform, 288 

Schertzer and Lovejoy (1987) proposed an equivalent equation to (1): 289 

   
                  (3) 290 

where     is the statistical averaging operator, q is the order of the moment (q ≥ 0), and K(q) is the 291 

moment scaling function. Eq.3 expresses that, for any fixed moment order, statistical moments and 292 

resolution are linked through a power law. Singularities and moment orders are directly linked, since 293 

the moment scaling function K(q) is the Legendre transform of the codimension function c(γ). 294 
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Similarly to c(γ), K(q) is a convex function (with the special case K(1) = 0 related to the conservation of 295 

the mean across scales), which entirely characterizes the multifractal field. 296 

2.2 Multiplicative cascades 297 

Multiplicative cascades are stochastic models that can be used to build multifractal fields. 298 

Cascades are multiplicative processes because they are defined by an iterative multiplicative 299 

construction: considering a two dimensional random signal (field), each pixel at resolution      (with 300 

n the construction level of the cascade) is the product of the embedding pixel at coarser resolution 301 

(  ) multiplied by a random variable με. This is described by the following equation: 302 

     
       

          (4) 303 

 In this manner, the statistical properties of the field      
 are directly related to the statistical 304 

properties of the coarser field    
. If all the multiplicative random variables used for each step of 305 

the iterative construction are independent and identically distributed, and distributed independently 306 

of the scale, the final field presents scale invariant properties. 307 

Several models of cascades have been developed so far. First models were built within the 308 

framework of turbulence, such as the α-model (Schertzer and Lovejoy, 1984) which corresponds to 309 

discrete construction of cascades: the multiplicative random variables are limited to two possible 310 

fixed values, respectively leading to increasing or decreasing pixel value when the resolution is 311 

refined. Later, more elaborated models were constructed generalizing the discrete case to 312 

continuous cascades (Dubrulle, 1994; Schertzer and Lovejoy, 1987, 1991, 1997; She and Levêque, 313 

1994). The latter are based on an infinite number of steps between any pair of resolutions, leading to 314 

continuity in scale. The benefit of continuous cascades is twofold. First, they can represent possibly 315 

more realistic structures by avoiding any arbitrary discretization of scales. Moreover, they often 316 

converge toward random processes which are characterized by a small number of degrees of 317 

freedom (special cases of log-infinitely divisible distributions). This is interesting considering that 318 

multifractal fields built by multiplicative cascade processes would otherwise need an infinite number 319 

of scaling parameters (one for each fractal dimension). For example, She and Levêque (1994) 320 

proposed a continuous cascade model based on Log-Poisson statistics, and Schertzer and Lovejoy 321 

(1987) used Log-stable random variables to build the Universal Multifractal model. In both models, 322 

only two fundamental parameters are needed to fully define multifractality. 323 

2.3 Universal Multifractals 324 

Physically, multifractal fields built by Log-Poisson or Log-stable cascades have a high degree of 325 

generality in geophysics. Log-Poisson model has been successfully applied to different geophysical 326 
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variables such as rain (Deidda, 2000), or even soil moisture (Mascaro et al., 2010). However, this 327 

model can have disadvantages of representing a restricted range of variabilities, which may make it 328 

unsuitable for modeling processes with unbounded singularities. On the other hand, by assuming the 329 

stability of the random variables and suitable renormalization, UM model is likely adapted for 330 

characterizing a wide range of processes: topography (Lavallée et al., 1993), rain and clouds (Tessier 331 

et al., 1993) and more recently soil moisture and vegetation optical indexes (Lovejoy et al., 2008). 332 

Moreover, a possibly more immediate physical interpretation of the parameters is found in this 333 

model. For mathematical and physical arguments supporting the universality of UM model, see 334 

Schertzer and Lovejoy (1997); see also Gupta and Waymire (1997) for discussion about its generality. 335 

UM model defines the moment scaling function using two “universal” parameters, through the 336 

following equation (Schertzer and Lovejoy, 1987): 337 

     
  

     
               (5) 338 

where α is the degree of multifractality of the field. It varies between 0 (monofractality) and 2 (log-339 

normality) and expresses how fast the codimension evolves as a function of the singularity. The 340 

second parameter    is the codimension giving the dominant contribution to the mean value of the 341 

field (related to moment of order 1):         . Physically, it indicates inhomogeneity (dispersion) 342 

of the field: it varies from 0 (homogeneous field) to the dimension D of the embedding space (very 343 

intermittent field). Because of Legendre transform,             is also defined as the fixed point 344 

of the codimension function. 345 

2.4 FIF model 346 

Generally, most of the geophysical fields are non-conservative, i.e. integrated processes defined 347 

by a certain degree of fractional integration. This appellation comes from multifractal cascade 348 

models: see Gagnon et al., 2006 for detailed explanations on this formalism. Thus, to account for a 349 

wider range of processes, an extension of the UM model to non-conservative fields has been 350 

proposed (Schertzer and Lovejoy, 1991): the Fractionally Integrated Flux (FIF) model. It expresses the 351 

degree of fractional integration of the UM field, using a third parameter H. The latter is called the 352 

order of integration and defines the non-conservativity of the field: in plain words, the larger is H, the 353 

smoother is the field. The integrated flux is noted    and is characterized by a power law variation of 354 

its stationary increments: 355 

                    (6) 356 

where     are the increments (fluctuations of the flux) estimated over a varying window   , which 357 

is equivalent to the space scale l. Note that when H = 0, the equation corresponds to the 358 
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conservative case   . Additionally, in the case of two dimensional fluxes, Eq.6 also applies for other 359 

directions (i.e.    increments), with the same exponent H if the process is isotropic. 360 

Hereafter in this article, the appellation proposed in Lovejoy and Schertzer (2010) will be 361 

followed: non-integrated cascades will be called conservative fluxes, due to the conservation of the 362 

mean, and fractionally integrated “non-conservative” processes will be called “random fields” or 363 

simply “fields”. 364 

3 Multifractal analysis methodology 365 

The different techniques used to analyze the multi-scale properties of DisPATCh related products 366 

are detailed in this section. The methodology is based on the multifractal theory presented in the 367 

precedent section. Because our study treats only satellite images, we will focus on the two 368 

dimensional versions of these techniques. 369 

3.1 Power spectrum: preliminary evidence of scaling 370 

Spectral analysis is a methodology often used in geophysics to characterize, in an easy and rapid 371 

way, some scaling properties of fields over different space scales (Lovejoy et al., 2008). Thanks to its 372 

high sensitivity to scale breaks, scaling regimes can be easily identified. In a first step, the two-373 

dimensional power spectral density  (     ) of the data under analysis, X, is estimated: 374 

 (     )  |      |          (7) 375 

with P the power spectral density defined on both vertical and horizontal image axis, corresponding 376 

respectively to    and    wavenumbers (spatial frequencies). Here, the estimation of the PSD is done 377 

through a two-dimensional fft or Fast Fourier Transform. Then, the one dimensional isotropic angle-378 

integrated power spectrum E(k) is obtained (Lovejoy et al., 2008; §8): 379 

     ∫  ( ⃗ )  ⃗ 
  ⃗    

         (8) 380 

where k is the modulus of the wavenumber and     is the Euclidean norm. Since it expresses space 381 

frequencies, k is directly related to the space resolution λ. If the process presents scaling properties, 382 

the spectrum should follow a power law, where β is the negative slope of E(k) on a log-log graph: 383 

                  (9) 384 

β is called the spectral exponent and is directly related to the FIF parameters through the equation: 385 

                    (10) 386 
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In this manner, β also gives first indications about the possible conservative nature of the field, since 387 

integrated flux (H > 0) should correspond to spectral exponent greater than 1. Note that power 388 

spectrum is a second-order statistic, hence the term K(2). 389 

3.2 Statistical moments: multifractal properties 390 

To test the presence of multifractal properties in the data (Eq.3), statistical moments and moment 391 

scaling function need to be estimated. To do this, different steps must be followed. First, the 392 

underlying conservative field      
 has to be reconstructed from the data, at the maximum 393 

observation resolution     . Because the possible existence of a fractional integration of order H 394 

(Eq.6), a fractional derivative of the same order should be done. In this study, the modulus of the 395 

gradient was applied to the data. Indeed, this operator provides a simple and good numerical 396 

approximation of the fractional derivation without prior knowledge of H order (Lavallée et al., 1993): 397 

     
 √(

      

  
)
 

 (
      

  
)
 

        (11) 398 

Once the conservative field is retrieved,      
is normalized by its mean. 399 

The second step involves the degradation of the field at lower resolutions       . It aims to 400 

approximate the inversion of the stochastic multiplicative cascade by iteratively averaging the field at 401 

coarser scales: each coarse pixel (level n of the cascade) is obtained by a simple average of 402 

neighboring finer pixels (level n+1). Note that each roughened pixel size is a power of two multiplied 403 

greater than the observation scale      (     
  ). 404 

Finally, empirical moments (i.e. computing q-th order moments in Eq.3 while replacing statistical 405 

averages by empirical averages) are then computed for various orders and resolutions. On a log-log 406 

graph, the different moments are plotted as a function of the resolution. If linearity is observed for 407 

each moment curve, at least over a significant range of resolutions, Eq.3 is therefore verified, which 408 

is the signature of multifractality. The empirical moment scaling function can be estimated, with K(q) 409 

corresponding to each linear fit of qth order moment. Afterwards, the universal parameters α and    410 

may be obtained by optimization according to the UM model form of K(q) (Eq.5). 411 

3.3 Structure functions: some evidence of non-conservativity 412 

A convenient way to reveal the non-conservative/fractionally integrated nature of the integrated 413 

flux    (Eq.6), is to compute its first order structure function: 414 

         |              |        (12) 415 
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If the flux is indeed non-conservative, the order of integration H should be the slope of the 416 

increments    , plotted in a log-log graph as a function of space scale   . This technique will be 417 

used in this study to estimate the H parameter. 418 

4 Case study and data 419 

4.1 C4DIS processor and satellites products 420 

The different products analyzed in this study are input and output data of C4DIS (CATDS level-4 421 

DISaggregation) processor (Molero et al., 2016). This processor includes the first operational version 422 

of the DisPATCh algorithm, taking into account the best configurations according to the latest studies 423 

(Merlin et al., 2010a, 2010b, 2013). Because the algorithm is still evolving, C4DIS products are called 424 

as “scientific” (Molero et al., 2016): users can have access on demand to the products over specific 425 

areas of the world. 426 

As presented earlier, the downscaling method combines SMOS microwave data and MODIS 427 

optical/thermal data. The SM data is given by the SMOS Level-3 daily global SM product (reference: 428 

MIR CLF31A/D). This product is provided by the Centre Aval de Traitement des Données SMOS 429 

(CATDS), which is the French ground segment for SMOS Level-3 and Level-4 products. The SM data is 430 

acquired every day at a radiometric resolution that varies between 35 and 55 km, 40 km in average, 431 

from L-band brightness temperature measurements (Kerr et al., 2012; Wigneron et al., 2007). SMOS 432 

Level-3 products are delivered on the EASE (Equal Area Scalable Earth) grid, with a grid spacing of 25 433 

km × 25 km. 434 

The optical/thermal products come from the MODIS sensor, embedded on both Aqua and Terra 435 

satellites. Two types of auxiliary data are used in DisPATCh. First, there is Land Surface Temperature 436 

(LST). It is extracted from the MODIS Level-3 daily products: MYD11A1 (Aqua) and MOD11A1 (Terra). 437 

These temperature products are estimated from thermal infrared radiances emitted from the surface 438 

(3-15 μm). Then, the second auxiliary data is Normalized Difference Vegetation Index (NDVI), given 439 

by the Level-3 16-day Terra product (MOD13A2). The vegetation index is computed from surface 440 

reflectances in red (0.7 μm) and near infrared (0.8 μm) wavelengths. Both LST and NDVI products are 441 

provided at 1 km resolution by the NASA Land Processes Distributed Active Archive Center (LP DAAC). 442 

They are presented on a sinusoidal grid, with a grid spacing slightly smaller than kilometer: 0.93 km × 443 

0.93 km (Solano, 2010; Wan, 2006). We may notice that LST products have daily time resolution, 444 

whereas NDVI products are representative of a period of 16 days. 445 

Output DisPATCh products are generated every day by the C4DIS processor. Their resolution is 446 

that of MODIS products (1 km), and they are presented on an equal-spaced lat-lon WGS84 grid, with 447 
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a grid spacing of 0.01° (≈1.12 km). For simplicity, in the following we’ll make the approximation 0.01° 448 

= 1 km. One single downscaled image is the result of the combination of four downsampled SMOS 449 

SM images, one MODIS NDVI image, and up to six MODIS LST images corresponding to 3 consecutive 450 

days of Aqua and Terra acquisitions (for more details on the combination methodology see 451 

Malbéteau et al., 2016; Merlin et al., 2012; Molero et al., 2016). In other words, in the final product, 452 

each high resolution output pixel comes from the average of 24 possible disaggregated pixels (up to 453 

24 SM-LST possible pairs). The advantage of this composition is that uncertainty in downscaled SM 454 

can be potentially reduced and estimated, and time-coverage is improved (Malbéteau et al., 2016). 455 

4.2 DisPATCh algorithm 456 

DisPATCh is based on a semi-empirical model that estimates the Soil Evaporative Efficiency (SEE) 457 

from high resolution (HR = 1 km) LST and NDVI products. The method is based on the separation of 458 

MODIS LST into its soil and vegetation components, respectively referred in this study as       and 459 

     . To do this, the approach relies on a variant of the trapezoid method from Moran et al. (1994) 460 

which interprets the feature space defined by MODIS LST and NDVI-derived fractional vegetation 461 

cover      . The purpose here is to extract the soil temperature       according to the following 462 

equations: 463 

                                         (13) 464 

with                                                 (14) 465 

In equation 13, the vegetation temperature       is calculated according to Moran et al. (1994). 466 

         and           in (14) are respectively the NDVI obtained from bare soil (set to 0.15) and 467 

from full-cover vegetation (set to 0.90). 468 

Then, MODIS-derived soil temperature       allows to estimate       at 1 km resolution 469 

following the methodology proposed by Merlin et al. (2012): 470 

                                          (15) 471 

where        and        are endmembers estimated from the approximations of Merlin et al. (2013) 472 

considering the relations between the minimum/maximum of LST and the associated       (more 473 

details can be found on these estimates in Molero et al., 2016; p.4). 474 

SEE is used to describe the spatial variability of SM within the low resolution (LR = 40 km) pixel 475 

given by SMOS product. High resolution SM (    ) is linked to high resolution SEE (     ) through 476 

the linear model proposed by Budyko (1956) and Manabe (1969): 477 
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           (16) 478 

where      is a LR parameter depending on atmospheric conditions and soil properties. In the C4DIS 479 

processor, this parameter is computed at low resolution at each execution from daily SMOS SM 480 

(    ) and SEE averaged inside the LR pixel (     ): 481 

     
    

     
               (17) 482 

The disaggregation is finally realized by applying a first order Taylor expansion to the SEE and SM 483 

dataset. The downscaling relationship is written as: 484 

                                           (18) 485 

with            the partial derivative of SM relative to SEE computed at low resolution. Here, this 486 

derivative simply equals the     parameter estimated according to (17). 487 

4.3 Study area 488 

Australia is a wide country, with an area of almost 8 million km² and characterized by various 489 

surface and climate conditions. Thus, it is a suitable area to study spatial variations of soil moisture 490 

over a wide range of scales. Many studies on SM have been carried out in Australia in order to 491 

monitor SM variability using ground, airborne and satellites data (Smith et al., 2012). Among others, 492 

we can mention the National Airborne Field Experiment 2006 (NAFE'06; Merlin et al.., 2008b) and the 493 

Australian Airborne Calibration/validation Experiments for SMOS (AACES; Peischl et al., 2012). These 494 

experiments were realized over the Murrumbidgee catchment (82 000 km², Fig.1), located at the 495 

southeastern part of Australia. Because of its variable climatic conditions (humid in the east, semi-496 

arid in the west), this region was used for validating satellites missions such as SMAP (Panciera et al., 497 

2014) or SMOS. SM products delivered by SMOS were assessed during the AACES experiments, which 498 

took place in 2010 over two periods: January-February (AACES-1) and September (AACES-2). Wide 499 

spatially distributed networks of in-situ measurements (OzNet hydrological monitoring network; 500 

Smith et al., 2012) and transect flights (Polarimetric L-band Multibeam Radiometer; Peischl et al., 501 

2012) were used to validate SMOS data. In this context, benefiting from a dense SM dataset at 502 

different space scales, some of the first applications of DisPATCh algorithm were realized during the 503 

AACES experiments (Merlin et al., 2012). These works showed the efficiency of DisPATCh under low-504 

vegetated semi-arid areas, and its potential to evaluate coarse-scale SMOS products. Later studies 505 

(Malbéteau et al., 2016; Molero et al., 2016) continued the evaluation and improvement of DisPATCh 506 

algorithm over the Murrumbidgee catchment. 507 
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In this paper, DisPATCh analysis is made during the 7-month period from June to December 2010, 508 

taking advantage of previous DisPATCh studies over this period. We choose to extend the study area, 509 

from the Murrumbidgee catchment to the Murray Darling Basin (MDB, 1 million km², Fig.1). The first 510 

reason of this choice is related to the main objective of the study, which is the analysis of DisPATCh 511 

related products over different space scales. Though, our study covers a large range of scales, from 512 

the pixel size (kilometer scale) to the full basin extent (1300  1400 km²), giving a new point of view 513 

considering DisPATCh validation. Moreover, spectral and multifractal tools presented in section 3 514 

cannot be properly applied if the data size is not sufficient enough. Because of its low resolution, it 515 

would be inappropriate to do multiscale analysis of SMOS SM over the Murrumbidgee catchment 516 

(“images” would be smaller than 5   5 pixels). 517 

MDB is located in southeastern Australia and contains more than 20 catchments such as 518 

Murrumbidgee in its south part (Fig.1) The climate is sub-tropical in the North-East (average annual 519 

precipitation up to 1500 mm), semi-arid in the West (average annual precipitation less than 300 mm) 520 

and mostly temperate in the South (snowfall during winter on the peaks of the Great Dividing 521 

Range). Regarding to land use, West is made of wide plains essentially composed of saltbush 522 

shrublands and mulga lands. From South to North-East, there are the mountains of the Great 523 

Dividing Range reaching 2 300 m in altitude. Irrigation, dry land cropping and pastures are spread 524 

over the basin, but most of the irrigated areas are located in the South (like Murrumbidgee region). 525 

 526 

 527 

 

Figure 1. The study area includes the Murray Darling Basin (1 million km²), southeastern Australia. 
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4.4 Data preprocessing 528 

Before applying the multi-scale analysis, preprocessing must be done on the different satellite 529 

products. The first preprocessing step is to handle the missing values. Because of technology or 530 

acquisition conditions, all satellite sensors provide products that present more or less missing values. 531 

These can be caused by failures in the data acquisition or delivering, or even voluntarily generated by 532 

the production center when discarding incorrect values. In our case, SMOS products can be affected 533 

by unauthorized emissions that cause radio frequency interference (RFI). SMOS SM used in this study 534 

are pre-filtered by CATDS in order to remove pixels with more than 10% RFI probability (Kerr et al., 535 

2013; Olivia et al., 2012). Considering MODIS products, cloud pixels are also removed to avoid the 536 

impact of atmosphere on downscaled data. Though, missing values in output DisPATCh products are 537 

mainly caused by the accumulation of missing values coming from inputs. Thanks to the 24 averaged 538 

HR outputs combination implemented in C4DIS processor (section 4.1), the probability to get missing 539 

values in the final averaged downscaled product is reduced. In our study, we applied bilinear 540 

interpolation in each satellite image to fill in missing data (noted NaN). To do this properly, some 541 

conditions were established. To minimize the impact of data interpolation on spectral and 542 

multifractal analysis, each image with more than 40% of NaN were discarded. Moreover, in order to 543 

treat separately land-surface NaN values from sea areas located outside the continent, the latter 544 

were filled with zeros. Previous studies showed that biased multifractal parameters could be 545 

obtained from data containing significant proportion of zeros (De Montera et al., 2009; Verrier et al., 546 

2010, 2011). Thus, we made sure to select images whose ground area contains a minimum of sea 547 

pixels (less than 10 %). 548 

In a second stage, sub-images of       pixels need to be selected over the MDB area. To 549 

estimate statistical moments over different spatial resolutions, images must indeed be square, with a 550 

number of pixels equal to a power of two along each dimension (section 3). Because of different 551 

satellites projection grids and spatial resolutions, selected sub-images from different satellites do not 552 

cover exactly the same area and they do not completely match to the original MDB area. Figure 2 553 

presents examples of sub-images obtained for DisPATCh SM, SMOS SM and MODIS NDVI, whose size 554 

is respectively 1024 × 1024, 64 × 64 and 1024 × 1024 pixels (for readability, during preprocessing all 555 

MODIS products were projected from sinusoidal to orthogonal lat/lon coordinates; Sohrabinia, 556 

2012). Considering the different grid spacing of the products and sub-images size condition, the sub-557 

image selected for SMOS SM covers the entire MDB (1600 × 1600 km²), whereas the sub-images 558 

selected for DisPATCh and MODIS products are smaller (around 1000 × 1000 km²). It is important to 559 

notice that, while they have similar spatial resolution and a same number of pixels, DisPATCh SM and 560 

MODIS images do not exactly correspond to the same ground area. This is caused by slightly different 561 
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grid spacing for the two products, 1 km for DisPATCh and 0.93 km for MODIS (Solano, 2010; Wan, 562 

2006). For simplicity, we’ll consider in the following that both DisPATCh and MODIS products present 563 

a grid spacing of around 1 km. 564 

 565 

Table.1 summarizes the main characteristics of our preprocessed satellite dataset. Two 566 

important observations should be highlighted. First, considering their daily revisit time, few DisPATCh 567 

SM and MODIS LST images are retained over the full June-December period: only 12 maps for 568 

DisPATCh and around 70 maps for MODIS LST. This is directly related to the significant number of 569 

missing values that is in average 30 % in these two types of products. Therefore, missing values in 570 

downscaled SM seem to be mostly generated by those in LST products, probably due to the presence 571 

of clouds in the data. Then, another point concerns the different surface areas of the preprocessed 572 

products. Because they do not fully overlap, SMOS and DisPATCh sub-images may capture different 573 

SM dynamics. Extreme events occurring in northern MDB are observed in SMOS data whereas it may 574 

not be taken into account in DisPATCh data. However, we ensured that all products did have the 575 

widest area in common, focusing on irrigated regions in the middle-south part of the basin (like 576 

Murrumbidgee). 577 

 578 

 

Figure 2. Sub-images selected for each satellite product over the Murray Darling Basin. 

 

Table 1. Main characteristics of satellites products analyzed in this study. We also 

mentioned the surface area, the number of images conserved, and the average rate of 

missing values (without sea areas) of the dataset after preprocessing. 
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5 Results 579 

5.1 Spatial power spectra 580 

Figure 3 shows the mean power spectra estimated over the full period (June-December 2010) of 581 

the different input and output products involved in DisPATCh (it represents an average spectrum 582 

based on individual spectra obtained within the period). Each spectrum is plotted in log-log 583 

coordinates, with horizontal axis converted into space scale l (    ), expressed in kilometers. 584 

Considering SMOS SM and MODIS products, the mean spectra are found to be scaling over the entire 585 

range of scales. This is observed by a linear evolution of            (Eq.9), with coefficients of 586 

determination R² greater than 0.9 for each spectrum (Table.2). Note that R² is used as a measure of 587 

the goodness-of-scaling, estimated from the linear regression between            and        . 588 

However, a different behavior is noticed for the disaggregated SM spectrum. Two scale ranges seem 589 

to appear, with an increasing slope on scales lower than about ten kilometers. A segmentation 590 

algorithm was applied on this spectrum (D'Errico, 2017), which confirmed a scale break at l   10 km. 591 

According to the different values of spectral slopes obtained (Table.2), a three-group classification 592 

was proposed: 593 

● β ≈ 1: SMOS SM, MODIS vegetation index and disaggregated SM (l > 10 km) 594 

 For these three products, the negative slope is found to be close to one. Though, according to 595 

Eq.10, this may reveal the conservative nature of the fields (H ≈ 0). Moreover, these values are 596 

quite similar to the estimates proposed in literature: Lovejoy et al. (2008) found β = 1.2 for both 597 

vegetation and soil moisture indexes (from MODIS products, Guadalajara, central Spain, July 598 

2006). Previous studies on topography, especially on volcanic surfaces (Laferrière and Gaonac’h, 599 

1999), found comparable results with quite low degree of fractional integration. Since 600 

topography can affect the spatial distribution of SM and vegetation (Kim and Barros, 2002b), it is 601 

not surprising to observe similar scaling behavior between these fields. 602 

● 1 < β < 2: MODIS surface temperature (from both Aqua and Terra satellites) 603 

 LST spectra have β values greater than 1. Here, surface temperature seems to correspond to a 604 

non-conservative field (H > 0). These spectral slopes may be comparable to those obtained in 605 

literature on precipitation fields (Lovejoy and Schertzer, 2008), showing possible connections 606 

between the spatial distribution of surface temperature and that of rainfall, and therefore with 607 

the underlying (turbulent) atmospheric dynamic (Schmitt et al., 1993). 608 

● β > 2: disaggregated SM (l < 10 km) 609 

On small scales, DisPATCh SM spectrum presents a relatively large slope, reflecting a high degree 610 

of fractional integration (H > 0.5). To our knowledge, such high value of spectral exponent has 611 
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never been observed in previous studies on SM fields. However, comparable scaling was 612 

obtained on SM time series, revealing spectral slopes greater than 2 (Katul et al., 2007).613 

From these spectral observations, a similar scaling seems to appear between the original SMOS SM 614 

and the disaggregated SM on scales greater than 10 km, but this behavior is found to change for 615 

scales lower than about ten kilometers. A comment may also be made on LST power spectra and 616 

their linear regressions : although R² coefficients present good values on the entire range of scales (> 617 

0.9), a scale break may be observed at about the same spatial scale found for DisPATCh spectrum (l 618 

  10 km). The scale break seems less pronounced but it could be related to that of DisPATCh. This 619 

point will be discussed in section 6.2. 620 

This twofold scaling regime of DisPATCh SM can be also observed on each specific date of the 621 

study period (with R² coefficients greater than 0.9 on almost all images and on both scale ranges). 622 

Figure 4a shows the time series of the individual spectral exponents estimated for all products (i.e. 623 

spectra computed for each image). From June to December, a significant difference of β values is 624 

observed between the two scale ranges of disaggregated SM. For example, on July 9 (Fig.4b), power 625 

spectra are found to be similar as mean ones presented above (Fig.3). In particular, the same scale 626 

break is still observed for disaggregated SM at about ten kilometers. Another remark concerns the 627 

amplitude of the scale break according to seasons. Figure 4a shows that, for disaggregated SM, the 628 

difference between the spectral exponents of small scales and large scales (respectively blue triangle 629 

and blue star symbols) is more important during the last three months of the period. At small scales, 630 

the spectral slope suffers a drastic change from around 1.9 (Jun-Jul-Aug-Sept) to 2.3 (Oct-Nov-Dec, 631 

 

Figure 3. Mean angle-integrated power spectra of DisPATCh related products (over the 

full June-December period). 𝛽𝑙𝑎𝑟𝑔𝑒  and 𝛽𝑠𝑚𝑎𝑙𝑙  refer to disaggregated SM spectral 

exponents obtained respectively from scales l > 10 km and scales l < 10 km. 
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i.e. spring and early summer in Australia). The amplitude of the scale break observed in DisPATCh SM 632 

could be related to the seasonal conditions of the study area. This will be discussed in section 6.1. 633 

 634 

5.2 Multifractal analysis 635 

The moments of the normalized absolute gradients were estimated at all accessible resolutions. 636 

Since divergence for q greater than      was reported in most of the literature (Hubert et al., 637 

2007), and because of sample size limitations, in this study moments were computed for orders set 638 

from 0 to 3, in steps of 0.1. Figure 5 shows the mean moments over the 7-month period, plotted in 639 

log-log coordinates as a function of the space scale l (    ). For each product, multifractal regimes 640 

are identified on specific scale ranges. The power-law described by Eq.3 is well verified over these 641 

spatial scales, corresponding to a linear variation of        
   for all orders of moments    

     
 . 642 

This behavior means that a multifractal model is well adapted on the corresponding scale ranges. 643 

Considering vegetation and temperature MODIS products, a scaling regime is found on scales 644 

greater than 8 km (Fig.5a-c). On these scales, moments curves were fitted by linear regression (red fit 645 

lines on Fig.5), and the corresponding scaling functions K(q) were computed (red, yellow and green 646 

curves Fig.5e). UM parameters were then estimated applying (derivative-free) minimization method 647 

between empirical scaling function K(q) and the model form of K(q) described in Eq.5. For the 648 

vegetation, parameters values are found to be α = 1.74 and   = 0.03 (Table.2). They are quite close 649 

to those estimated by Lovejoy et al. (2008) on similar NDVI MODIS products (α = 2 and   = 0.06). For 650 

Aqua surface temperature, we found the same parameter values as the vegetation ones (α = 1.7 and 651 

 

(a) 

(b) 

Figure 4. (a) Time series of spectral exponents over the period June-December 2010, (b) angle-

integrated power spectra obtained on July 9, 2010. 
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  = 0.03), which is related to the very similar K(q) functions for all orders q. Slightly different 652 

parameters are found for Terra products (α = 1.91 and   = 0.04). This difference could be due to the 653 

different acquisition time of the two satellites (10:30 for Terra and 13:30 for Aqua). This may have 654 

some effect on the multiscaling behavior of surface temperature. Another reason to this difference 655 

could be the larger scaling regime considered for Terra: a multifractal behavior is observed on scales 656 

ranging from 8 km to 1024 km, against 8 km to 300 km for Aqua and NDVI products. Anyway, these 657 

results confirm (NDVI) and reveal (LST, not yet studied at this time) the multifractal properties of the 658 

considered MODIS products. In both cases, they are characterized by a high degree of multifractality 659 

(α is close to 2, value corresponding to the log-normal case) and by a low dispersion of the field (   < 660 

0.1). 661 

 SMOS SM products show good multifractal behavior too: moments are found to be well 662 

fitted (R² = 0.99, cf. Table.2), on most of the aggregation scales (apart from the 2 greatest scales, 663 

1600 km and 800 km). Scaling function was computed over spatial scales going from the 25 km 664 

observation scale to 400 km (purple curve in K(q) graph, Fig.5). Compared to MODIS products, a 665 

growing divergence is noticed between SMOS and NDVI/LST scaling functions, especially for orders q 666 

greater than 1. This scaling behavior is confirmed by different UM parameters: α = 1.46 and   = 0.16. 667 

To our knowledge, no application of the UM model has already been made on remotely sensed SM 668 

from passive microwaves. Therefore, it is difficult to compare these results with literature. However, 669 

although they didn’t use the UM model, Kim and Barros (2002b) studied spatial scaling properties of 670 

passive microwave SM, estimated from airborne L-band radiometer (Southern Great Plains 671 

Experiment 1997, USA). They observed a multifractal scaling on a similar scale range (1.6 km to 250 672 

km), which is coherent with our results. Lovejoy et al. (2008) indeed applied the UM model, but on 673 

an optical SM index, estimated from MODIS reflectances (Lampkin and Yool, 2004). They found α = 2 674 

and    = 0.05 over lower spatial scales (0.5 km to 25 km). These parameter values are quite different 675 

from ours. The different scale range and the different study area (Guadalajara, central Spain, in 676 

Lovejoy et al., 2008) between their work and ours could be a possible explanation to this result. 677 

Another reason might be linked to the nature of the signal studied. Optical-estimated indexes, like 678 

MODIS SM index, are more sensitive to land cover such as vegetation (Fabre et al., 2015; Haubrock et 679 

al., 2008), then “polluting” the scaling properties of SM. 680 
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 681 

Focusing now on disaggregated SM products, a change of slope is noticed for each of the 682 

statistical moments. The same segmentation algorithm was applied on all moment curves, revealing 683 

a scale break at about ten kilometers. Two multifractal scaling regimes may be observed here, 684 

confirming the twofold scaling behavior found in the power spectra. Considering larger scales (l > 10 685 

km, red fit lines on Fig.5), estimated UM parameters are: α = 1.64 and   = 0.03. They are close to the 686 

parameters found for our MODIS products (NDVI and LST), with a high degree of multifractality and a 687 

low dispersion of the field. For smaller scales (l < 10 km, green fit lines on Fig.5), the degree of 688 

multifractality is almost unchanged (α = 1.59) compared to the large scales regime. However, the 689 

dispersion parameter is increased (   = 0.09), which is three times the value obtained on greater 690 

scales. Though, the difference between the two multifractal scaling regimes seems to be mainly 691 

linked to the dispersion of SM through scales. If we refer to the multifractal analysis of MODIS SM 692 

index made by Lovejoy et al. (2008), our estimates  are coherent considering α (for both ranges of 693 

scales) and    (on large scales). Lovejoy et al. (2008) didn’t notice any scale break, therefore it is 694 

difficult to comment our estimate of    at small scales. Nevertheless, Kim and Barros (2002b) 695 

observed a similar scale break (at about the same 10 km scale) on passive microwave SM. Indeed, 696 

they noticed two scaling regimes from variance, spectra and moments graphs. The twofold scaling 697 

 

(b) (c) 

(d) (e) (f) 

Figure 5. Mean moments as a function of space scale l in km (a-d; f) and mean 

scaling functions (e) of DisPATCh related products (over the full June-December 

period). Scaling regimes are distinguished and fitted with the straight lines 

(linear regressions on moments graphs). 

(a) 
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behavior of DisPATCh SM products looks consistent with the scale break identified first by Kim and 698 

Barros (2002b). 699 

6 Discussion 700 

6.1 A physically-explained twofold scaling behavior of soil moisture? 701 

Since SM variability is impacted by several environmental factors (Brocca et al., 2007; Crown et 702 

al., 2012), the scale break observed on disaggregated SM could be the result of processes acting at 703 

different space scales. At finer scales (       ), spatial structure of SM is governed by infiltration 704 

or runoff, which are mainly related to the soil properties (texture, structure) (Hawley et al., 1983; 705 

Famiglietti et al., 1998). On the other hand, at larger scales (       ), SM variability is more 706 

affected by evapotranspiration processes (Mohanty and Skaggs, 2001) or precipitation (Jackson et al., 707 

1999). 708 

A similar scale break at ~ 10 km was also noted by Kim and Barros (2002b) based on power 709 

spectra and statistical moments of SM, estimated from airborne L-band radiometer (Southern Great 710 

Plains Experiment 1997, USA). SM retrievals were obtained at 1 km nominal resolution from the Ƭ-ω 711 

model (Jackson and Schmugge, 1991) which depends on Vegetation Water Content (VWC) estimates 712 

based on NDVI. They observed that the relationship between the spatial structure of SM and 713 

landscape characteristics was strongly modulated by the wetness of the soil. Indeed, they applied an 714 

EOF analysis (Empirical Orthogonal Function) between SM and auxiliary data which are topography, 715 

VWC and soil content. This revealed that SM was much correlated to topography during rain events, 716 

PRODUCTS
Grid spacing

(km)

Scale range

(km)
β α H

[1 – 10] 2.01 0.97 1.59 0.09 0.97 0.45 0.99

[10 – 1024] 0.89 0.92 1.64 0.03 0.96 0.15 0.98

SM SMOS 25 [25 – 1600] 0.97 0.94 1.46 0.16 0.99 0.29 0.98

LST Aqua-MODIS ≈ 1 ≈ [1 – 1024] 1.60 0.98 1.7 0.03 0.96 0.26 0.98

LST Terra-MODIS ≈ 1 ≈ [1 – 1024] 1.65 0.99 1.91 0.04 0.95 0.31 0.99

NDVI Terra- MODIS ≈ 1 ≈ [1 – 1024] 1.13 0.98 1.74 0.03 0.96 0.15 0.99

SM DISPATCH 1

     
         

Table 2. Scaling parameters obtained from multifractal analysis over the period June-December 

2010. R² coefficients were estimated from linear regressions on the specified scale range. Note 

that 𝑅 𝐾 𝑞  is the average of the coefficients obtained on every moment curves. 
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whereas stronger correlation with vegetation (water content) was noticed during drier periods 717 

(mainly governed by evapotranspiration processes). 718 

These results are interesting since other research studies also observed similar scale break in the 719 

case of precipitation products obtained from radar at 1 km resolution (southeastern France, Gires et 720 

al., 2011). Indeed, a transition in spectra and moments was noticed at about twenty kilometers (not 721 

far from our 10 km scale break). However, some limitations relative to radar data acquisition must be 722 

taken into account considering these results. Indeed, constraints due to algorithmic processing 723 

(change from polar to Cartesian coordinates, impact of missing data, temporal integration…) and to 724 

physics (attenuation by rainfall, etc.) may impact the scaling properties of precipitation radar images. 725 

Moreover, the Z-R relationship between radar reflectivity and rain rate (Marshall and Palmer, 1948) 726 

remains somehow controversial, with a non-robust parameterization from a multi-scale point of view 727 

(Verrier et al., 2013). Thus, in this context, the scale break detected by Gires et al. (2011) may not be 728 

as relevant as it could be. However, they also analyzed the multifractal behavior of simulated 729 

precipitations generated on the same area, at ~ 2 km resolution, from the Meso-NH atmospheric 730 

model (Lafore et al., 1997). The analysis revealed the presence of a comparable scale break at about 731 

30 km, which tends to show that this transition scale in precipitation data is not an artifact. Since 732 

rainfall is an important forcing of SM, it may be thought that a break in the rainfall spectra would 733 

affect the SM, in a more significant way when the rain event is important. Moreover, a theoretical 734 

model of SM in the time domain was proposed by Katul et al. (2007) to relate the scaling of 735 

precipitation to that of SM. The spectral exponents of these two variables were found to be 736 

connected over time scales finer than 7 days, through the simple equation:          (with     737 

and    the negative spectral slopes of respectively soil moisture and precipitation time series). 738 

Despite these results were observed on time series, it may corroborate the possible dependence 739 

between the SM variability and that of heavy rainfall, even in the space domain. 740 

Considering seasonal variations, the power spectra of disaggregated SM seem to reveal a 741 

pronounced twofold scaling behavior especially during spring and early summer (October to 742 

December period). Since DisPATCh images are mainly located over the middle-south part of the 743 

Murray Darling Basin, climate is then mostly temperate. Therefore, the last months of the study 744 

period correspond to a drier landscape. Thus, the two scaling regimes seem to be even more distinct 745 

when the soil is drier. To demonstrate this effect, the spatial mean of DisPATCh SM (μ(SM)) and the 746 

absolute difference | 
     

       | were computed for each disaggregated image. In Figure 6, the 747 

normalized anomalies of these two variables are in line with this hypothesis (blue and red circle 748 

symbols): a more pronounced twofold scaling behavior seems to be found on the driest days (Oct-749 

Nov-Dec). Kim and Barros (2002b) noticed a similar behavior, with lower scaling differences during 750 
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rain events (observed on both spectra and moments of SM). In certain dates, they even noticed that 751 

there was no scale break at all, corresponding to very high wetness conditions of the soil. Moreover, 752 

we estimated the position of the scale breaks on each power spectrum during the period 753 

(corresponding normalized anomalies plotted in gray star symbols, Fig.6). Although it is positioned on 754 

average around 10 km (not shown here but the mean value over the full period was estimated at ~ 755 

13 km), the transition scale between the two scaling regimes seems to follow a decreasing trend as 756 

the soil is drying, with estimated scale breaks ranging from ~ 15 km in wet period to ~ 12 km in dry 757 

period. A comparable behavior was observed by Kim and Barros (2002b), showing that the position 758 

and the amplitude of the scale break in the scaling behavior of SM is dependent on the state of SM, 759 

and thus on the hydrometeorological conditions like rain, evapotranspiration and infiltration 760 

processes. 761 

 762 

To go further on the dependences between seasons and SM scaling, Kim and Barros (2002b) 763 

observed that multifractality was almost always involved on scales smaller than 10 km, whatever the 764 

dryness of the soil. However, on scales greater that 10 km, multifractality was found to become 765 

monofractality, especially during drier conditions. At large scales (between 25 km and 400 km), a 766 

comparable effect was noticed on our SMOS SM products (purple circles, Fig.7): the multifractality 767 

Figure 6. Time series over the period June-December 2010 of the normalized anomalies of 

the three following variables: the spatial mean of each DisPATCh SM product; the absolute 

difference between the two spectral exponents 𝛽𝑙𝑎𝑟𝑔𝑒  and 𝛽𝑠𝑚𝑎𝑙𝑙  (estimated respectively 

for 𝑙     𝑘𝑚 and 𝑙     𝑘𝑚); the position of the scale breaks estimated on each 

spectrum by the segmentation algorithm. The dotted line differentiates the two regimes: 

wetter trend from June to September and drier trend from October to December. 
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index α is decreased from around 1.6 (June) to 1.3 (December), which may reflect a moderate 768 

decrease of multifractality during the study period. Therefore, multifractal properties of SM at large 769 

scales seem to be related to the soil dryness. This may give complementary explanations to the 770 

twofold scaling behavior of SM. On the other hand, considering DisPATCh SM, a rather constant 771 

evolution of α is noticed on both small scales (blue triangle symbols) and large scales (blue star 772 

symbols). The first case confirms the idea that multifractality is not dryness-dependent on smaller 773 

scales, whereas the second is in contradiction with this assumption. Thus, the latter should be 774 

considered cautiously to explain the scaling properties of SM. 775 

 776 

6.2 A model-induced twofold scaling behavior of soil moisture? 777 

In relatively recent works (Mascaro et al., 2010; Mascaro and Vivoni, 2012), scale invariance and 778 

multifractality were noticed from SM products measured from airborne L-band radiometers (Southern 779 

Great Plains 1997 and 1999 Experiments, USA). In these studies, a Log-Poisson multifractal model was 780 

applied (She and Levêque, 1994), and a single scaling regime was observed on statistical moments, 781 

from 0.8 km to 25.6 km scales. Although this result confirms the multifractal properties of SM on 782 

space scales similar to ours, it refutes the existence of two scaling regimes. No scale break was 783 

observed at about ten kilometers. Since the Log-Poisson model is based on a similar universal theory 784 

as the UM model (continuous cascades), it is somewhat unexpected not to detect the same transition 785 

on comparable SM products (same technology and same scale range). 786 

Figure 7. Time series of the multifractality index α, over the period June-December 2010. 
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To investigate if this difference could be related to the case study (different areas or periods), we 787 

compared our DisPATCh products to fine scale airborne data acquired during the AACES-2 mission 788 

(Peischl et al., 2012). This mission was performed in September 2010, during which transect flights 789 

were carried out over the Murrumbidgee catchment. Brightness Temperatures (BT) were acquired 790 

from L-band radiometer (on both H- and V-polarizations), at a nominal 1 km spatial resolution. The 791 

study area was divided in 5 patches of 50 × 100 km², each corresponding to a single flight day (13, 16, 792 

19, 21, 22 September). We gathered these patches into one single BT image, and we selected a sub-793 

image of 128 × 128 km². To verify the presence of two scaling regimes in the data, we applied spectral 794 

analysis on both H-polarized and V-polarized BT sub-images. In Figure 8, the power spectrum of H-795 

polarized BT was compared to the power spectra of DisPATCh related products on equivalent period. 796 

The spectra of each satellite product available between the 13 and 22 of September were averaged 797 

together. Since no DisPATCh SM products were pre-selected on this period (because of too many 798 

NaN), we chose the nearest available product, which corresponds to 4 October. In Figure 8, one single 799 

linear fit is observed on BT power spectrum, over the entire scale range (from 1 km to 128 km) and 800 

with a spectral slope equivalent to that of SMOS SM spectrum (β   1). Note that V-polarized spectrum 801 

was not plotted here, but it was found to be very similar to the H-polarized one. 802 

Different scaling behaviors were noticed for AACES BT and DisPATCh SM, on similar area and 803 

similar period. This may sustain the idea that the scale break observed at 10 km could be caused by 804 

the DisPATCh model and, specifically, by the way in which the multi-scale properties of each product 805 

 

Figure 8. Angle-integrated power spectra of Brightness Temperature (BT) and DisPATCh related 

products, obtained on the period September-October 2010. For better visualization and 

comparison, BT power spectrum was shifted down (black arrow on the graph). 
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are mixed in the algorithm. To verify this hypothesis, a simplified version of the C4DIS processor was 806 

implemented in order to study the multi-scale behavior of the different variables combined and 807 

generated through the algorithm. To do this, the method proposed by Molero et al. (2016) was 808 

followed, which includes the two main steps described in section 4.2: (1) the estimation of       809 

variable (Soil Evaporative Efficiency) from MODIS products (Eq.13-15) and (2) the proper 810 

disaggregation process of SM from SMOS products,       and     parameter (Eq.17-18). 811 

According to this method, our algorithm was applied on SMOS and MODIS products acquired on 812 

November 19, 2010. A sub-area was selected (≈ 700 x 700 km²) in order to have a smaller number of 813 

missing data, and thus to get the minimum impact of gap-filling on the studied products. Figure 9 814 

shows the power spectra obtained from the input products of DisPATCh (LST, NDVI), intermediate 815 

products (Ts, SEE) and output product (SM MEAN). The latter product is the average of the 6 816 

disaggregated SM images obtained from the 6 SM-LST combinations (see section 4.1). Here, just one 817 

SMOS image of ≈25 km grid spacing was combined with the MODIS products. Indeed, both cases with 818 

one SMOS image and four downsampled ones were implemented (section 4.1 and Molero et al., 819 

2016), and no significant differences were observed between the final products and between their 820 

power spectra. Therefore, for simplicity of implementation, only the case of one SMOS image was 821 

considered here. For comparison, the power spectrum of C4DIS SM product acquired on the same 822 

date and on the same sub-area was also plotted here. The segmentation algorithm used in section 5 823 

was applied on each power spectrum. A geometric mean was estimated from the different scale 824 

breaks obtained, revealing two averaged scale breaks which are nearly common to all spectra: the 825 

first at almost ten kilometers (l = 9 km) and the second at about thirty kilometers (l   33 km). To 826 

evaluate the link between the multi-scale behavior of each product, spectral exponents were 827 

estimated on the two following scale ranges: from 33 km to 9 km (large scales) and from 9 km to 1 828 

km (small scales). Comparing our SM MEAN product with SM C4DIS product (Table.3), a very similar 829 

scaling is observed on large scales ( 
     

 ≈ 1.3). On small scales, high spectral exponents are found, 830 

with  
     

 ≈ 2 for SM MEAN and  
     

 = 2.86 for SM C4DIS. These different spectral slopes on finer 831 

scales could be related to the non-implementation of some filtering steps in our algorithm which are 832 

indeed coded in C4DIS processor: corrections of topography effects, filtering LST data with low 833 

quality, etc. (Molero et al., 2016). 834 
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 835 

Despite these small differences between SM MEAN and SM C4DIS spectra, the scale break 836 

remains noticeable, as it seems to be on the other products of the algorithm. To demonstrate this, 837 

the absolute difference     |             | was computed as an indicator of the amplitude of 838 

the scale break. Values greater than 0.6 were found for LST (Aqua and Terra), Ts (Aqua) and SEE 839 

(Aqua) products. These results seem to reveal that MODIS LST products would be the cause of the 840 

scale break located at about ten kilometers in the disaggregated SM product. This scale break would 841 

propagate in the algorithm through the estimation of Ts and SEE. A possible explanation to this scale 842 

break in LST products may be related to the physical nature of the signal used. Indeed, 843 

optical/thermal sensors can be characterized by modified spectral slopes near the satellite 844 

resolution. Moreover, this effect seems more important on Aqua LST (   = 0.83) than on Terra LST 845 

(   = 0.62). Similar differences can be observed between the mean power spectra of Aqua and Terra 846 

LST over the full period (Fig.3 in section 5.1). Thus, it may be thought that the amplitude of the scale 847 

break could be related to the diurnal cycle of surface temperature. Since surface temperatures 848 

measured from Aqua are acquired at the hottest hours of the day (13:30), there might be a 849 

correlation between the amplitude of scale break and the level of surface temperature. 850 

Figure 9. Angle-integrated power spectra of some of the input, intermediate and output products 

obtained from our implementation of DisPATCh on November 19, 2010. Power spectrum of the 

final C4DIS product is also plotted here. For better visualization and comparison, the positions of 

power spectra according to Y axis were modified. 
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 851 

Considering the scale break observed at about 30 km, this one may not be related to the multi-852 

scale properties of MODIS products but possibly to the combination of different products defined on 853 

different grid spacings. Indeed, DisPATCh algorithm combines and creates products which have 854 

either the grid spacing of MODIS data (≈1 km) or the grid spacing of SMOS data (≈25 km). For 855 

example, the estimation of SEE (Eq.15) combines end-members (       and       ) defined on the 856 

SMOS grid, with another product (Ts) defined on the MODIS grid. As seen on Figure 10, a footprint of 857 

SMOS pixels is then observable on the resulting image of SEE. This property is due to the resampling 858 

strategy of SMOS data and to the end-members that are defined on the SMOS grid. This systematic 859 

footprint is visible in the real domain but can also have an impact in the Fourier domain. Indeed, 860 

sharp transitions at the SMOS pixels limits may create spurious convolutions by cardinal sine-like 861 

functions which may affect the spectrum. On the disaggregated SM, this effect can generate an 862 

imperfect transition between the part of the spectrum related to SMOS SM (l > 25 km) and the part 863 

related to MODIS products (l < 25 km). Regarding the behavior of SEE power spectra on scales 864 

greater than thirty kilometers (Fig.9), a lower spectral slope is observed (β ≈ 0.5) comparing to that 865 

obtained on finer scales (β ≈ 1 for          ). This could be related to the oversampling of SMOS 866 

Table 3. Spectral exponents obtained from spectral analysis of DisPATCh related products on 

November 19, 2010 (Fig.9). R² coefficients were estimated from linear regressions on the specified 

scale range.   𝛽  |𝛽𝑙𝑎𝑟𝑔𝑒  𝛽𝑠𝑚𝑎𝑙𝑙| is used as an indicator of the amplitude of the scale break, 

with large and small referring respectively to [33 – 9] km and [9 – 1] km scale ranges. 

Scale range (km)

Spectral exponent β β

LST - Aqua 1.08 0.97 1.91 0.98 0.83

LST - Terra 1.39 0.97 2.01 0.98 0.62

NDVI 0.93 0.94 1.22 0.98 0.29

TS - Aqua 0.90 0.95 1.55 0.98 0.65

TS - Terra 1.33 0.98 1.79 0.98 0.46

SEE - Aqua 0.88 0.96 1.61 0.98 0.73

SEE - Terra 1.25 0.97 1.83 0.98 0.58

SM MEAN 1.22 0.96 2.08 0.97 0.86

SM C4DIS 1.29 0.96 2.86 0.98 1.57

[33 - 9] [9 - 1]

∆β
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data, generating harmonics on fine scales and therefore not including variability on large scales. In 867 

this manner, not only large scales but even fine scales could be affected by this effect. The latter may 868 

also contribute, in a way, to the accentuation of the spectral drop observed at finer scales on the 869 

final disaggregated SM product. 870 

 871 

 872 

7 Conclusion 873 

During the last century, several studies were carried out to investigate the scaling properties of 874 

SM. Very diversified technologies were used to access and study the spatial structure of SM: airborne 875 

microwaves products, satellite optical indices, etc. Moreover, different approaches have been 876 

considered, such as power spectra, statistical moments, fractal dimensions, and even different types 877 

of cascade models (Log-Poisson, Universal Multifractal, and even no explicit parameterization in 878 

some cases…). In this study, we analyzed the multifractal behavior of remotely sensed SM products 879 

over space scales ranging from the kilometric field scale to the continental scale. Universal 880 

Multifractal model was applied for the first time on SMOS SM data, giving access to large scale 881 

variabilities of SM, over the Australian landscape. Fractal and multifractal properties were observed, 882 

which confirmed and completed some results reported in existing literature. 883 

The relevant aspect of the present work may be the multi-scale analysis of the outputs of the 884 

disaggregation algorithm DisPATCh (Merlin et al., 2008a; Molero et al., 2016). This deterministic 885 

algorithm improves the space resolution of SMOS SM products from 40 km to 1 km. To do this, it 886 

Figure 10. Images corresponding to 𝑇𝑠 𝑚𝑖𝑛 and 𝑆𝐸𝐸𝐻𝑅 products obtained from our 

implementation of DisPATCh on November 19, 2010. 
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combines coarse-scale SMOS SM with fine-scale (≈1 km) MODIS optical/thermal data. Although 887 

several validation studies have been realized on this downscaling method (Malbéteau et al., 2016; 888 

Merlin et al., 2012, 2013, 2015; Molero et al., 2016), none fully explored its statistical behavior over a 889 

continuum of space scales. In this context, we applied fractal and multifractal analysis on the 890 

different products involved in DisPATCh algorithm, including disaggregated (and original) SM 891 

products, and MODIS auxiliary data which are vegetation indices (NDVI) and surface temperatures 892 

(LST). 893 

Input products of DisPATCh revealed relatively good scaling properties over the considered scale 894 

ranges. Indeed, NDVI, LST and original SM were characterized by a power law evolution of their 895 

power spectra and statistical moments, meaning respectively fractality and multifractality. However, 896 

a specific scaling behavior was noticed for the output disaggregated SM. Two scaling regimes were 897 

obtained, with a transition scale observed at about ten kilometers, on both spectra and moments. 898 

Considering spectral analysis, on large scales (l > 10 km), disaggregated SM was found to have the 899 

same scaling as the original SM measured from satellite. On finer scales (l < 10 km), a different 900 

behavior was noticed, with an increasing slope of the power spectrum. Similar scale break was 901 

detected on statistical moments, showing that both spectral and multifractal properties of DisPATCh 902 

SM are characterized by this twofold scaling signature. 903 

Two possible arguments were given to explain the specific scaling of the disaggregated SM. First, 904 

a more physical interpretation may indicate that this twofold scaling behavior would be related to 905 

the real properties of SM. As it was previously observed by Kim and Barros (2002b), such scale break 906 

would be reflective of nonlinear hydrometeorological processes (rainfall, infiltration, 907 

evapotranspiration) acting at different space scales and modulated by terrain, soils and vegetation 908 

distributions. The spatial structure of SM may be more impacted by infiltration or runoff at the field 909 

scale, whereas it would be mainly controlled by evapotranspiration or precipitation at the 910 

regional/continental scale. A more significant scaling transition was observed on the driest days 911 

(early summer), which may support the link between SM and external forcing agents such as 912 

precipitation. 913 

A second explanation would be more algorithmic and directly related to the processing of the 914 

different products used and created within the algorithm. The model used in DisPATCh would 915 

generate SM whose statistics are not properly distributed across scales. This may occur at two levels 916 

in the algorithm. First, some MODIS products properties (such as breaks in the scaling) may be 917 

retrieved in the final DisPATCh products. Indeed, a spectral drop at about the same ten kilometers 918 

scale was detected on LST power spectra. Although it is less pronounced than on disaggregated SM, 919 
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this scale break may be introduced by MODIS LST and amplified by the disaggregation model. Since 920 

one single scaling regime was noticed on Brightness Temperature (BT) products acquired in the L-921 

band over the same area and the same period, these observations suggest that the unexpected 922 

scaling in MODIS products would be caused by the technology specific to optical/thermal sensors. 923 

Then, another impact of the algorithm on the multi-scale properties of SM may be related to signal 924 

processing artifacts occurring with the combination of several products defined with different grid 925 

spacings. This combination is required to permit conservativity between input and output SM 926 

products.  However, from a signal processing point of view, this could create systematic footprints on 927 

the final image (i.e., visible SMOS pixels in the downscaled products) and therefore affect the power 928 

spectrum (convolutions by cardinal sine-like functions). 929 

At this point, it is difficult to determine which of the physical or algorithmic factors would be at 930 

the origin of this twofold scaling behavior. Though, a plausible hypothesis may be that both factors 931 

could affect the scaling of disaggregated SM. Indeed, a scale break at about the SMOS SM resolution 932 

could be initially produced by combination artifacts, which would be more or less amplified in the 933 

algorithm according to seasonal conditions, resulting in moving the scale break during the period to 934 

finer scales. 935 

Further work need to be addressed to fully explain these results, in particular to determine to 936 

what extent each of the two factors impacts the scaling of DisPATCh SM. Complementary auxiliary 937 

data should be compared to our products. Indeed, an EOF or comparable analysis made on DisPATCh 938 

SM and topography, vegetation water content or soil content would provide relevant information 939 

about the connection between the spatial variability of these products and help with interpretation. 940 

Moreover, it would be interesting to verify if precipitation products can be characterized by a similar 941 

scale break on equivalent space scales and over the same area (Murray Darling Basin). However, it 942 

must be considered that such a comparison might be complex to interpret since, to our knowledge, 943 

no theoretical model has been proposed yet to relate the spatial scaling properties of SM and that of 944 

rainfall (as it was already done in the time domain by Katul et al., 2007). In the same way, the 945 

comparison between DisPATCh SM and airborne BT is not that trivial, because relatively complex 946 

operations are involved to get inverted SM from BT. To illustrate this, Mascaro and Vivoni (2012) 947 

noticed monofractality from BT data, whereas multifractality was observed from the corresponding 948 

inverted SM data. The scaling properties of BT could be affected during the inversion process, 949 

explaining why the single scaling we observed on BT does not imply single scaling of DisPATCh SM. 950 

Therefore, multifractal analysis of proper fine scale SM products may clarify this idea and help 951 

validating DisPATCh SM variability. 952 
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In the hypothesis of a model-induced scale break, current work is engaged to quantify the effect 953 

of MODIS products and the trace of pixel SMOS on different dates and on proper operational 954 

conditions (analysis of products used and generated within the C4DIS processor). An application of 955 

DisPATCh using Landat-7 auxiliary data instead of MODIS products was realized by Merlin et al. 956 

(2013), allowing a disaggregation process at sub-kilometric scales (100 m). Since Landsat-7 provides 957 

optical/thermal data with higher resolution than MODIS, it could be interesting to verify if both 958 

Landsat-7 and the resulting disaggregated SM product would be characterized by a similar scale 959 

break, but shifted on finer scales than the 10 km scale observed on MODIS. Therefore, the results 960 

obtained could help to quantify the real impact of optical/thermal auxiliary data on the multi-scale 961 

properties of DisPATCh SM. On a more operational point a view, if this impact is confirmed, the 962 

results obtained may help to define a specific scale below which the variability generated by the 963 

disaggregation model may not be as reliable as it should be. Concerning the impact of SMOS pixels 964 

footprint effects on the disaggregated product, a solution could be to filter out the sharp transitions 965 

at SMOS pixels limits. However, this should be done with caution since such filters may excessively 966 

attenuate the variance at smaller scales. Another way to investigate our observations of DisPATCh 967 

SM is to focus on its dynamical behavior over different aggregation scales. Indeed, one of the main 968 

problem in downscaling a dynamical behavior arises from the fact that the dynamical behavior of an 969 

aggregated signal can be approximated by the same deterministic equation structure only when the 970 

aggregated area is phase-synchronized (Mangiarotti et al., 2016). Considering this issue, the 971 

applicability of deterministic downscaling methods like DisPATCh may not be that obvious over 972 

certain spatial scales, leading to several difficulties and, perhaps, contributing to explain the scaling 973 

irregularities observed in this study.  974 

Finally, a possibility could be to compare the SM variability produced by DisPATCh with that 975 

created by fractal stochastic downscaling methods. Based on scaling properties, these methods 976 

preserve the probability distribution from large to fine scales. In precipitation, several studies applied 977 

these algorithms on rainfall data (Rebora et al., 2006; Sharma et al., 2007). Research works proposed 978 

methods developed on multiplicative cascade such as Log-Poisson (Deidda, 2000) or UM model 979 

(Gires et al., 2012), revealing some potential to quantify uncertainty and representativeness errors 980 

between coarse-scale and in-situ measurements. Concerning SM downscaling, some studies used 981 

such fractal-based methods (Bindlish and Barros, 2002; Kim and Barros, 2002a; Mascaro et al., 2010). 982 

In our study, it may be interesting to apply this kind of method on SMOS products. This would 983 

consists in injecting in the UM model the values of α and    parameters obtained from SMOS 984 

products on large scales, and then continuing the cascade at higher resolutions. Following this 985 

procedure, the fine-scale field will have the same scaling properties as the coarse-scale one. 986 
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However, since the disaggregation is based on random generator, an ensemble of possible fields can 987 

be proposed from just one pair of α/   parameter. Therefore, this kind of methodology may not be 988 

fully suitable in the case of operational hydro-agricultural applications, in particular when 989 

determining the position of the extremes. To overcome this inconvenient, a combination of the two 990 

approaches may be an interesting compromise between statistical scaling and evaporation-based 991 

determinism. For example, in DisPATCh algorithm, an idea might be to find a modified estimator of 992 

SEE that would be used in the disaggregation equation (18). This modified SEE would be computed by 993 

applying a 2D filter on the original SEE, which would be actually equivalent to perform a fractional 994 

integration of order ∆H = Hrequested – Hnon-filtered with Hrequested and Hnon-filtered measured respectively 995 

from SMOS soil moisture (at large scales) and from non-filtered SEE (for scales under 10 km). Doing 996 

this, the spectral slope of SEE may be adjusted, like that of the final disaggregated soil moisture. 997 

Thus, coarse-scale and fine-scale fields could be related through a common degree of fractional 998 

integration, which may contribute to limit the twofold scaling behavior observed on the 999 

disaggregated product. In practice, this modification would not be easy to implement since the 1000 

filtering should be properly dimensioned in order to affect only the small scales, between 1 and 10 1001 

km. Moreover, this texture-based image correction may impact the physical properties of SEE, so 1002 

there would be a compromise to be made on this aspect. 1003 
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