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Vibrio aestuarianus is a bacterium related to mortality outbreaks in Pacific oysters,

Crassostrea gigas, in France, Ireland, and Scotland since 2011. Knowledge about

its transmission dynamics is still lacking, impairing guidance to prevent and control

the related disease spread. Mathematical modeling is a relevant approach to better

understand the determinants of a disease and predict its dynamics in imperfectly

observed pathosystems. We developed here the first marine epidemiological model to

estimate the key parameters of V. aestuarianus infection at a local scale in a small and

closed oyster population under controlled laboratory conditions. Using a compartmental

model accounting for free-living bacteria in seawater, we predicted the infection dynamics

using dedicated and model-driven collected laboratory experimental transmission data.

We estimated parameters and showed that waterborne transmission of V. aestuarianus

is possible under experimental conditions, with a basic reproduction number R0 of

2.88 (95% CI: 1.86; 3.35), and a generation time of 5.5 days. Our results highlighted

a bacterial dose–dependent transmission of vibriosis at local scale. Global sensitivity

analyses indicated that the bacteria shedding rate, the concentration of bacteria in

seawater that yields a 50% chance of catching the infection, and the initial bacterial

exposure dose W0 were three critical parameters explaining most of the variation in the

selected model outputs related to disease spread, i.e., R0, the maximum prevalence,

oyster survival curve, and bacteria concentration in seawater. Prevention and control

should target the exposure of oysters to bacterial concentration in seawater. This

combined laboratory–modeling approach enabled us to maximize the use of information

obtained through experiments. The identified key epidemiological parameters should be

better refined by further dedicated laboratory experiments. These results revealed the

importance of multidisciplinary approaches to gain consistent insights into the marine

epidemiology of oyster diseases.

Keywords: marine epidemiology, parameter estimation, compartmental model, ABC method, global sensitivity

analysis, basic reproduction number R0, Crassostrea gigas, oyster mortality
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INTRODUCTION

Mass mortality of adult Pacific oysters,Crassostrea gigas, has been
reported since 2001 in France, in association with the detection
of the bacterium Vibrio aestuarianus. Since 2011, an increase
in the incidence of these mortality events has been observed
(1). This bacterium has been isolated recently during oyster
mortality events also in Ireland and Scotland (2, 3). Such an
increase in mortality has a strong direct economic impact,
causing considerable concerns among farmers because adult
oysters that have reached their marketable size are mainly
affected (4). Mortality mainly occurs in summer and seems
to last for a long period, reaching a cumulative mortality

rate of ∼30% at the end of the farming cycle (1). To date,
knowledge about this infection mainly concerns the properties

of the etiological agent V. aestuarianus, its diversity (5, 6)
and virulence factors (5, 7), the diagnostic methods available
(8), and the potential genetic basis for oyster resistance to the
induced disease (4, 9). The burden of V. aestuarianus infection
in oysters has been less studied. Hemolymph is colonized early
by the bacterium, and the disease rapidly progresses through
septicemia (10). Experimental reproduction of the disease in
cohabitation trials has shown that oyster sensitivity increases
with age and size, mortality rates reaching up to 75% during
the 15 days post-exposure (dpe) (4, 11). Oyster mortality rates
increase with the bacterial concentration in seawater, indicating
a dose-dependent process in disease progression (12). Because
DNA of V. aestuarianus has not been detected in surviving
challenged oysters (12), it seems that these oysters never got
infected. This observation also suggests that the oyster once
infected never returns to a truly uninfected state, death being
the sole outcome. The infection kinetics seems to be modulated
by seawater temperature: the warmer the water, the faster is
the infection (13), infection occurring within a range from 9–
13◦C to 19–20◦C (3). Attention has naturally focused on the
biology of the individual organism. To date, knowledge about
pathogen transmission has been ignored. As a result, facing
outbreaks has typically given rise to mainly observation of cases
and their possible drivers rather than the implementation of
efficient control measures. The quantification of the transmission
of these bacteria is a worthwhile step for further elucidating the
disease spread and establishment in oyster populations, and to
substantially inform disease management.

Mathematical modeling can be used to provide new insights
on the relative importance of factors influencing disease spread
(14). Such an approach synthesizes knowledge about a disease
into a quantitative framework (15). The choice of an appropriate
mode of a transmission model is also crucial for designing
a proper intervention strategy (16). To date, despite the
acknowledged application of susceptible-infectious-recovered
(SIR) compartmental modeling framework to marine diseases
(16, 17) and to their invertebrate hosts (18), epidemiological
models of pathogen transmission remain on the fringe of
marine disease modeling, partly because of limited amounts
of data (19, 20). Examples of disease dynamics among marine
invertebrates have previously been formulated, e.g., describing
direct waterborne transmission of white plague type in corals (21,

22) or withering syndrome in abalone (23). Bivalve diseases have
received less attention. The possible transmission mechanisms
of bonamiosis in flat oyster Ostrea edulis populations have
been explored theoretically by comparing five compartmental
models, without relating them to any particular case study
(24). More recently, a theoretical compartmental model was
formulated to represent the transmission of diseases among
marine suspension-feeders (25), e.g., oysters. The mode of
transmission was assumed to involve contacts between the host
and the free-living stages of the pathogen in seawater, described
there by filtration of infective particles released by infected and/or
dead individuals, including dose dependence and dilution via
volume of the water column (25). This transmission model
explicitly accounts for pathogen population multiplication or
reduction inside and outside its host and includes several explicit
compartments for waterborne pathogens, a filtered pool of
pathogens in hosts, and a remote pool of pathogens (25, 26).
This conceptual model was further adapted to simulate the
dynamics of Perkinsus marinus, a well-known parasite of the
Eastern oyster Crassostrea virginica (27), via the incorporation of
seasonal factors. However, there is currently no knowledge about
the V. aestuarianus environmental populations, thus preventing
the formulation of such a detailed model. Besides, as this
bacterium belongs to the genus Vibrio, a direct waterborne
transmission among oysters similar to Vibrio cholerae can
be assumed. Mathematical modeling of cholera transmission
among humans, where the causative agent is the bacterium
V. cholerae, has become exemplary within the framework of
environmentally transmitted infectious diseases (28). Cholera
models are mainly formulated via SIR compartmental modeling
framework and imply that individuals become infected via the
consumption of contaminated seawater, therefore including an
explicit compartment for the aquatic reservoir of pathogens
(29). This model formulation could thus be adapted to V.
aestuarianus, considering an explicit compartment for free-living
bacteria in seawater but without detailing all of the pathogen
multiplication processes.

Except for one (27), the parameterization of existing marine
invertebrate disease models has been based on theoretical
parameter values. These have been chosen arbitrarily, albeit
biologically plausible (21–26). In any host–pathogen system,
epidemiological parameters are difficult to measure directly
(30). Indeed, because diseased mollusks show only very seldom
symptoms, mortality event is often the only suspicious sign
of disease observed in the field, and laboratory test analyses
are necessary to identify the causative pathogen (31). In
France, the current surveillance system is mainly based on the
notifications of mollusk mortality by farmers, and laboratory
investigation of these notifications is not systematic (32). In
addition, as V. aestuarianus is not a notifiable disease, no active
surveillance of this pathogen is conducted. Consequently, field
data are insufficient to quantify the transmission of marine
molluscan diseases.

To overcome this lack of observation data, the quantification
of epidemiological parameters can be performed experimentally
(30). Several studies have attempted to quantify these parameters
under experimental conditions to further inform mathematical
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models of marine infectious diseases (33, 34). Some small-
scale laboratory experiments have been carried out to explore
bacterial shedding, the minimum infective dose, and half-
lethal dose (LD50) of V. aestuarianus infection among
oysters (12). Nevertheless, parameters have been estimated
independently in separate experiments, thereby probably
leading to misestimating their value because the assumption of
independence among parameters may be violated. In addition,
due to logistical constraints, only small populations can be
studied under experimental conditions. As these parameters
most probably are highly heterogeneous among individuals, it
is difficult to accurately estimate them, requiring population
scale experiments.

Thus, given that the quantification of epidemiological
parameters is not straightforward, it becomes crucial to
first identify the key parameters whose variations strongly
influence model outputs, in order to subsequently focus research
investment for reducing model prediction uncertainty. Key
parameters can be identified by analyzing the model sensitivity,
i.e., by studying the effects on model outputs of varying input
epidemiological parameters.

Our objective was to better understand and predict V.
aestuarianus transmission in Pacific oysters using experimental
data. We developed a mathematical model based on the model
for V. cholera (29) and fitted to data on V. aestuarianus
from dedicated laboratory experiments. Using the model, we
(1) reproduced the transmission of V. aestuarianus among
oysters (2), evaluated the ability of the pathogen to invade
an oyster population under experimental small-scale conditions
reproducing natural course of the infection (3). identified
epidemiological parameters influencing pathogen spread the
most within a small oyster population, and (4) provided probable
range estimates of these parameters.

MATERIALS AND METHODS

Description of the Natural System
V. aestuarianus infection is transmitted through a direct
waterborne process (10). Infected oysters shed bacteria in water
until their death. When exposed to contaminated water, new
oysters can get infected. After an incubation period during which
the bacteria invade the oyster, infected oysters start shedding
bacteria in the seawater.

Experimental Design
Animals
Batches of Pacific oyster C. gigas were produced in March 2013
in Ifremer Argenton (Bretagne, France), transferred in May to
the Ifremer nursery at Bouin facilities (Vendée, France) and
in November 2014 to the Ifremer experimental facilities in
La Tremblade (Charente-Maritime, France). The oysters were
housed in 240 L raceways with a continuous ultraviolet (UV)
light–treated seawater flow and an ad libitum phytoplankton
diet (Isochrysis galbana, Tetraselmis suecica, and Skeletonema
costatum). Oysters used in the experiments in September 2015
weighted by mean 12.1 g ± 1.6 (body weight). Twelve oysters
were screened before experiments for V. aestuarianus and

OsHV-1 herpes virus DNA by standardized quantitative PCR
(qPCR) protocols (8, 35) to ensure that the batches were
not infected before the transmission trials. This sample size
calculation was based on the assumption that both infections
would exist in the population above a prevalence of 20–30% in
permissive conditions, i.e., allowing their progression (10).

Bacterial Strains and Inoculum Preparation
The GFP-tagged V. aestuarianus strain used in this study was
derived from wild-type strain 02/041 (36, 37). Vibrio isolates
were grown in the Luria-Bertani (LB) medium or LB agar
supplemented with 0.5M NaCl in the presence of kanamycin
(40µg/mL), at 20◦C. The cells were washed twice with filtered
sterile seawater before adjustment to optical density at 600 nm
(OD600) of 1.0. Bacterial concentration and purity were checked
by conventional dilution plating.

Contaminated-Seawater Preparation
Oysters were myorelaxed for 2–3 h at 20◦C in a magnesium
chloride solution (MgCl2, Sigma-Aldrich) at a concentration of
50 g/L (1/4 [v/v] seawater/freshwater) with aeration. Next, 100
µL of a bacterial suspension was injected into the adductor
muscle. A group of 10 oysters was injected with filtered sterile
seawater as negative controls. The inoculated oysters were then
transferred to tanks (60 oysters per tank) filled with 12 L of UV
light–treated and filtered seawater and maintained at 20◦C under
static conditions with aeration. After 48 h, the contaminated
seawater surrounding moribund oysters was titrated by flow
cytometry and qPCR before adjustment to two doses (low and
high doses; between 5× 104 and 1× 106 bacteria/mL) by dilution
in UV light–treated and filtered seawater.

Transmission Trials
Oysters (2 dose conditions× 10 oysters) were transiently exposed
to the contaminated seawater by immersion in individual
aerated containers (300mL) for 24 h at 20◦C before transfer
into clean beakers. All the containers were monitored daily
by collection of seawater samples. As soon as V. aestuarianus
was detected in seawater by flow cytometry, oysters in contact
with contaminated seawater (hereafter: contact oysters) were
assumed to be infectious, were removed from the container, and
daily transferred into new 300mL containers with UV light–
treated and filtered seawater. Containers with shed bacteria were
followed for up to 7 days after oyster removal, by flow cytometry
and qPCR. Contact oyster mortality was also recorded daily for
12 dpe, and dead oysters were daily removed. The animals were
considered dead when the valves did not close after transfer
on tank covers. Infection by V. aestuarianus was confirmed
by qPCR in oyster tissue samples. Figure 1 summarizes the
experimental design.

Three temporal individual trials were conducted (2 dose
conditions × 3 trials × 10 oysters) in this study. Moreover, in
two of these trials, complementary experiments and measures
were conducted on small populations of 10 oysters in triplicate
in 3 L tanks (2 dose conditions × 2 trials × 3 populations of 10
oysters), allowing 12 replicates of the transmission trials at a small
population level.
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FIGURE 1 | The experimental design for assessing Vibrio aestuarianus

transmission from contaminated seawater to contact oysters. (A) Initial

exposure of 10 oysters × 2 doses for 24 h. (B) After transfer of each individual

oyster into a new beaker with clean seawater, daily individual measures were

conducted for 12 days. As soon as bacteria were detected in the seawater,

the oyster was transferred into a new beaker, and the survival of bacteria was

measured daily in the previous beaker (now empty).

V. Aestuarianus Counts and Detection
The presence of GFP-tagged bacteria and bacterial counts were
measured in 100 µl of sampled seawater by flow cytometry
(Coulter Epics XL cytometer, Beckman R©, and CyFlow Cube
6 Robby Partec R©) on 10,000 events or after 5min with a
fixed threshold of FL1 fluorescence. This method enabled
measurement of a concentration of V. aestuarianus ≥103

bacteria/mL. V. aestuarianus DNA amounts were measured
by qPCR detection methods (8) in oyster tissues (50mg) or
seawater (100 µL) after DNA extraction via QiaAmp R© tissue kit
procedures (Qiagen R©) and total-DNA adjustment to 5 ng/µL
when needed. A standard curve was built by means of serially
diluted titrated genomic extracts (12). Assays were performed on
MX3000 and MX3005 machines (Agilent R©) with the Brilliant III
Ultrafast kit (Stratagene R©).

Modeling
Based on a study on a Vibrio bacterium (29) and on new
experimental data (this study), a stochastic compartmental model

of the SWEI (susceptible-water-exposed-infectious) type was
chosen to represent V. aestuarianus transmission among oysters
in a small-scale population (§2.3.1). In this system, infection
transmission occurred through contacts between susceptible
oysters and the contaminated seawater, i.e., through direct
waterborne transmission. Parameters were calibrated using an
Approximated Bayesian Computation (ABC) approach (§2.3.2)
using the new experimental data described above.

Model Formulation
By being exposed to contaminated water (W) containing bacteria,
a susceptible oyster (S) became infected (E) at rate a.λ(W),
where a is the rate of effective exposure to the bacteria in
the contaminated water (per day) and λ(W) is the probability
(unitless) of a susceptible oyster to catch the infection. An
infected oyster became infectious (I), i.e., started shedding an
amount of bacteria per mL and per day (e), after a latent period
(1/ρ), and shed during an infectious period (1/r). After initiation
of the infection, we assumed that the only outcome for an oyster
was death (9, 12). To reproduce the lab experiment in which
dead oysters were removed every day, no state was considered
in the model for dead animals. Therefore, each oyster was in
one of the three mutually exclusive health states at a given time
point: S (susceptible oyster), E (non-shedder infected oyster),
or I (shedder infectious oyster). Let N denote the total alive
population size, i.e., N = S + E + I. Shedders (I) filled the
water compartment (W) with bacteria. The decay rate of V.
aestuarianus in the seawater ξ included the natural mortality,
sedimentation, and other stages of the bacterium that prevent its
transmission to susceptible oysters. In absence of evidence of V.
aestuarianus persistence in the seawater (10, 38, 39), the growth
rate of the bacterium in this compartment was neglected.

A flow diagram of the model is shown in Figure 2, and
parameters are defined in Table 1. The temporal dynamics
of V. aestuarianus in the oyster population and in seawater
was described by the following system of ordinary differential
equations [equations (1) to (4)] in a deterministic framework:

dS

dt
= −a · λ (W) · S (1)

dE

dt
= a · λ (W) · S− ρ · E (2)

dI

dt
= ρ · E− r · I (3)

dW

dt
= e · I − ξ ·W (4)

Probability of catching V. aestuarianus infection λ(W) was
extrapolated from studies on V. cholera (29) and depended on
the concentration of the pathogen in water. This dependence was
represented by a logistic dose–response function as:

λ (W) =
W

K +W
, (5)

whereK is the concentration of bacteria in water that yields a 50%
chance of catching infection, i.e., the half-infective dose.
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FIGURE 2 | Compartmental model of Vibrio aestuarianus spread among

oysters and in their environment. The health states of oysters are S for

susceptible, E for exposed, and I for infectious. W denotes the seawater

concentration of free-living bacteria. Solid arrows indicate oyster transitions

between heath states. Dashed arrows represent the dynamics of the pathogen

population. The description of parameters is the same is in Table 1.

TABLE 1 | Definition of model parameters.

Notation Definition (unit)

a Rate of exposure to contaminated water (days−1)

K Concentration of bacteria in water that yields a 50% chance of

catching the infection in one day or the half-infective dose

(bacteria/mL)

1/ξ Free-living–bacteria lifetime in seawater (days)

1/ρ Latency period (days)

e Bacteria shedding rate (bacteria/mL per day per oyster)

1/r Infectious period (days)

λ(W) Probability of catching V. aestuarianus infection, depending on the

bacterial concentration in the water and on the parameter K

Because the population was small, a stochastic counterpart
of the ordinary differential equation system was run in discrete
time. Health transitions and the bacteria decay rate (τij) were
transformed into probabilities (pij) as follows: for each transition
from compartment i to compartment j, pij = 1–exp(–1tτij).
The flow of individuals between compartments i and j (1Nij)
was then 1Nij = Binomial (Nij, pij), with Nij being the number
of individuals in compartment i. The bacteria shedding rate
followed a Poisson distribution. The model was solved using a
daily time step, with a closed population. The behavior of the
model was analyzed by running 10,000 numerical simulations.

Model Parameterization and Initial Conditions
The model parameters were calibrated by integrating knowledge
from experimental individual trials.

Because we assumed that after initiation of V. aestuarianus
infection, the only outcome for an oyster is death, half-infective
dose K was approximated by the half-lethal dose (LD50) of
V. aestuarianus via contaminated-seawater exposure. LD50 was
estimated using a dose–response model described by a four-
parameter log-logistic function. This model was fitted to data

from the individual triplicate trials, which were conducted at
different doses (Table 2). A 95% confidence interval (CI) of LD50

was computed from the approximate standard errors calculated
by the delta method (40). Because we assumed that a lower
bacterial concentration would infect an oyster but would need
more time to provoke oyster death than the usual duration to
estimate the LD50, (7 days), a range of probable values was
assigned to K by fitting a uniform distribution ranging between
the bounds of the LD50 95% CI, with the lower bound being
lowered by one Log value.

Exposure rate (a, per day) was estimated as a relative
difference between the counts of bacteria before and after the
24 h of exposure to contaminated seawater. This daily exposure
rate was assumed to be constant throughout the duration of the
experiments. The latent period (1/ρ, days) was defined as the time
from exposure to contaminated seawater to the start of bacteria
shedding. The infectious period (1/r, days) was defined as the
period from the start of oyster shedding to death. The bacteria
shedding rate (e, bacteria/mL per oyster per day) was determined
daily by measuring bacterial concentration in seawater. Free-
living–bacteria lifetime in seawater (1/ξ, days) was defined as the
number of daysV. aestuarianus could be detected in the seawater.

Observed distributions of these parameters were described by
the mean, mode, median, quartiles, minimum, and maximum.
Independence of the parameters was assessed by calculating the
Spearman correlation coefficient.

For each of the model parameters, the observed mode
from experimental data was chosen as the most probable
value. When the parameters were not independent, they were
represented by the estimated mode, from distributions that were
produced using an Approximated Bayesian Computation (ABC)
approach (see below).

As initial conditions, the population size was modeled
with 10 susceptible oysters to mimic the experiments in
the 3 L tanks for 12 days. Seawater was supplemented with
bacteria at different initial concentrations (W0), to reproduce
the exposure to contaminated seawater in the 12 population
experiments (Table 2).

Model Outputs
Five outputs were chosen to characterize the infection course.
Twowere dynamic over time: the number of live oysters (S+E+I)
and the concentration of bacteria in water (W). Three were
point outputs: the maximum prevalence (i.e., the maximum
number of infected E and infectious I oysters during an infection
simulation), the generation time, and the basic reproduction
number R0.

The generation time was defined as the period between the
onset of the infectious period in a primary case and the onset of
the infectious period in a secondary case. It was defined from the
sum of the average latent and infectious periods (41).

The basic reproduction number, R0, is defined as the average
number of secondary infections caused by one infected entity
(animal or free-living bacteria) introduced into a fully susceptible
population (41), and it determines whether a disease will spread
on average within a population. R0 carries information on the
magnitude of the transmission during generation time. R0 was
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TABLE 2 | Observed final (12 dpe) number of surviving oysters in the laboratory transmission trials.

Trial # Exposure concentration of bacteria

in water (dose W0)

Final number of surviving oysters

in individual trials (N = 10 oysters)

Final number of surviving oysters in small population trials

(N = 3 populations of 10 oysters)

Triplicate #1 Triplicate #2 Triplicate #3

1 Low = 4,140 bacteria/mL 10 NA1 NA1 NA1

High = 41,400 bacteria/mL 4 NA1 NA1 NA1

2 Low = 29,200 bacteria/mL 8 8 6 6

High = 73,900 bacteria/mL 2 8 7 3

3 Low = 3,410 bacteria/mL 8 7 7 10

High = 8,120 bacteria/mL 6 6 6 5

1NA : non available.

calculated using the next generation matrix approach (42, 43).
In our system, the variables representing infectious states were
E, I, and W. Progression from E to I was considered not a
new infection but rather the progression of an infected oyster
through disease stages. Contaminated water W was filled by
shedding while new E animals occurred because of W>0. See
Supplementary Material for more details on the calculations.
Associated matrices are [equations (6) and (7)]:

T =





0 0 aKS0
(K+W0)2

0 0 0
0 e 0



 (6)

6 =





−ρ 0 0
ρ −r 0
0 0 −ξ



 (7)

with − T.6−1 =





0 0 aKS0
ξ (K+W0)2

0 0 0
− e

r
e
r 0



 (8)

where the transmission matrix T contains the terms related to
new infections and the transition matrix Σ contains all the
remaining terms, i.e., all exits from the infected classes and all
entries into the infected classes for other reasons than generation
of a new infected entity, such as different stages of infectiousness.

Basic reproduction number R0 is the dominant eigenvalue of
matrix -T Σ −1 [equation (9)]:

R0 =

√

eaKS0

rξ (K+W0)
2

(9)

The distribution, median, and 95% CI of the 10,000 simulations
were examined for each of the model outputs.

Sensitivity Analysis
To identify the most influential parameters toward model
outputs and to investigate interactions between parameters, a
global variance-based sensitivity analysis was performed via the
extended Fourier Amplitude Sensitivity Test (eFAST) method
(44). The main order sensitivity index (direct effect) and the
total order sensitivity index (including also interaction effects)
were computed to describe the total influence of each parameter

on model outputs. A parameter was considered to be a key
parameter if it contributed to at least 20% of the variance of one
of the model outputs.

Two aggregated outputs of the model were considered: the
maximum prevalence and the basic reproduction number R0.
Two additional dynamic outputs were considered: the number
of surviving oysters and the bacterial concentration in seawater
as functions of time.

The seven parameters (i.e., the epidemiological parameters
and the initial exposure dose W0) varied simultaneously within
their entire allowable range, with 10,000 scenarios for each
parameter. Parameter ranges were defined by the 0.25 and 0.75
quantiles of observed experimental distributions for the six
observable parameters, and by the bounds of LD50 95% CI for
the half-infective dose (K), lowering the lower bound by one Log
value to account for the uncertainty of the use of the LD50 proxy.

This approach resulted in 70,000 scenarios. Because the model
was stochastic, 500 repetitions were run, and outputs were
averaged per scenario.

Parameter Estimation Using Approximate Bayesian

Computation
Non-observable or non-independent epidemiological parameters
were estimated using the number of surviving oysters during
12 dpe observed in the 12 replicate trials conducted on small
populations of 10 oysters in tanks. Given that the likelihood
evaluation of the model was not straightforward when only these
data were employed, an Approximate Bayesian Computation
(ABC) method was used. The ABC method consists of studying
the similarity between observed and simulated data from
intensive simulations, without the need for explicitly evaluating
the likelihood function (45). The general principle consists of
generating multiple parameter sets from prior distributions. For
a sampled parameter set, a model simulation is performed. Then,
summary statistics of this simulation are compared with the
observed data using a metric and a tolerance. The parameter
set is retained if the difference between the simulation and the
observation does not exceed the tolerance. All the parameter
sets thus retained are used to approximate the posterior
distribution. To minimize the number of model simulations,
and therefore computation time, the adaptive Monte Carlo
ABC iterative algorithm (ABC-APMC) proposed by Lenormand
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TABLE 3 | Observed distribution characteristics of the epidemiological parameters in the individual laboratory experiments.

Epidemiological parameters N Min Q1 Median Q3 Max Mode Mean

Rate of exposure to contaminated water (a) 42 0.36 0.61 0.74 0.91 1 0.75 0.75

Bacteria shedding rate (e) 62 1,030 12,250 34,150 167,500 1,990,000 3,980 190,296

Latency period (1/ρ) 22 2 3.25 4 5 8 4.5 4.27

Infectious period (1/r) 22 0 1 1 2 3 1 1.18

Free-living bacteria lifetime in seawater (1/ξ) 54 1 1 2 3 3 1.5 1.94

Units are the same as in Table 1.

et al. (46) was used. It consists of a sequential sampling
with a sequence of decreasing tolerance levels leading to the
approximation of the posterior distribution with an increasing
quality. The proportion of best-fit simulations retained to
update the tolerance threshold at each step was 0.2, and
the stopping criterion (i.e., the proportion below which the
algorithm stops the iterations and accepts the newly generated
distributions) was 0.01.

The number of surviving oysters during 12 dpe observed in
the 12 population replicate trials for the different experimental
conditions at each time step were used as summary statistics.
The Euclidian distance was used to compare simulations and
observations. The values of the three observable parameters
were fixed to the mode of observed values in the experiments.
For non-independent parameters, bounds of the initial prior
distribution were defined using the minimum and maximum
observed values. For non-observable parameter K, the bounds of
LD50 95% CI were used, the lower bound being lowered by one
Log value to account for the uncertainty of the use of the LD50

proxy. The parameter sets (or scenarios, n = 5,000) constituting
the initial prior distributions were defined by a Latin hypercube
sampling scheme across previously described parameter
value ranges.

The posterior distributions of estimated parameters were
summarized by the mode as the most probable value, and the
0.025 and 0.975 quantiles as the 95% credible interval.

Model Validation
The model was validated by comparing predicted values with
the daily number of surviving oysters during 12 dpe and
the bacterial concentration in seawater during 8 dpe which
were observed in the 12 replicate trials conducted on small

populations of 10 oysters in tanks. The average observed and
simulated survival curves were compared by the logrank test

(statistical significance threshold p < 0.05). The observed and
simulated bacterial concentrations in seawater were compared by
sight because of the small amount of observed data preventing
statistical testing.

The compartmental model was solved in R software version

3.4.0 (47). The dose–response curve was fitted and LD50 was
estimated using package drc version 3.0–1 (48), sensitivity
analysis was performed using packages mtk version 1.0 (49) and
multisensi version 2.1–1 (50), and ABC was performed using
package EasyABC version 1.5 (51).

FIGURE 3 | Estimation of the half-lethal dose (LD50) of Vibrio aestuarianus

infection (N = 6 experimental trials). The pink area represents the 95%

confidence interval of the estimates.

RESULTS

Experimental Transmission Results
The values of epidemiological parameters were heterogeneous
among individuals (Table 3, Supplementary Figure 1). In
the experiments (Table 3), the average exposure rate to V.
aestuarianus in seawater was 0.75, but this parameter highly
varied among individual oysters. Once infected, an oyster
became infectious 4 dpe on average, for only 1 day before
dying of vibriosis, and daily shed ∼1.9 × 105 bacteria/mL. The
bacterium V. aestuarianus remained in seawater for 2 days on
average. At the end of the individual trials, six oysters out of 10
were still alive on average (Table 2). At the end of the experiment
on small oyster populations, seven oysters out of 10 were still
alive on average (95% CI: 4; 10; Table 2).
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TABLE 4 | The matrix of correlations between the epidemiological parameters

(observed values; white cells: high bacterial dose, gray cells: low bacterial dose;

Spearman coefficients: *p < 0.001).

Epidemiological

parameter

a e 1/ρ 1/r 1/ξ

a −0.079 0.339 −0.031 0.230

e 0.307 0.068 0.318 −0.051

1/ρ −0.186 −0.147 −0.033 −0.194

1/r −0.571 −0.190 0.078 0.059

1/ξ 0.012 0.510* −0.186 0.082

Preliminary Parameter Calibration
LD50 was estimated at 3.3 × 104 bacteria/mL with the
corresponding 95% CI (8.2 × 103; 1.3 × 105), i.e., 4.51
Log (bacteria/mL), 95% CI (3.91; 5.11; Figure 3). Thus, the
concentration of bacteria in water that yields a 50% chance
of catching the infection in 1 day (K) was first estimated as
ranging from 8.2 × 102 to 1.3 × 105 bacteria/mL, i.e., from
2.91 to 5.11 Log(bacteria/mL). For each parameter, the observed
mode was chosen as the most probable value of the parameter
(Table 3). Except for a moderate positive association observed
at a high bacterial dose between the bacteria shedding rate (e)
and free-living bacteria lifetime in seawater (1/ξ), Spearman
correlation coefficients were not significant for each pair of
parameters (Table 4).

Identifying Key Parameters
Figure 4 presents the main and total order sensitivity indices for
the six parameters and the initial exposure dose on four of the
selected model outputs. Three key parameters were identified:
the half-infective dose (K), the bacteria shedding rate (e), and the
initial exposure dose (W0). The basic reproduction number R0

was highly sensitive to the bacterial shedding rate (e, 41% of the
R0 variation explained) and the initial exposure dose (W0, 48%;
Figure 4A). The other parameters had a negligible effect (<20%).

The maximum prevalence was highly sensitive to the half-
infective dose (K), which explained 67% of its variation
(Figure 4B), and, to a lesser extent, to the initial exposure dose
(W0, 22%). The other parameters had a negligible effect (<20%).
The number of surviving oysters over time (Figures 4C,D)
was highly sensitive to the half-infective dose (K, 70% of the
variance explained) and, to a lesser extent, to the initial exposure
dose (W0, 22%). The variability between simulations was low
for the first 4 dpe, preventing any robust interpretation. The
parameter influence was almost constant throughout the 12 days
of the experiment (Figure 4C). Other parameters had a negligible
effect (<20%), and there were minor interaction effects. The
concentration of bacteria in seawater was first highly sensitive
to the initial exposure dose (W0), which influence rapidly
decreased. After 4 dpe, bacteria concentration in seawater was
highly sensitive to the bacteria shedding rate (e, 40–60%) and
the half-infective dose (K, 13–26%; Figures 4E,F). The variability
between simulations was low for the first 3 dpe, preventing
any robust interpretation. After 8 dpe, bacteria concentration in

seawater was mostly sensitive to the bacteria shedding rate. Other
parameters had a negligible effect (<20%).

Improvement of Parameter Estimation by
ABC
The posterior distributions (probability density) of the estimated
parameter values are illustrated in Figure 5. The final estimated
parameter values are given in Table 5. Estimations led to
posterior distributions different from the prior distributions for
the bacteria shedding rate (e) and the half-infective dose (K). The
sharp posterior distribution obtained for the bacteria shedding
rate highlighted that it is very likely that oysters shed relatively
small quantities of bacteria. The concentration of bacteria in
water that yields a 50% chance to get infected was estimated to be
high with a large credibility interval. The posterior distribution
for the free-living bacteria lifetime in seawater (1/ξ ) was flat and
rather similar to the initial prior distribution, preventing from
any inference of its most probable value using available data.

Simulating the Infection Dynamics
Figure 6 shows the simulatedV. aestuarianus infection dynamics
with the parameter values as estimated by ABC (Table 5). After 1
dpe of oysters to the contaminated seawater, vibriosis spread was
observed in 61% of the simulations, with a median epidemic peak
(maximum prevalence) of 60% (95% CI: 10; 80) reached at 9 dpe.
The seawater concentration of V. aestuarianus slowly increased
throughout the 12 days, reaching a median plateau at 2.5 × 105

bacteria/mL (95% CI: 7.3 × 104; 4.8 × 105) at 10 dpe. At the
end of the simulations, five oysters out of 10 were still alive on
average (95% CI: 1; 9).

Figure 6 indicates that our model provided a good fit to
the daily average number of surviving oysters observed in
the 3 L tanks during the laboratory experiments (logrank test,
p = 0.94), with the average number slightly overestimating
the infection kinetics. Although the average model simulation
results underestimated the bacterial concentration in seawater,
the values observed in the experiments were always within the
95% CI of the model results.

Using the newly estimated parameter values, the basic
reproduction number R0 was predicted to have a most probable
value of 2.88 (95% CI: 1.86; 3.35). The generation time had
a most probable value of 5.5 days. These data suggest a
good transmission capacity of the bacteria, with an index case
generating 2.88 secondary cases within 5.5 days on average once
introduced in a population of susceptible oysters.

DISCUSSION

Modeling Strategy
The current lack of knowledge on V. aestuarianus infection,
notably on V. aestuarianus population dynamics, shaped
our compartmental modeling strategy. Intensity models,
where the pathogen population is explicitly modeled and
the principal outcome is a measure of the number of
pathogens, could have been employed if much information
was available on the pathogen population, as is the case
for Perkinsus marinus (27). We instead considered the
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FIGURE 4 | Global sensitivity analysis of three model outputs. (A) The basic reproduction number R0. (B) Maximum prevalence. (A,B) Main effects are in white,

interactions in gray. The horizontal dotted line is the significance threshold (20% of variance). (C,D) Number of surviving oysters over time, with normalized (C) and

non-normalized sensitivity indices (D). (E,F) Bacterial concentration in seawater over time, with normalized (E) and non-normalized sensitivity indices (F). In (C) and

(E), the upper subplots show the extreme (red dash-and-dot curves), percentiles (dotted blue curves), interquartile areas (gray), and median (bold curves) output

values at every time point, while the lower subplots show sensitivity indices at every time point for main effects and interactions. W0, initial bacterial concentration;

a,rate of exposure to seawater; e, bacteria shedding rate; 1/r, infectious period; K, half-infective dose; 1/ξ , free-living bacteria lifetime in seawater.

epidemiological states of the host (S, E, and I) leading to
simpler compartmental modeling. Notably, we adapted a
model developed for V. cholera (29) because this aquatic
bacterium also belongs to the genus Vibrio. This modeling
strategy takes into account the rapid multiplication of
the pathogen within the host and the short duration of
the infection (14, 52). This approach is consistent with
V. aestuarianus infection under experimental laboratory
conditions (11, 12).

The assumptions underlying our model are a homogeneous
contact process and a constant host population size (53).
Mixing of oysters was assumed to be homogeneous within
the 3 L tanks. Under the laboratory conditions, each oyster
had an equal chance to come into contact with contaminated
seawater, and the bacterial concentration in seawater was
assumed to be homogeneous in the tank. Given the short
period of the experiment, the closed-population assumption was
fully acknowledged.
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FIGURE 5 | Parameter estimation by Approximate Bayesian Computation (ABC). Distributions of probability density of the epidemiological parameters, for sequential

simulation steps (39 steps, 157,000 simulations); e, bacteria shedding rate; K, concentration of bacteria in water that yields a 50% chance of catching the infection;

1/ξ, free-living bacteria lifetime in seawater. The dotted lines show the prior distribution.

TABLE 5 | Estimated values and ranges of the model parameters of Vibrio

aestuarianus transmission among oysters using Approximate Bayesian

Computation (ABC; N = 1,000).

Epidemiological

parameter

Mode 95% credible interval

Lower bound Upper bound

Bacteria shedding rate (e) 72,684 6,690 374,535

Free-living bacteria lifetime

in seawater (1/ξ)

1.88 1.04 2.91

Concentration of bacteria

in water that yields 50%

chance of catching

infection in 1 day (K)

84,348 54,364 120,229

Units are the same as in Table 1.

To better describe the transmission process in a small
population, we used a stochastic model to incorporate the effect
of chance, which may lead to small numbers of infectious oysters
or transmission ceasing, and to produce a probability distribution
of possible outcomes (54).

Our model is a simplified representation of a complex
phenomenon according to the parsimony principle, especially
as regards exposure to free-living bacteria. We assumed direct
waterborne transmission ofV. aestuarianus and added an explicit
compartment representing the aquatic reservoir of bacteria in
our model, as described for V. cholera (29). Only a small
amount of field data on V. aestuarianus isolation from seawater,
plankton, and sediment is available (10, 38, 39, 55), and detection
protocols (8) did not allow discriminating virulent from non-
virulent strains. Accordingly, the importance of plankton and
sediment compartments in V. aestuarianus population dynamics
for its transmission to oysters (i.e., reservoir, vector, intermediate
hosts, and so forth) is still unknown. This situation prompted
us to designate the free-living stages of the bacteria outside the
oysters—whether in seawater, sediment, or plankton—as a single
compartment. Moreover, we did not make any assumption about
the detailed process of transmission of V. aestuarianus between
oysters. We approximated the exposure rate (a) by the relative
difference between the counts of bacteria before and after the

24-h exposure to contaminated seawater. This approach may be
consistent with the filtration of infective particles released by
infected individuals including a dose dependence and dilution
via the volume of the water column hypothesized for suspension
feeders (25, 56) such as oysters.

Epidemiological Parameter Estimation
Combining the mathematical model with experimental data,
we have been able to produce new knowledge about crucial
epidemiological parameters. This coupled experiment–modeling
approach enabled us to maximize the utilization of information
(obtained through the experiments) in the model. We conducted
a small number of experiments on small oyster populations
owing to the logistical constraints of the numerous daily and
individual measures. The initial exposure doses were difficult
to accurately reproduce between the three experiments. This
state of affairs may partly explain the observed heterogeneity in
the parameters. Some parameters were directly observable and
were measured in the experiments; others could not be observed
directly or were not independent from each other. For the latter,
we represented their uncertainty using uniform distributions
between their minimum and maximum observed values in
the experiments. We fed the model with parameter values
determined, directly using the observed mode for the observable
parameters or the distribution and estimated values for the
others. The ABC method enabled reducing the uncertainty for
two parameters out of the three, with variable accuracy.

We determined the most probable exposure rate at 75%
per day, which is consistent with the small volume of
contaminated seawater (300mL) in our experimental settings
thereby maximizing the exposure.

Our results uncovered the most probable latency period of
4.5 days and the most probable infectious period of 1 day. These
findings are in agreement with previous experiments (12).

The bacteria shedding rate manifested high individual
variability and was estimated to be between 6.7 × 103 and
3.7 × 105 bacteria/mL per oyster per day (95% credibility
interval), with a most probable value estimated at 7.2 × 104

bacteria/mL per oyster per day. Most of the oysters shed ∼3.7 ×
104 bacteria/mL per oyster per day, but some individuals showed
much greater values: up to 2.0 × 106 bacteria/mL per oyster per
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FIGURE 6 | Model predictions. The five panels show the temporal dynamics of susceptible (S), exposed (E), infected (I) oysters, seawater bacterial concentration (W)

in log scale, and total population size (N), using the epidemiological parameter values estimated by ABC. The black solid curves show mean values of 10,000

simulations. Gray shading represents the 95% credibility interval. Symbols denote the observed data in 3 L tanks during the laboratory experiments (orange dots: low

doses; blue crosses: high doses), their size being proportional to the number of observations. The black dashed curve shows mean observed values in

the experiments.

day were observed in the experiments. Because several measures
were found to have this order of magnitude in the experiments
(Supplementary Figure 1), this heterogeneity did not come from
measurement error but reflected realistic variations. Thus, some
oysters may be referred to as supershedders of V. aestuarianus.
Our estimate was slightly lower than the order of magnitude
of shedding of 105 bacteria/mL per oyster after 20 h reported
in another work (12), where the studied parameters were
assumed to be independent. Given that our results revealed
a correlation between the bacteria shedding rate and free-
living bacteria lifetime in seawater, our estimate was expected
to be lower.

Our results showed only short free-living bacteria lifetime in
seawater at 20◦C, ranging from 1 to 3 days, but the available
data prevented us from any inference of the most probable
value for this parameter. This lack of estimation may be due

to its relative lowest influence compared to the two other
estimated parameters (bacteria shedding rate and half-infective
dose) on the selected model outputs related to disease spread
(i.e., R0, maximum prevalence, oyster survival curve, and bacteria
concentration in seawater), as shown by the global sensitivity
analysis. Nonetheless, this range is consistent with another
study, which showed viability of V. aestuarianus in seawater
after <5 days at 25◦C under differential experimental salinity
conditions (39).

We estimated the half-lethal dose (LD50) at 3.3 × 104

bacteria/mL (95% CI: 8.2 × 103; 1.3 × 105), which is lower
by 1 Log than previous estimate (12), and the concentration
of bacteria in water that yields a 50% chance of catching the
infection (half-infective dose) ranged from 5.4 × 104 to 1.2
× 105 bacteria/mL, with a most probable value of 8.4 × 104

bacteria/mL, i.e., 4.92 Log (bacteria/mL). This estimate is close to
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the minimal infective dose previously estimated to be∼4.0× 104

bacteria/mL (12). These close estimates of LD50, half-infective
dose, and minimal infective dose strengthen the assumption that
the oyster once infected never returns to a truly uninfected state,
with death as the sole outcome.

V. aestuarianus Transmission Insights
Our model provides important insights on transmission of V.
aestuarianus at local scale, where the exposure to contaminated
seawater is constant and homogeneous for every individual
oyster in the population, and when a short period (12 days)
is considered.

The two key factors that determine the spread of any
infectious disease are the basic reproduction number, R0, and
the generation time. First, R0 represents the number of new
infections that arise on average from one infected oyster when the
entire population is susceptible, i.e., at the onset of an epidemic.
This is an approximate measure of infection transmissibility
among animals within a population, and thus a key element
for understanding infectious diseases. Our results show that an
index case, i.e., an infected oyster or contaminated seawater
with V. aestuarianus, can generate secondarily on average 2.88
(95% CI: 1.86; 3.35) new infected oysters. For oyster diseases,
R0 has rarely been estimated so far, except for Dermo disease
caused by the parasite Perkinsus marinus, for which estimation
has yielded a large value, up to 90 (27). Second, generation time
refers to the interval between the infection of an individual and
the subsequent transmission to other individuals. We estimated
the most probable value for generation time to be 5.5 days under
our laboratory conditions. As a first conclusion, V. aestuarianus
shows a good transmission efficiency in oyster populations
under experimental conditions: it combines moderate R0 and
quite short generation time, with each index case producing
∼2.88 secondary cases within roughly 1 week. The expected
lifespan of infected oysters is short (less than a week), and they
are infectious for only one day, shedding daily an amount of
bacteria into the seawater, 4.86 Log(bacteria/mL), that is almost
equivalent to the half-infective dose [4.92 Log(bacteria/mL)]
on average, but which can be also highly variable (2 Log
range) within a homogeneous oyster population. The bacterium
has short free-living lifetime outside the oyster in seawater,
< 3 days. Thus, V. aestuarianus should be able to persist
mainly in populations of oysters of high local density with
close interactions.

The parameters mostly influencing variations in the basic
reproduction number, R0, and identified by a global sensitivity
analysis suggest a dose-dependent virus transmission: the higher
the bacteria shedding rate, the higher the initial exposure
dose or the lower the half-infective dose, the larger is the
number of new infections arising from one infected oyster in
a fully susceptible population. The dose-dependent mortality
induced by V. aestuarianus has been previously examined
experimentally (9, 12). The half-infective dose was identified
as a key parameter, i.e., the factor explaining most of the
variation in most of the selected model outputs (maximum
prevalence, oyster survival curve, bacterial concentration in
seawater over time). These results are consistent with a local

waterborne transmission mode (16) and the filtration-based
models (25), in which the more infected and shedding oysters
there are, the higher the local concentration of bacteria is
likely to be, for given decay and dispersal rates. Hence, a
threshold concentration of bacteria may be required to induce
infection, meaning that a sufficient number of susceptible
oysters is needed to support infection spread, but also that
a sufficient number of infectious oysters (16) or the presence
of supershedder oysters are needed to obtain a high initial
exposure dose and to start an epidemic. The prevalence of
infection in the population thus does not dependent on oyster
density at a local scale. The shedding rate was distributed
over a large range of values, showing a high heterogeneity
(Supplementary Figure 1), meaning that even if the oyster
density is low, a few supershedders may strongly contribute to
the infection spread and magnitude. This transmission mode is
consistent with the ecology of oyster beds or oyster farms, which
are aggregated populations with close interactions and large local
numbers of individuals.

Prediction robustness can be further improved by better
estimating two key parameters influencing V. aestuarianus
spread: the half-infective dose and the bacteria shedding rate,
as identified by the global sensitivity analyses. Hence, further
experimental effort should be best directed to reduce these
parameter uncertainties (57), which will in turn improve our
understanding of the infection spread.

Study Limitations
In our study, small-scale transmission experiments were designed
to ensure the best practices (58). Transmission experiments
under controlled conditions have an advantage over a field
study: an infection chain can be deliberately started (58).
When studying natural infections, the use of contact animals,
rather than artificially inoculated ones with presumed higher
infectiousness, has been recommended to start the studied
infection chain (58). Nonetheless, we started the experimental
infection and initiated the modeled infection by means of
contaminated seawater (balneation infection protocol). We
preferred such a balneation infection protocol to a cohabitation
one because we could standardize the bacterial concentration
in the seawater more easily, given the high variability of the
shedding rate of infectious oysters. Thus, our experimentally
initiated infections in small populations of 10 oysters in
the tanks possibly did not strictly represent a transmission
process. All the 10 oysters were exposed together for 24 h
in a tank with titrated contaminated seawater, then were
transferred to clean water for the 12-day monitoring. Hence,
we cannot be sure that what we observed in tanks was
transmission, a point-source outbreak without any transmission,
or a mixture of both, as revealed in the experimentally initiated
epidemics of infectious pancreatic necrosis in rainbow trout
fry (59). This may explain the overestimation of the kinetics
of infection by the model involving the baseline range of
parameters sampled from the distributions fitted to experimental
individual data. Accordingly, our results may underestimate
the transmissibility of vibriosis. To untangle this issue, further
experiments should include a single contact oyster exposed to
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contaminated seawater for 24 h in a tank, then transferred into
clean water with 10 naïve oysters for 12 days of monitoring.
The shedding rate of the contact oyster should be carefully
estimated beforehand.

Transmission experiments under controlled conditions have
a disadvantage that result extrapolation may be difficult (58),
particularly for the key process of transmission (30). The mode
of transmission determines the probable response for a disease
to control actions (19) and may change with the study scale,
i.e., inter- or intrapopulation (16, 19). Thus, it is crucial to
know how transmission scales with population size and/or
density (19).

Concluding Summary and Perspectives
Here, our model showed that the bacteria shedding rate, the
half-infective dose and the initial bacterial exposure dose have
a major influence on the outputs related to the extent of
infection by V. aestuarianus at a small population scale. To
control the transmission of bacteria to a susceptible oyster
population at such a local scale, it is therefore necessary to
identify the processes that increase or decrease oyster exposure
to contaminated seawater. These processes may be the factors
related to the oyster itself, such as filtration rate (26), sensitivity
to the infection (11) or bacteria shedding, or to environmental
stressors that increase bacteria shedding by infectious oysters or
sensitivity of susceptible oysters to infection (60), the duration
of exposure to contaminated seawater (i.e., water renewal or
confinement), or hydrodynamics that may drive particle loss
or diffusion-like processes in the water column (26). Free-
living bacteria can be transported across long distances by
water currents, leading to transmission of the infection between
oyster populations. At a small scale, all free-living bacteria
rain down equally regardless of their source on all susceptible
oysters. At a larger scale, however, the patchy distribution of
oysters and neighborhood characteristics lead to a heterogeneous
exposure: free-living bacteria are dispersed only locally but the
rain of particles is nonetheless homogeneous (61) because of
concentration gradients of free-living bacteria owing to the
dilution effect.

Our model mimics the V. aestuarianus infection in an
oyster population within a controlled environment under
laboratory conditions. This is a first step toward understanding
the epidemiology of this infection in the field. Indeed,
physical variation of the environment is crucial for marine
diseases, especially in marine ectothermic invertebrates
such as mollusks (62). In the field, mollusk mortality
cases associated with V. aestuarianus detection mainly
occur in summer (1, 3). In a mesocosm study conducted
in winter, infected oysters could survive when the sea
temperature was low (∼5◦C) and the infection could be
revealed in the laboratory by a thermal stress assay (10).
Therefore, transmissibility of the infection over time may
be modulated (increased or decreased) by environmental
factors. Further studies are needed to assess the effect of
seawater temperature and seasonality on the disease kinetics,

as estimated for Perkinsus marinus (27), and especially on
epidemiological parameters.

Because the mode of transmission may vary according to
the spatial scale, the choice of an appropriate mathematical
model may also depend on the spatial scale of interest (16,
19). For disease management purposes, the management unit
needs to be well defined to describe transmission adequately
because this element determines the probable response of the
disease to control actions (19). Future research should consider
embedding this local scale disease model within an oyster
metapopulation landscape (21, 23) and hydrodynamics (63)
to develop a marine epidemiological simulation model for
evaluating the effectiveness of various control strategies against
V. aestuarianus infection.
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