C. A. Arias and B. E. Murray, The rise of the Enterococcus: beyond vancomycin resistance, Nat Rev Microbiol, vol.10, pp.266-278, 2012.

R. E. Mendes, Longitudinal (2001-14) analysis of enterococci and VRE causing invasive infections in European and US hospitals, including a contemporary (2010-13) analysis of oritavancin in vitro potency, J Antimicrob Chemother, vol.71, pp.3453-3458, 2016.

D. M. Sievert, Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, Infection Control and Hospital Epidemiology, vol.34, pp.1-14, 2009.

D. E. Freedberg, Pathogen colonization of the gastrointestinal microbiome at intensive care unit admission and risk for subsequent death or infection, Intensive Care Med, 2018.

Y. Taur, Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation, vol.55, pp.905-914, 2012.

C. Ubeda, Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans, J Clin Invest, vol.120, pp.4332-4341, 2010.

C. L. Wells, R. P. Jechorek, and S. L. Erlandsen, Evidence for the translocation of Enterococcus faecalis across the mouse intestinal tract, J Infect Dis, vol.162, pp.82-90, 1990.

C. L. Wells, R. P. Jechorek, M. A. Maddaus, and R. L. Simmons, Effects of clindamycin and metronidazole on the intestinal colonization and translocation of enterococci in mice, Antimicrob Agents Chemother, vol.32, pp.1769-1775, 1988.

W. A. Krueger, Assessment of the role of antibiotics and enterococcal virulence factors in a mouse model of extraintestinal translocation, Crit Care Med, vol.32, pp.467-471, 2004.

S. Miyazaki, Development of systemic bacteraemia after oral inoculation of vancomycin-resistant enterococci in mice, J Med Microbiol, vol.50, pp.695-701, 2001.

S. Caballero, Distinct but spatially overlapping intestinal niches for vancomycin-resistant Enterococcus faecium and carbapenem-resistant Klebsiella pneumoniae, PLoS Pathogens, vol.11, 2015.

M. M. Heimesaat, Nucleotide-oligomerization-domain-2 affects commensal gut microbiota composition and intracerebral immunopathology in acute Toxoplasma gondii induced murine ileitis, PLoS One, vol.9, 2014.


F. S. Soares, Antibiotic-induced pathobiont dissemination accelerates mortality in severe experimental pancreatitis, 2017.

H. Wang, Intestinal dysbacteriosis contributes to decreased intestinal mucosal barrier function and increased bacterial translocation, Lett Appl Microbiol, vol.58, pp.384-392, 2014.

M. Kobayashi, K. Nakamura, M. Cornforth, and F. Suzuki, Role of M2b macrophages in the acceleration of bacterial translocation and subsequent sepsis in mice exposed to whole body [137Cs] gamma-irradiation, J Immunol, vol.189, pp.296-303, 2012.

K. Shigematsu, A. Asai, M. Kobayashi, D. N. Herndon, and F. Suzuki, Enterococcus faecalis translocation in mice with severe burn injury: a pathogenic role of CCL2 and alternatively activated macrophages (M2aM and M2cM), J Leukoc Biol, vol.86, pp.999-1005, 2009.

T. A. Pham, Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen, Cell Host & Microbe, vol.16, pp.504-516, 2014.

O. Medina-contreras, CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice, J Clin Invest, vol.121, pp.4787-4795, 2011.

C. J. Donskey, J. A. Hanrahan, R. A. Hutton, and L. B. Rice, Effect of parenteral antibiotic administration on persistence of vancomycinresistant Enterococcus faecium in the mouse gastrointestinal tract, J Infect Dis, vol.180, pp.384-390, 1999.

L. Crouzet, Lactobacillus paracasei CNCM I-3689 reduces vancomycin-resistant Enterococcus persistence and promotes Bacteroidetes resilience in the gut following antibiotic challenge, Sci Rep, vol.8, 2018.

N. J. Pultz, N. Shankar, A. S. Baghdayan, and C. J. Donskey, Enterococcal surface protein Esp does not facilitate intestinal colonization or translocation of Enterococcus faecalis in clindamycin-treated mice, FEMS Microbiol Lett, vol.242, pp.217-219, 2005.

N. J. Pultz, U. Stiefel, S. Subramanyan, M. S. Helfand, and C. J. Donskey, Mechanisms by which anaerobic microbiota inhibit the establishment in mice of intestinal colonization by vancomycin-resistant. Enterococcus, J Infect Dis, vol.191, pp.949-956, 2005.

L. Rigottier-gois, The surface rhamnopolysaccharide epa of Enterococcus faecalis is a key determinant of intestinal colonization, J Infect Dis, vol.211, pp.62-71, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01536528

C. G. Buffie and E. G. Pamer, Microbiota-mediated colonization resistance against intestinal pathogens, Nat Rev Immunol, 2013.

R. Chakraborty, Ceftriaxone administration disrupts intestinal homeostasis, mediating non-inflammatory proliferation and dissemination of commensal enterococci, Infect Immun, 2018.

K. A. Knoop, K. G. Mcdonald, D. H. Kulkarni, and R. D. Newberry, Antibiotics promote inflammation through the translocation of native commensal colonic bacteria, Gut, vol.65, pp.1100-1109, 2016.

G. E. Diehl, Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX3CR1(hi) cells, Nature, vol.494, pp.116-120, 2013.

S. R. Nallapareddy and B. E. Murray, Role played by serum, a biological cue, in the adherence of Enterococcus faecalis to extracellular matrix proteins, collagen, fibrinogen, and fibronectin, J Infect Dis, vol.197, pp.1728-1736, 2008.

S. R. Nallapareddy, K. V. Singh, P. C. Okhuysen, and B. E. Murray, A functional collagen adhesin gene, acm, in clinical isolates of Enterococcus faecium correlates with the recent success of this emerging nosocomial pathogen, Infect Immun, vol.76, pp.4110-4119, 2008.

T. W. Zareba, C. Pascu, W. Hryniewicz, and T. Wadstrom, Binding of extracellular matrix proteins by enterococci, Curr Microbiol, vol.34, pp.6-11, 1997.

J. Zou and N. Shankar, Enterococcus faecalis infection activates phosphatidylinositol 3-kinase signaling to block apoptotic cell death in macrophages, Infect Immun, vol.82, pp.5132-5142, 2014.

J. Zou and N. Shankar, The opportunistic pathogen Enterococcus faecalis resists phagosome acidification and autophagy to promote intracellular survival in macrophages, Cellular Microbiology, vol.18, pp.831-843, 2016.

C. Combadiere, Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice, Circulation, vol.107, pp.1009-1016, 2003.

N. Nunez, Exploration of the role of the virulence factor ElrA during Enterococcus faecalis cell infection, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02572353

J. Zeng, F. Teng, G. M. Weinstock, and B. E. Murray, Translocation of Enterococcus faecalis strains across a monolayer of polarized human enterocyte-like T84 cells, J Clin Microbiol, vol.42, pp.1149-1154, 2004.

J. Zeng, F. Teng, and B. E. Murray, Gelatinase is important for translocation of Enterococcus faecalis across polarized human enterocyte-like T84 cells, Infect Immun, vol.73, pp.1606-1612, 2005.

A. E. Jacob and S. J. Hobbs, Conjugal transfer of plasmid-borne multiple antibiotic resistance in Streptococcus faecalis var. zymogenes, J Bacteriol, vol.117, pp.360-372, 1974.

G. M. Dunny, B. L. Brown, and D. B. Clewell, Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone, Proc Natl Acad Sci, vol.75, pp.3479-3483, 1978.

D. F. Sahm, In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis, Antimicrob Agents Chemother, vol.33, pp.1588-1591, 1989.

B. E. Murray and B. Mederski-samaroj, Transferable beta-lactamase. A new mechanism for in vitro penicillin resistance in Streptococcus faecalis, J Clin Invest, vol.72, pp.1168-1171, 1983.

P. Renault, G. Corthier, N. Goupil, C. Delorme, and S. D. Ehrlich, Plasmid vectors for gram-positive bacteria switching from high to low copy number, Gene, vol.183, pp.175-182, 1996.

C. Nieto and M. Espinosa, Construction of the mobilizable plasmid pMV158GFP, a derivative of pMV158 that carries the gene encoding the green fluorescent protein, Plasmid, vol.49, pp.281-285, 2003.