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Abstract. Thanks to its low noise level, the LSBB environment provides par-

ticular environment to carry out high quality electrical characterizations. In this

paper, we propose a complete modeling approach of the experimental results

from our experimental microelectronic setup. The tested device is a Metal Ox-

ide Semiconductor (MOS) floating gate capacitor which can be found in elec-

trostatic non volatile memories such as Flash. The main idea is to characterize

and model the leakage current through the tunnel oxide. We proposed, in a pre-

vious work, a model for charge loss considering a fractional Poisson process,

involving only two parameters, expressed as a Mittag-Leffler (ML) function.

Here, we also propose a combo of Fowler-Nordheim (FN) and Poole-Frenkel

(PF) models for leakage currents, based on tunnel effect transport through the

oxide. It gives the leakage current on a medium-to-long scale of time while the

ML model can possibly take into account a shorter time step. The perspective

is to find a relationship between these different models, used in various fields,

to propose a generic model of phenomena involving leakage in complex and

porous materials at different scales of time and space.

1 Introduction

Flash memory cells are based on the floating gate technology principle [1]. The most

widespread solution to enable semiconductor memories to be non-volatile, that is to say able

to keep information without any power supply, is to use MOS transistors whose threshold

voltage is shifted by a charge stored in an isolated gate above the channel. Floating gate

technologies consist in adding a second gate between the gate and the channel of a classi-

cal MOS transistor. This second gate, called "Floating Gate" (FG), can isolate charges to

make the transistor threshold voltage variable. Charges are injected through a dielectric, in

general Silicon dioxide SiO2, placed between the floating gate and the transistor channel,

as presented in Fig. 1. Lastly, the two gates of this "transistor" are separated by a tri-layer

stack oxide "Oxide/Nitride/Oxide" (ONO). Thus, the Flash elementary cell can be seen as a

classical MOS transistor whose gate would be in series with a capacitor CPP. The floating

gate can now store a charge while the second electrode of the capacitor becomes the "Control

Gate" (CG) of the cell.
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Figure 1. Picture of a floating gate structure (left) and its electrical scheme (right)

Barrier transparency in the tunnel oxide, which can be electrically modeled by a current

source I, allows the injection of charges in the floating gate, shifting the MOS transistor

threshold voltage VT according to equation (1):

VT = VT0 −
QFG

CPP

(1)

where VT0 is the natural threshold voltage of the cell, QFG the charge amount in the

floating gate and CPP the capacitance between the control gate and the floating gate.

Memory cell reliability, defined as the capability of said device to function over time,

is a major issue for manufacturers and can be related to many parameters such as process

and using conditions. Indeed, unceasing device scaling, decrease of dielectric thicknesses

around the floating gate and high voltages applied on cells are many parameters altering

memory reliability [2–5]. Thus, dielectrics’ quality is a major issue due to their antagonistic

roles: avoiding electric charge leakage currents during retention phase while being transpar-

ent enough during programming steps. A better understanding of these leakage currents is

crucial to improve the whole quality of our memory cells, that’s why we have to develop

powerful methods to reach very low current levels.

2 Floating Gate Technique

Most of the electrical measurements developed to characterize semiconductor devices and es-

pecially Non-Volatile Memories are based on current measurements. Indeed, to study a major

reliability aspect of these NVM we have to evaluate the very low-level leakage currents re-

sponsible for the charge loss during the retention phase. Nevertheless, these currents are not

accessible through direct measurements, even with high-performance analyzers [6], so we

have to use some indirect measurement techniques to reach lower level currents. One of the

most widely used technique is the "Floating-Gate Technique" (FGT), based on the use of a

MOS capacitor and a MOS transistor in parallel [7, 8]. Using this method requires i) protect-

ing the wafer from mechanical perturbations (vibrations) and ii) (very) long time acquisition.

In a classical laboratory environment, those two constraints are generally not easy to deal

with. Indeed, they lead to use, for a very long time, huge, heavy and very expensive probers

(mechanically insulated by air shocks), which is often economically not possible. The main

idea of our experimental platform consists in developing a "cheap" platform, presented ex-

haustively with its methodology in [9–12]. The mechanical insulation is "naturally" done by

the very peculiar environment of the underground LSBB Laboratory located in Apt (South of

France). The direct result of the measurements is a Drain-Source current in the TMOS de-

vice. After treatment consisting in interpolation with the known characteristics of this later,
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the electric charge in the floating gate is accessible versus time. Thus, the leakage current is

the temporal derivative of the charge according to time. Because the measurements are gen-

erally over sampled [12], this operation cannot be simply done by direct numerical derivation

as finite differences. This critical operation can be leaded by a modeling of the current, fitting

correctly the charge curve. One instance of extracted leakage current is proposed in Fig. 2.

Figure 2. Results of the FGT extraction for both positive and negative floating-gate voltages

The curve of the leakage current from direct derivative of charge evolution is found to

be highly noisy and is not suitable to define a clear trend for current leakage. It is directly

linked to the over-sampling measurement process. Because we cannot anticipate the varia-

tion of the charge during time, we choose an arbitrarily short time between two measures.

One way to estimate this leakage current is to have a model whom generated curves can be

derivated without issue. Two ways are explored : "deterministic" loss of charge by known

microelectronics currents and relaxation law generated by random processes.

3 Modeling of the leakage current

3.1 Conduction through dielectrics in microelectronics

In microelectronics, electrons can directly tunnel through dielectrics, but conduction can also

be assisted by traps existing in a damaged dielectrics.

3.1.1 Tunneling currents

Quantum mechanics, through the resolution of the Schrödinger equation, makes it possible

to predict the passage of particles through a barrier having finite width and height [13]. This

non-zero probability of passage of carriers, called transmission coefficient, is the cause of

various conduction phenomena through the oxide, such as direct tunnel or Fowler-Nordheim

(FN) tunneling [14]. Due to the relatively thick tunnel oxide (around 10nm [5]) , direct

tunneling is very low but the intern electric field is high enough to enable Fowler-Nordheim

mechanism, driven by two parameters denoted αFN and βFN in equation (2):

JFN = αFN .E
2
tun.exp

(

−
βFN

Etun

)

(2)

In the following of this study, we will only consider FN tunneling as a mechanism possi-

bly responsible for observed leakage currents.
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Figure 3. Tunneling mechanisms

3.1.2 Trap-assisted mechanisms

Due to the repeated programming/erasing operations on the memory cell (and thus electrons

passing through dielectrics), tunnel oxide is progressively damaged and traps are created

inside it, creating additional leakage paths. Several trap-assisted mechanisms have previously

been proposed in literature [15, 16], described in Fig. 4.

Figure 4. The main trap-assisted mechanisms in dielectrics

Tunnel oxide is thin enough so that the probability to have two (or more) traps aligned to

create a conductive path is very low [17] and we will only consider in our modeling process

the Poole-Frenkel mechanism, according to equation (3), driven by two parameters denoted

αPF and βPF :

JPF = αPF .Etun.exp

(

q.βPF .

√
Etun

kT

)

(3)

At the scale of an electrical characterization of a device, finally, only biases and flowing cur-

rents are recorded. FN and PF can be discriminated because they don’t occur in the same zone

of biases. Nevertheless, it is not simple to characterize a PF mechanism, because it depends

on the number of traps, their geometrical characteristics, their electromagnetic behavior, etc.

It can also be useful to consider that we are dealing with a transfert of material in a complex

medium, described by a set of macroscopical parameters, in view to build relaxation models.
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3.2 Relaxation models

In a previous paper, we have proposed the use of relaxation models, considering either a

simple relaxation (Classical Poisson process) or a relaxation with a memory effect (Fractional

Poisson process) [12].

3.2.1 Classical Poisson process

Indeed, we can consider electrons in the floating-gate as moving particles in a box with an

opening to the outside. The number of particles inside the box is a random process N(t)

following a binomial law and then the mean value n at time t follows ordinary differential

equation (4):

d

dt
n(t) + Cc.n(t) = 0 (4)

where the parameter Cc is the probability that a given particle is instantaneously outside

the box. The obvious solution is given by an exponential law (5):

n(t) = n0.exp(−Cc.t) (5)

where n0 is the initial number of particles. It is a memoryless relaxation law, also known

as the disintegration law.

The modeling of the charge evolution, using Classical Poisson process, is shown in Fig 6.

3.2.2 Fractional Poisson process

If a memory effect is taken into account i.e. the probability of particle to come out is now

depending on the number of remaining particles, we have a Fractional Poisson Process [18],

based on the Mittag-Leffler function and on the fractional Caputo derivative of order α [19–

23]. The mean value n of number of particles at time t follows the fractional relaxation

equation (6):

dα

dtα
n(t) +C.n(t) = 0 (6)

4 Comparison between models and experiments

We have first considered only the FN mechanism, occurring at "high" voltage, which has

been fitted on the direct measurement. We can see in Fig. 5 that this mechanism does not

explain the FGT extraction and a second mechanism is necessary for lower voltages. That’s

why we added the PF mechanism and the sum of the two contributions. The four parameters,

αFN , βFN , αPF , βFN have been optimized in order to model both direct measurement (over the

noise level) and FGT extraction (Fig. 5).
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Figure 5. Modeling of both direct measurement and FGT extraction, using a combo of FN and PF

mechanisms. αFN = 7.1 × 10−4A/V2, βFN = 2.55 × 1010V/m, αPF = 1.26 × 10−16A/(V.m), βFN =

5 × 10−7(V.m)1/2

We present, then, the comparison between measurements and the relaxation processes

models. The parameters of the relaxation models have been optimized in order to fit only the

FGT measurements. Two models are explored : the classical Poisson model (one parameter

Cc) and the fractional Poisson Processes. For this latests, two set of parameters are proposed.

The first one (C1, α1) is optimized in order to fit the upper part of the experimental mea-

surements of the charge (short times), while the second one (C1, α1) is optimized to fit the

lower part of the curve (long times). Fig 6 shows the modeling of the charge evolution, using

Classical Poisson (one parameter Cc) and Fractional Poisson processes (four parameters).

Figure 6. Three models of relaxation compared to the extracted values of the charge versus time. Two

fractional models are proposed, for the upper part and the lower part of the curve. The parameters are :

Cc = 4 × 10−7 s−1, α1 = 0.8922, C1 = 3.285s−α1 ,α2 = 0.964, C2 = 2.85s−α2
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After a derivative step, based on the analytical formulation of the models, and since we

know the floating-gate voltage for each time step, we obtain the leakage current evolution,

presented in Fig. 7, for the three relaxation models.

Figure 7. Three models of relaxation compared to the extracted values of the leakage current, from

charge evolutions in Fig. 6.

It appears that the three relaxation models are close to the shape of the FGT measurements

for biases between 0.5 and 4.5 V. They don’t succeed in fitting upper biases of the floating

gate. It can be interpreted by the fact that for biases greater than 4.5 V, the deterministic FN

current becomes the major way of electrons transfert through the oxide. Looking at Fig.5, we

denote that FN current is the greatest when the floating gate voltage rises around 5 V.

Let us insist on the fact that for the Poisson relaxation models, either classical or fractional,

only the measurements of charge versus time are necessary, while for FN and PF models, a

model is needed to link the floating gate voltage to the electric field in the oxide.

Finally, to summarize, we present in figure 8, in logarithmic scale, all the models and the

measurements in the same figure. Fractional Poisson processes give a good agreement with

measurements for biases lower than 1.5 V.

Figure 8. All models compared to the extracted values of the leakage current, from datas in Fig. 5 and

7.
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5 Conclusion

We present here two different approaches for fitting ultimate measurements of current leak-

age in a floating gate device. The first one is based on deterministic physical formulations

of charge transfert in insulators. The second approach is based on stochastic formulations

involving processes with memory effect, according to the fact that the oxide could be seen as

a complex material in which displacements are resulting from numerous interactions. These

two approaches give a good agreement in the long time range behavior of the charge loss in

the device, corresponding to low biases of the floating gate.

We can explore two main ways of perspective. The first one should be a theoretical approach

linking fractional Poisson process with trap assisted currents as Poole-Frenkel. The second

way of perspectives lyes in increase the capability of our experimental platform adding a ca-

pacitance meter (allowing to monitor the damages of the oxide) and a better mechanical and

optical system (allowing larger wafers with smaller devices).
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