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8 CHU-MEL, Pediatric department, Cotonou, Bénin

☯ These authors contributed equally to this work.

* gwladys.bertin@ird.fr

Abstract

Background

PfEMP1 is the major protein from parasitic origin involved in the pathophysiology of severe

malaria, and PfEMP1 domain subtypes are associated with the infection outcome. In addi-

tion, PfEMP1 variability is endless and current publicly available protein repositories do not

reflect the high diversity of the sequences of PfEMP1 proteins. The identification of PfEMP1

protein sequences expressed with samples remains challenging. The aim of our study is to

identify the different PfEMP1 proteins variants expressed within patient samples, and there-

fore identify PfEMP1 proteins domains expressed by patients presenting uncomplicated

malaria or severe malaria in malaria endemic setting in Cotonou, Benin.

Methods

We performed a multi-omic approach to decipher PfEMP1 expression at the patient’s level

in different clinical settings. Using a combination of whole genome sequencing approach

and RNA sequencing, we were able to identify new PfEMP1 sequences and created a new

custom protein database. This database was used for protein identification in mass spec-

trometry analysis.

Results

The differential expression analysis of RNAsequencing data shows an increased expression

of the var domains transcripts DBLα1.7, DBLα1.1, DBLα2 and DBLβ12 in samples from

patients suffering from Cerebral Malaria compared to Uncomplicated Malaria. Our approach

allowed us to attribute PfEMP1 sequences to each sample and identify new peptides associ-

ated to PfEMP1 proteins in mass spectrometry.

PLOS ONE | https://doi.org/10.1371/journal.pone.0218012 June 28, 2019 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kamaliddin C, Rombaut D, Guillochon E,

Royo J, Ezinmegnon S, Agbota G, et al. (2019)

From genomic to LC-MS/MS evidence: Analysis of

PfEMP1 in Benin malaria cases. PLoS ONE 14(6):

e0218012. https://doi.org/10.1371/journal.

pone.0218012

Editor: Takafumi Tsuboi, Ehime Daigaku, JAPAN

Received: October 24, 2018

Accepted: May 23, 2019

Published: June 28, 2019

Copyright: © 2019 Kamaliddin et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files. Additionally, the WGS sequences

are deposited in the European Nucleotide Archive

(ENA). Accession numbers are uploaded as

supplemental materials.

Funding: This study was funded by Merieux

Research Grant to GIB (http://www.institut-

merieux.com/fr/accueil/); Laboratoire d’Excellence

GR-Ex, Paris, France, reference ANR-11-LABX-

0051 - ANR-11-IDEX-0005-02 to PD and FG;

NeuroCM project, that is funded by ANR-17-CE17-

http://orcid.org/0000-0001-8198-6235
http://orcid.org/0000-0001-8910-0945
http://orcid.org/0000-0002-2218-9591
https://doi.org/10.1371/journal.pone.0218012
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218012&domain=pdf&date_stamp=2019-06-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218012&domain=pdf&date_stamp=2019-06-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218012&domain=pdf&date_stamp=2019-06-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218012&domain=pdf&date_stamp=2019-06-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218012&domain=pdf&date_stamp=2019-06-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218012&domain=pdf&date_stamp=2019-06-28
https://doi.org/10.1371/journal.pone.0218012
https://doi.org/10.1371/journal.pone.0218012
http://creativecommons.org/licenses/by/4.0/
http://www.institut-merieux.com/fr/accueil/
http://www.institut-merieux.com/fr/accueil/


Conclusion

We highlighted the diversity of the PfEMP1 sequences from field sample compared to refer-

ence sequences repositories and confirmed the validity of our approach. These findings

should contribute to further vaccine development strategies based on PfEMP1 proteins.

Introduction

Through its asexual development in human erythrocytes, Plasmodium falciparum grows and

reshapes its host cell. Parasite proteins exported at the host cell surface mediate infected eryth-

rocyte’s adhesion to the host’s endothelium that leads to hypoxia, occlusion and endothelial

activation. In cerebral malaria (CM) pathophysiology, the sequestration of infected erythro-

cytes (iE) in the brain capillaries is believed to trigger coma and brain swelling [1].

Among the proteins exported at the erythrocyte’s surface, the Plasmodium falciparum
Erythrocyte Membrane Protein 1 (PfEMP1) protein family is involved in cytoadhesion [2].

PfEMP1 proteins are encoded by the multigenic var gene family [3–5], consisting in ~ 60 cop-

ies per parasite genome [6]. The diversity among var sequences is almost endless [7,8] thus

participating to the infected erythrocyte ability to evade the immune system. PfEMP1 proteins

are high molecular weight transmembrane proteins (200–350 kDa), and are composed of an

intra-erythrocytic segment, which is conserved, and a highly variable extracellular segment

[9]. The extra-erythrocytic segment is composed of 4 to 9 alternated Duffy Binding Like (DBL)

or Cystein Inter Domain Rich (CIDR) domains. The nature and the arrangement of these

domains determine the binding phenotype of the iE [9,10]. More specifically, the transcripts

coding for the domains cassettes DC8 (DBLα2-CIDRα1.1-DBLβ12) and DC13

(DBLα1.7-CIDRα1.4- DBLβ1/3) are preferentially expressed in severe malaria isolates [11,12].

Among the PfEMP1 receptors in human endothelium, the most common is the broadly

expressed in human cell CD36, but PfEMP1 binding to CD36 is not related to any specific form

of malaria [13]. Two human host receptors for PfEMP1 binding in the context of severe malaria

have been identified: the InterCellular Adhesion Molecule-1 receptor (ICAM-1) [14] and the

Endothelial Protein C Receptor (EPCR) [15], both expressed in brain endothelial cells [16], and

co-localized with the sequestered iEs in severe malaria [14]. The binding domain for ICAM-1

receptor is located in the C-terminal third of the DBLβ3 [17], and the residues involved in

PfEMP1 binding to ICAM-1 are highly variable with a limited binding pattern [18,19]. The role

of EPCR in PfEMP1 binding has been more recently shown [15] and is still an important

research problematic [20]. EPCR binding is mediated by highly variable but structurally con-

served CIDRα1 PfEMP1 domains (more precisely CIDRα1.1 and CIDRα1.4–1.8) [21,22].

Importantly, the level of PfEMP1 transcript associated with EPCR binding is higher in samples

from patients suffering from severe malaria and increases with the severity of the disease

[20,21]. A dual binding with EPCR and ICAM-1 has been suggested, since not all CM isolates

present an increase in binding-EPCR PfEMP1 coding transcript [23]. The expression of DBL

involved in ICAM-1 binding is associated with dual ICAM-1 and EPCR binding [19].

Most field studies looking for P. falciparum binding phenotypes are based on molecular

biology analysis and have shown that transcript coding for specific PfEMP1 domains expres-

sion level is associated with disease outcome [11,21,24,25]. However, this strategy is currently

limited to the already identified PfEMP1 domains and does not give proficiency of the

expressed proteins. Recently, several strategies have been implemented to investigate the vari-

ability of full-length var genes using whole genome sequencing [6,26,27] or dedicated long

PfEMP1 identification with LC-MS/MS
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range sequencing with a hybrid PCR approach [23]. In addition, Tonkin Hill et al performed

de novo assembly of var genes issued from RNA sequencing (RNAseq) and identified tran-

scripts up-regulated in severe malaria [28]. These recent publications provide insight towards

var genes variability in the studied areas. However, the identification of PfEMP1 proteins by

mass spectrometry approach (LC-MS/MS) remains infrequent in publications.

To complement this deficiency, we aimed to conduct a mass-spectrometry-based proteo-

mics analysis of P. falciparum field isolates proteome. LC-MS/MS is a powerful and sensitive

tool for protein identification, however, its application for PfEMP1 identification remains

challenging because PfEMP1 has highly variable sequences, yet database repository is usually

simplified by eliminating redundancy. That is the reason why they do not reflect the natural

sequence diversity that may occur in such a context.

To identify PfEMP1 associated with P. falciparum clinical outcome in endemic settings, we

used a “proteogenomic” approach. Specific PfEMP1 sequences from each isolate were recon-

structed de novo using whole genome sequencing (WGS) data to identify the expressed tran-

scripts and enrich the protein database (Fig 1). We analysed the whole proteome of samples

from patients presenting CM, Severe Anemia (SA) or Uncomplicated Malaria (UM), and attri-

bute PfEMP1 sequences within these samples. Corresponding samples were analysed in RNA-

seq for PfEMP1 expression analysis, in relation to proteomic results.

We performed RNAseq successfully on 7 field samples (3 CM, 2 SA and 2 UM) and man-

aged to identify the PfEMP1 protein sequence associated with 4 CM samples, 9 SA and 9 UM

samples from Benin, West Africa, using LC-MS/MS. We confirmed the expression of several

PfEMP1 within a single field isolates and provided the first identification at the patient’s level

of PfEMP1 expressed by the parasite in the context of acute P. falciparum infection (Fig 1).

Material and methods

Ethic statement

Ethical clearance was obtained from the Institutional Ethics Committee of the faculty of health

science at the Abomey-Calavi University in Benin (clearance n˚90, 06/06/2016). Before inclu-

sion, written informed consent was obtained from children’s guardians. Patients were treated

in accordance to the national malaria program policy. The methods were carried out in accor-

dance with the relevant guidelines and regulations.

Sample collection

Patients under age of five, presenting P. falciparum acute infection, were included in the Lagune

Mother and Child Hospital in Cotonou (severe malaria), Benin and Saint-Joseph Hospital, in

Sô-Ava, Benin (UM) in rainy season (May–August) 2016. Severe malaria patients were classified

as following: CM was defined as associated with a coma (Blantyre score� 2) and the absence of

meningitis detected by CSF count and culture and SA was defined with Hb< 5g/dL, measured

using Hemocue device (Radiometer). UM was defined as a P. falciparum infection with fever, in

the absence of any other complication. Five mL of peripheral whole blood were collected on

EDTA. Parasite density was evaluated with Giemsa-stained thick blood smear. Only pure P. fal-
ciparum infections were retained for the study. Samples were depleted from white blood cells

using a gradient-based separation technique Ficoll (GE Healthcare Life Science).

Whole genome sequencing

Fifty μL of erythrocyte’s pellet was extracted using DNEasy Blood kit (Qiagen). WGS was per-

formed by the Malaria Genomic Epidemiology Network (MalariaGEN) at the Welcome Trust

PfEMP1 identification with LC-MS/MS
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Sanger Institute (Hinxton, UK). Reconstructed var genes were kindly provided by Thomas

Otto, Matt Berriman and Chris Newbold from the Welcome Trust Sanger Institute and trans-

lated into putative PfEMP1 protein sequences for protein identification. The raw reads from

whole genome sequencing are available on the ENA server under the accession number listed

in S1 Table.

Transcriptome studies of ring staged parasites

Ring staged parasites were preserved in 5 volumes of pre-warmed (37˚C) TriZol (Life Technol-

ogy), vortexed then immediately frozen at -80˚C until further utilization. RNA were extracted

as described [29], then digested with DNAse I (Qiagen) and purified using RNEasy MinElute

Cleanup kit column (Qiagen). Only RNA presenting a RNA Integrity Number (RIN) > 7 eval-

uated with PicoChip Agilent 2100TM Bioanalyzeur (Agilent) were retained for downstream

analysis [30]. RNAseq libraries were performed using TruSeq Stranded mRNA protocol (Illu-

mina, California, U.S.A.). RNAseq samples have been sequenced in paired-end (PE) with a siz-

ing of 260 base pairs and a read length of 150 bases. Fifty four samples by lane of Illumina

NextSeq500 (IPS2 POPS platform) were generated using individual barcoded adapters.

Approximately 5 million of PE reads by sample were obtained. The raw reads (fastq) were

trimmed with Trimmomatic [31] tool for Phred Quality Score Qscore>20, read length >30

bases, and ribosome sequences were removed using sortMeRNA [32]. RNAseq paired-end

reads were mapped to the human reference genome Hg38 (UCSC Genome Browser). Unat-

tributed reads were mapped to the P. falciparum 3D7 strain reference genome (PlasmoDB

Fig 1. Experimental design—Proteogenomic approach on field samples for PfEMP1 identification. Whole blood sample from

patients are collected. DNA and RNA are extracted from parasite’s ring forms. For LC-MS/MS analysis, parasites are matured, and

the corresponding proteins are extracted and analysed using the mass spectrometer. Whole genome sequencing data provides the var

repertoire from each isolate and allows the assessment of RNA expression in each sample. In addition, WGS data were used to enrich

the protein database for protein identification with LC-MS/MS data.

https://doi.org/10.1371/journal.pone.0218012.g001
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release 41), the reference var genes removed and replaced by the var genes of each sample

issued from its own whole genome using HISAT2 (v2.1.0) [33].

Raw counts for each var transcript were obtained using HTSeq-count (0.11.1) [34]. Tran-

script abundance was evaluated using RPKM values. We considered a transcript as present if

the RPKM value was > 1. To assess the potential expression differences according to the sam-

ple group (patients’ clinical presentation—severe or uncomplicated malaria), we performed a

selective read count on each var domain subtype from the cognate isolate var transcripts. The

differential expression analysis was performed on the obtained counts using DESeq2 R pack-

age [35].

Proteome analysis of P. falciparum late trophozoites using LC-MS/MS

Blood samples were matured in vitro for 18 to 32 hours in RPMI medium supplemented with

human serum and Albumax (Gibco) and preserved after MACS (Myltenyi Biotech) enrich-

ment as described [36].

Whole cell infected erythrocyte lysates were solubilized and digested in solution using tryp-

sin (Promega, sequencing Grade). Briefly, 50 μg of proteins from whole cell lysates were

diluted to 25 μl in solubilization buffer (1% sodium desoxycholate, 100 mM Tris/HCl, pH 8.5,

10mM TCEP, 40 mM chloroacetamide), heated for 5 min at 95˚C and sonicated three times

for 30 s. Once at room temperature, extracts were diluted with 25 μl Tris-ACN buffer (50 mM

Tris/HCl pH 8.5, 10% ACN). Collected peptides were fractionated in 5 fractions per sample by

strong cationic exchange (SCX) StageTips [37].

LC-MS/MS analysis was performed on a Dionex U3000 RSLC nano-LC-system coupled to

an Orbitrap-fusion mass spectrometer (Thermo Fisher Scientific) as described [38]. Peptides

from each SCX fraction were solubilized in 0.1% trifluoracetic acid (TFA) containing 10% ace-

tonitrile (ACN) and were separated on a C18 reverse-phase resin (75-μm inner diameter and

15-cm length) with a 3-hr gradient. The mass spectrometer acquired data throughout the elu-

tion process and operated in a data-dependent scheme.

For protein identification using LC-MS/MS, we created a custom database containing both

the human proteome (to identify peptides issued from the erythrocyte) and P. falciparum pro-

teome. In order to perform PfEMP1 protein identification, we concatenated P. falciparum pro-

teins sequences from PlasmoDB (v35), Uniprot and NCBI. In addition, we implemented our

own PfEMP1 sequences, obtained after in silico translation from var genes reconstruction.

Duplicate sequences were removed.

The LC-MS/MS data were analyzed using MaxQuant version 1.5.2.8 [36] as described [39].

The database used was our homemade database and the list of contaminant sequences from

Maxquant. For analysis, LFQ results from MaxQuant were imported into the Perseus software

(version 1.5.1.6). Reverse and contaminant proteins were excluded. Only proteins from P. fal-
ciparum were selected for further analysis. We then focused on the membrane associated and

putative proteins from P. falciparum.

Analysis of var transcripts and PfEMP1 proteins

PfEMP1 sequences from expressed var transcripts and proteins identified in LC-MS/MS were

aligned using the VarDom server against reference sequences for domain identification [7].

We specifically searched the pattern for ICAM-1 binding I[V/L]x9N[E]GG[P/A]xYx27GPPx3H

[19] using the ProSite online interface [40]. To identify the nature of each domain within the

identified sequences from RNAseq and LC-MS/MS, we aligned each DBL and CIDR domain

with the VarDom database domain sequences using MAFFT tool (v7) [41]. Using the MAFFT

output, we generated a phylogenic tree using PhyML online tool with default parameters [42].

PfEMP1 identification with LC-MS/MS

PLOS ONE | https://doi.org/10.1371/journal.pone.0218012 June 28, 2019 5 / 14

https://doi.org/10.1371/journal.pone.0218012


Results were displayed using iTOL online tool [43]. PfEMP1 domains were attributed to all

identified peptides. We considered a peptide specific of a subdomain if a peptide was corre-

sponding to the same subdomain in at least 3 different PfEMP1 proteins.

Statistical analysis

Patient’s samples information’s were compared between the 3 patient’s groups (UM, CM and

SA) using one-way ANOVA. Bonferroni’s Multiple Comparison Test was applied for individ-

ual group comparison. We considered a p value < 0.05 as significant. Qualitative data were

compared with Chi Squared test using contingency table. All analyses were performed using

Prism v5 (Graphpad). For the differential expression analysis, a domain subtype was consid-

ered as differentially expressed in a condition compared to another for log2 (fold-change)

value > 1 and adjusted p-value < 0.1.

Results

Included samples

We included 95 patients, covering 31 SA, 18 CM and 46 UM. The average patient age was sim-

ilar among all inclusion groups. Parasite density geometric mean was 8,055 p/μL for UM

group, 34,191 p/μL for CM and 24,313 p/μL for SA. Parasite density was only significantly dif-

ferent between SA and UM samples (p = 0.0158 with Bonferroni’s Multiple Comparison Test).

Hemoglobin level was measured for 20 UM, 17 CM and 31 SA, respectively 11.28 [10.26;

12.75], 5.51 [4.10; 6.56] and 4.393 [3.90; 5.00] g/dL. Hemoglobin level was statistically different

for UM samples (vs. CM and vs. SA) (p< 0.05). No difference in erythrocyte count

(p = 0.1274) and temperature (p = 0.9125) was retrieved between SA and CM. All CM patients

presented a coma (average BS 2 [2; 2]), while SA patients did not (average BS 4.6 [4; 5])

(p< 0.0001).

For LC-MS/MS analysis, we selected samples among those which showed successful matu-

ration. The analysis has been performed on 4 CM, 9 SA and 9 UM samples. 25 samples quali-

fied for RNAseq among which 7 were successfully sequenced.

Var genes transcripts identification with RNAseq

Overall 165 var transcripts were identified (S2 and S3 Tables) among which 134 sequences cor-

responded to Severe Malaria (SM) samples (52 CM and 82 SA) and 31 to UM samples. We

then focused on the corresponding sequences domains combination, considering the

sequences with at least one NTS domain. We found 102/134 var transcripts in the SM groups

(30 in the CM samples and 72 in the SA samples) and 24/31 of UM associated var sequences.

Among these sequences, the domain combination the most representative is NTS-DBLα-

CIDRα-DBLδ. This combination was identified in 17/24 (71%) UM samples and in 45/102

(44%) SM group thus 10/30 CM and 35/72 SA associated var transcripts.

The second domain combination is NTS-DBLα-CIDRα-DBLβ and corresponded to 6/24

(25%) of UM associated var transcripts and 42/102 (41%) of SM (17/30 CM and 25/72 SA)

associated var transcripts.

Regarding the domain cassette distribution, we have identified 2 DC8 but no DC13 among

var transcripts of CM samples, and 2 DC8 and 3 DC13 were identified in SA samples. From to

UM samples, we have identified neither domain cassettes DC8 nor DC13.

The specific search of the binding pattern for ICAM-1 retrieved three identifications from

CM samples, two in the SA group within the var transcripts sequences and no identification

among the UM samples.

PfEMP1 identification with LC-MS/MS
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In addition, we performed a differential expression analysis on the var domains subtypes of

each sample. Twelve domains subtypes were up-regulated in CM samples compared to the

UM samples (Fig 2A), among which the DBLα2 and DBLβ12. These domains match to the

organisation of DC8. The DBLα1.7 domain (part of DC13) is the most differentially expressed

in the CM samples compared to the UM samples.

Eleven domains subtypes were up-regulated in SA compared to UM (Fig 2B). These sub-

types were different from those found in CM compared to UM and not correspond to domain

cassettes. We found no significantly expressed domains subtype in the CM samples in compar-

ison to SA samples.

Protein identification using LC-MS/MS

Protein identification was performed using a homemade database (reference sequences from

human and P. falciparum repositories, and the assembled var from field samples) containing

295,601 protein sequences, among which 87,489 were P. falciparum-associated sequences.

Overall, we identified 3300 proteins. A total of 1302 proteins were associated to the human

proteome, and 1912 to P. falciparum’s. Among those later, 460/1912 proteins were identified

as P. falciparum membrane-associated proteins, including 60.4% of hypothetical or putative,

12% of PfEMP1s, 3.5% of RIFINs, 0.9% of STEVORs, 1.5% of PHISTs and 21.7% belong to

other protein families.

A total of 57 proteins associated with PfEMP1 were identified. Only 10 of the identified

PfEMP1 using LC-MS/MS (as part of the identified isoforms) were known sequences from

public database repository (Uniprot and PlasmoDB). All other identified PfEMP1 sequences

resulted from the translation of the reconstructed var genes from our samples (S3 Table).

PfEMP1 identification and composition

Average molecular weight of the identified PfEMP1 was 228.3 kDa. Using the VarDom online

server, we reconstructed the domain architecture from the identified proteins (S4 Table) and

we were able to identify domains in 54 out of 57 sequences. NTS domain was found in 41/54

of the sequences (76%) and 39/41 (95%) of the sequences identified presenting an NTS domain

displayed DBLα-CIDRα associated to the NTS domain. The three-major head-terminal

domain organizations were the following: NTS-DBLα-CIDRα-DBLβ (n = 24/41; 59%),

NTS-DBLα-CIDRα-DBLδ (n = 12/41; 29%) and NTS-DBLα-CIDRα-DBLγ (n = 1/41; 2,4%).

Considering the difficulties to attribute a given PfEMP1 protein to a sample in this experi-

mental setting, we then focused our analysis on the peptides attributed to PfEMP1 proteins.

We identified 147 peptides attributed to PfEMP1, among which 110 were unique peptides (S5

Table). Among these 147 peptides identification, 46 were peptides from the public data reposi-

tories, while the remaining ones were specific to the protein sequences identified using WGS.

The peptides were distributed as following among the PfEMP1 domains: ATS 14/147 (10%),

CIDRα 6/147 (4%), CIDRβ 22/147 (15%), DBLα 11/147 (7%), DBLβ 14/147 (9%), DBLδ 32/

147 (22%), DBLε 2/147 (1%), DBLγ 9/147 (6%), DBLz 1/147 (0.7%), NTS 21/147 (14%) and

15/147 (10%) of the peptides were unattributed. The two majors’ domains identified with the

peptides are CIDRβ and DBLδ which are in equivalent proportion in all clinical group (p =
0.41 and 0.21 respectively). Regarding the CM samples, no peptide associated to the DBLα was

identified (Fig 3).

Discussion

The evolution of P. falciparum infection from uncomplicated forms of the disease to cerebral

malaria, the most fatal, is a complex phenomenon [44]. There are strong evidences that the
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PfEMP1 proteins are involved in the disease progression since they allow the parasite to bind

to host endothelium [10]. It is believed that a distinct subset of PfEMP1 proteins is involved in

severe malaria [23,45], most likely by providing to the parasite the ability to sequester to a

given receptor. However, PfEMP1 identification in natural infection remained challenging,

Fig 2. Var transcripts associated domains subtypes identified as up regulated. The bar graph represents the

expression differential of the sub-domains realized with the package R DESeq2 (A) overexpressed in the CM in

comparison to UM samples and (B) overexpressed in the SA in comparison to UM samples. The signs + and +

+ represents respectively the subdomains of DC8 and DC13. Y axis plots the values of log2 (fold change) between the

clinic groups by subdomain. X axis represents each domains subtype identified as up-regulated in clinic groups Two

adjusted p-value thresholds are indicated: dark blue< 0.05 and light blue< 0.1.

https://doi.org/10.1371/journal.pone.0218012.g002
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due to the large size of PfEMP1 and their high sequences diversity. Recently, Jespersen et al
[23] provided a new insight towards var genes sequences expression analysis in patient’s sam-

ple using transcript reconstruction after DBLα barcoding. They confirmed the preferential

expression of CIDRα associated with EPCR binding in severe malaria patients. In addition,

Tonkin Hill et al performed a de novo reconstruction of var genes from patient’s isolates [28].

We used a mass spectrometry–based proteomic approach to analyse the P. falciparum pro-

teome in the context of severe malaria (SA and CM) compared to UM. We aimed to accurately

identify, at the protein level, the PfEMP1 sequence variants associated with diseases severity.

To this end, we initiated a “proteogenomic” study of field samples (Fig 1).

Using reconstructed var genes obtained by WGS, we were able to identify the transcript

expressed for each isolate among the one from the cognate genome. In addition, we performed

a differential expression analysis of the var domains. We demonstrated that the domains

DBLα1.7/2 and DBLβ12 are a signature of the CM sample. These domains are part of the DC8

and DC13, which are described as involved in the pathogenesis of cerebral malaria in patients

from several endemic area [11,20,25,36]. The convergence of our results with the published

results in the literature using targeted methods enforce the association of DBLα1.7/2 and

DBLβ12 expression and cerebral malaria. We also demonstrated that the var expression pat-

tern of the SA patients was distinct from the CM patients, in accordance with the specific

sequestration pattern of P. falciparum in CM pathogenesis.

At the protein level, we were able to identify peptides associated with PfEMP1. As antici-

pated, most of the identified PfEMP1 came from the newly added sequences to the database

(10/57 were known sequences), confirming the validity of our approach considering the high

variability of PfEMP1 proteins.

Using peptides fractionation, we identified more proteins than previously published studies

[12,46], with higher sequence coverage. We identified a set of 57 PfEMP1 in the studied sam-

ples and investigated the structure of theses sequences. Our finding revealed that the two main

domain organisations were NTS-DBLα-CIDRα-DBLβ and NTS-DBLα-CIDRα-DBLδ. The

high proportion of NTS-DBLα-CIDRα-DBLβ in our identified PfEMP1 proteins compared to

genomic sequences within the same sample pool reflects the preferential expression of the

PfEMP1 containing this domain association. The CIDRα-DBLβ tandem is associated with the

potential “double binding” PfEMP1 [19,24], targeting both ICAM-1 (through DBLβ [19]) and

EPCR (through CIDRα [22]) human endothelial receptors. Nevertheless, the highly

Fig 3. Proportion of peptide corresponding to each PfEMP1 domains and subdomains in association with the clinical outcome.

Domains were attributed to each peptide identified in LC-MS/MS. The proportions are displayed for (A) CM patients, (B) SA

patients and (C) UM patients.

https://doi.org/10.1371/journal.pone.0218012.g003

PfEMP1 identification with LC-MS/MS

PLOS ONE | https://doi.org/10.1371/journal.pone.0218012 June 28, 2019 9 / 14

https://doi.org/10.1371/journal.pone.0218012.g003
https://doi.org/10.1371/journal.pone.0218012


recombinogenic nature of var genes means that the presence of a partial var sequence in a var
gene from one isolate does not mean that if the sequence is present in another isolate that it is

present in the same gene. Thus inferring the presence of entire PfEMP1s or domains for which

peptides have not been directly obtained must be regarded with caution, with the exception of

the atypically conserved var2csa, var1 and var3.

Focusing on the identified peptides, we were able to identify peptides as a signature of a

PfEMP1 specific domain. Even though the peptide length might seem short, this is equivalent

to the length of the PCR products used in the conventional qPCR approaches to assess specific

domain expression in field samples [11,21].

In conclusion, we identified PfEMP1 proteins expressed by parasite in patients presenting

several forms of malaria. This is one of the first proteomic report of full PfEMP1 protein direct

identification and is providing insight towards malaria pathogenesis understanding. The high

proportion of CIDRα among the identified sequences enforce the idea that iE sequestration

occurs either through CD36 binding, or EPCR binding, pending of clinical presentation

[22,47]. We also preferentially identified PfEMP1 protein harbouring DBLβ, among which

20% (6/30 identified DBLβ) displayed the binding pattern for ICAM-1. In addition, the pro-

portion of peptides corresponding to DBLβ was higher in the severe malaria patients com-

pared to the uncomplicated malaria patients. These strengthen the hypothesis that DBLβ is

involved in the disease development, as demonstrated with antibodies against DBLβ in Tanza-

nia [48] and Papua New Guinea [49]. However, the technical limitation of bottom-up

approach in LC-MS/MS does not allow for an optimal sequence coverage for precise PfEMP1

variants identification.

Both RNAseq and LC-MS/MS analysis showed that var and PfEMP1 involved in CM and

SA are distinct. This enforce the necessity to study well characterized clinical group. In addi-

tion, severe anaemia is a common complication of P. falciparum infection in endemic areas

[50]. The dedicated P. falciparum var and PfEMP1 associated phenotype should be further

investigated. However, severe anaemia associated malaria is multi-factorial and the clinical

outcome might not be solely related to a dedicated var/PfEMP1 subtype.

Our study opens opportunities to identify PfEMP1 variants and later implement these

newly identified sequences in PfEMP1 based vaccine development strategies [51,52].

Further studies should include patients from various P. falciparum endemic areas to better

represent PfEMP1 associated within P. falciparum disease in general and specifically to severe

malaria.
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