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Abstract We propose a semiparametric framework

based on Sliced Inverse Regression (SIR) to address

the issue of variable selection in functional regression.

SIR is an effective method for dimension reduction

which computes a linear projection of the predictors

in a low-dimensional space, without loss of information

on the regression. In order to deal with the high di-

mensionality of the predictors, we consider penalized

versions of SIR: ridge and sparse. We extend the ap-

proaches of variable selection developed for multidimen-

sional SIR to select intervals that form a partition of

the definition domain of the functional predictors. Se-

lecting entire intervals rather than separated evaluation

points improves the interpretability of the estimated

coefficients in the functional framework. A fully auto-

mated iterative procedure is proposed to find the crit-
ical (interpretable) intervals. The approach is proved

efficient on simulated and real data. The method is im-

plemented in the R package SISIR available on CRAN

at https://cran.r-project.org/package=SISIR.

Keywords functional regression · SIR · Lasso · ridge

regression · interval selection

1 Introduction

This article focuses on the functional regression prob-

lem, in which a real random variable Y is predicted
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from a functional predictor X(t) that takes values in a

functional space (e.g., L2([0, 1]), the space of squared

integrable functions over [0, 1]), based on a set of ob-

served pairs (X,Y ), (xi, yi)i=1,...,n. The main challenge

with functional regression lies in its high dimension: the

underlying dimension of a functional space is infinite,

and even if the digitized version of the curves is consid-

ered, the number of evaluation points is typically much

larger than the number of observations.

Recently, an increasing number of works have fo-

cused on variable selection in this functional regression

framework, in particular in the linear setting. The prob-

lem is to select parts of the definition domain of X that

are relevant to predict Y . Considering digitized ver-

sions of the functional predictor X, approaches based

on Lasso have been proposed to select a few isolated

points of X (Ferraty et al, 2010; Aneiros and Vieu,

2014; McKeague and Sen, 2010; Kneip et al, 2016). Al-

ternatively, other authors proposed to perform variable

selection on predefined functional bases. For instance,

Matsui and Konishi (2011) used L1 regularization on

Gaussian basis functions and Zhao et al (2012); Chen

et al (2015) on wavelets.

However, in many practical situations, the relevant

information may not correspond to isolated evaluation

points of X neither to some of the components of its ex-

pansion on a functional basis, but to its value on some

continuous intervals, X([ta, tb]). In that case, variable

selection amounts to identify those intervals. As ad-

vocated by James et al (2009), a desirable feature of

variable selection provided by such an approach is to

enhance the interpretability of the relation between X

and Y . Indeed, it reduces the definition domain of the

predictors to a few influential intervals, or it focuses on

some particular aspects of the curves in order to obtain

expected values for Y . Tackling this issue can be seen as
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selecting groups of contiguous variables (i.e., intervals)

instead of selecting isolated variables. Fraiman et al

(2016), in the linear setting, and Fauvel et al (2015);

Ferraty and Hall (2015), in a nonparametric framework,

propose several alternatives to do so. However, no spe-

cific contiguity constraint is put on groups of variables.

In the present work, we propose a semi-parametric

model that selects intervals in the definition domain of

X with an automatic approach. The method is based

on Sliced Inverse Regression (SIR, Li, 1991): the main

idea of SIR is to define a low dimensional data-driven

subspace on which the functional predictors can be pro-

jected. This subspace, called Effective Dimension Re-

duction (EDR) space is defined so as to optimize the

prediction ability of the projection. As a particular case,

the method includes the linear regression. Our choice

for SIR is motivated by the fact that the method is

based on a semi-parametric model that is more flexible

than linear models. The method has been extended to

the functional framework in previous works (Ferré and

Yao, 2003; Ferré and Villa, 2006) and sparse (i.e., `1
penalized) versions of the approach have also already

been proposed in Li and Nachtsheim (2008) and Li and

Yin (2008) for the multivariate framework. Building on

these previous proposals, we show that a tailored group-

Lasso-like penalty allows us to select groups of variables

corresponding to intervals in the definition domain of

the functional predictors.

Our second contribution is a fast and automatic pro-

cedure for building intervals in the definition domain of

the predictors without using any prior knowledge. As

far as we know, the only works that propose a method

to both define and select relevant intervals in the do-

main of the predictors are the work of Park et al (2016)

and Grollemund et al (2018), both in the linear frame-

work. Our approach is based on an iterative procedure

that uses the full regularization path of the Lasso.

The paper is organized as follows: Section 2 presents

the SIR approach in a multidimensional framework and

its adaptations to the high-dimensional and functional

frameworks, which are based on regularization and/or

sparsity constraints. Section 3 describes our proposal

when the domain of the predictors are partitioned us-

ing a fixed set of intervals. Then, Section 4 describes

an automatic procedure to find these intervals and Sec-

tion 5 provides practical methods to tune the different

parameters in a high dimensional framework. Finally,

Section 6 evaluates our approach on simulated and real-

world datasets.

2 A review on SIR and regularized versions

In this section, we review the standard SIR for multi-

variate data and its extensions to the high-dimensional

setting. Here, (X,Y ) denotes a random pair of variables

such that X takes values in Rp and Y is real. We assume

given n i.i.d. realizations of (X,Y ), (xi, yi)i=1,...,n.

2.1 The standard multidimensional case

When p is large, classical modeling approaches suffer

from the curse of dimensionality. This problem might

occur even if p is smaller than n. A standard way to

overcome this issue is to rely on dimension reduction

techniques. This kind of approaches is based on the

assumption that there exists an Effective Dimension

Reduction (EDR) space SY |X which is the smallest

subspace such that the projection of X on SY |X re-

tains all the information on Y contained in the pre-

dictor X. More precisely, SY |X is assumed of the form

Span{a1, . . . ,ad}, with d� p, such that

Y = F (a>1 X, . . . ,a
>
d X, ε), (1)

in which F : Rp+1 → R is an unknown function and

ε is an error term independent of X. To estimate this

subspace, SIR is one of the most classical approaches

when p < n: under an appropriate and general enough

condition, Li (1991) shows that a1, . . . ,ad can be esti-

mated as the first d Σ-orthonormal eigenvectors of the

generalized eigenvalue problem: Γa = λΣa, in which Σ

is the covariance matrix of X and Γ is the covariance

matrix of E(X|Y ).

In practice, Σ is replaced by the empirical covari-

ance, Σ̂ = 1
n

∑n
i=1

(
xi −X

) (
xi −X

)>
, and Γ is es-

timated by “slicing” the observations (yi)i as follows.

The range of Y is partitioned into H consecutive and

non-overlapping slices, denoted hereafter S1, . . . , SH .

An estimate of E(X|Y ) is thus simply obtained by(
X1, . . . , XH

)
in which Xh is the average of the ob-

servations xi such that yi is in Sh and Xh is associ-

ated with the empirical frequency p̂h = nh
n with nh

the number of observations in Sh. Γ̂ is thus defined as∑H
h=1 p̂hXhX

>
h .

SIR has different equivalent formulations that can

be useful to introduce regularization and sparsity. Cook

(2004) shows that the SIR estimate can be obtained by

minimizing over A ∈ Rp×d and C = (C1, ..., CH), with

Ch ∈ Rd (for h = 1, . . . ,H),

E1(A,C) =

H∑
h=1

p̂h‖(Xh −X)− Σ̂ACh‖2Σ̂−1 , (2)
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in which ‖.‖2
Σ̂−1

is the norm ∀u ∈ Rp, ‖u‖2
Σ̂−1

=

u>Σ̂−1u and the searched vectors aj are the columns

of A.

An alternative formulation is described in Chen and

Li (1998), where SIR is written as the following opti-

mization problem:

max
aj ,φ

Cor(φ(Y ),a>j X), (3)

where φ is any function R → R and (aj)j are Σ-

orthonormal. So, SIR can be interpreted as a canonical

correlation problem. The authors also prove that the

solution of φ optimizing Equation (3) for a given aj is

φ(y) = a>j E(X|Y = y), and that aj is also obtained

as the solution of the mean square error optimization

minaj E
(
φ(Y )− a>j X

)2
.

However, as explained in Li and Yin (2008) and

Coudret et al (2014) among others, in a high dimen-

sional setting (n < p), Σ̂ is singular and the SIR

problem is thus ill-posed. The same problem occurs

in the functional setting (Dauxois et al, 2001). Solu-

tions to overcome this difficulty include variable selec-

tion (Coudret et al, 2014), ridge regularization or spar-

sity constraints.

2.2 Regularization in the high-dimensional setting

In the high-dimensional setting, directly applying a

ridge penalty, µ2

∑H
h=1 p̂h‖ACh‖2Ip (for a given µ2 > 0),

to E1 would require the computation of Σ̂−1 (see Equa-

tion (2)) that does not exist when n < p. However,

Bernard-Michel et al (2008) show that this problem can

be rewritten as the minimization of

H∑
h=1

p̂hC
>
h A
>(Σ̂ + µ2Ip)ACh −

2

H∑
h=1

p̂h
(
Xh −X

)
ACh, (4)

which is well defined even for the high-dimensional set-

ting. Minimizing this quantity with respect to A leads

to define the columns of A (and hence the searched vec-

tors aj) as the first d eigenvectors of
(
Σ̂ + µ2Ip

)−1
Γ̂ .

2.3 Sparse SIR

Sparse estimates of aj usually increase the inter-

pretability of the model (here, of the EDR space) by

focusing on the most important predictors only. Also,

Lin et al (2018) prove the relevance of sparsity for SIR

in high dimensional setting by proposing a consistent

screening pre-processing of the variables before the SIR

estimation. A different and very commmon approach

is to handle sparsity directly by a sparse penalty (in

the line of the well-known Lasso). However, contrary

to ridge regression, adding directly a sparse penalty to

Equation (2) does not allow a reformulation valid for

the case n < p. To the best of our knowledge, only two

alternatives have already been published to use such

methods, one based on the regression formulation (2)

and the other on the correlation formulation (3) of SIR.

Li and Yin (2008) derive a sparse ridge estima-

tor from the work of Ni et al (2005). Given (Â, Ĉ),

solution of the ridge SIR, a shrinkage index vector

α = (α1, . . . , αp)
> ∈ Rp is obtained by minimizing a

least square error with `1 penalty:

Es,1(α) =

H∑
h=1

p̂h

∥∥∥(Xh −X
)
− Σ̂Diag(α)ÂĈh

∥∥∥2
Ip

+

µ1‖α‖`1 , (5)

for a given µ1 ∈ R+∗ where ‖α‖`1 =
∑p
j=1 |αj |. Once

the coefficients α have been estimated, the EDR space

is the space spanned by the columns of Diag(α̂)Â,

where α̂ is the solution of the minimization of Es,1(α).

An alternative is described in Li and Nachtsheim

(2008) using the correlation formulation of the SIR.

After the standard SIR estimates â1, . . . , âd have been

computed, they solve d independent minimization prob-

lems with sparsity constraints introduced as an `1
penalty: ∀ j = 1, . . . , d,

Es,2(asj) =

n∑
i=1

[
Pâj (X|yi)− (asj)

>xi
]2

+µ1,j‖asj‖`1 , (6)

in which Pâj (X|yi) = Ê(X|Y = yi)
>âj , with Ê(X|Y =

yi) = Xh for h such that yi ∈ Sh in the case of a

sliced estimate of Ê(X|Y ) and µ1,j > 0 is a parameter

controlling the sparsity of the solution.

Note that both proposals have problems in the high-

dimensional setting:

– In their proposal, Li and Yin (2008) avoid the issue

of the singularity of Σ̂ by working in the original

scale of the predictors for both the ridge and the

sparse approach (hence the use of the ‖.‖Ip -norm in

Equation (5) instead of the standard ‖.‖Σ̂−1-norm

of Equation (2)). However, for the ridge problem,

this choice has been proved to produce a degenerate

problem by Bernard-Michel et al (2008).

– Li and Nachtsheim (2008) base their sparse ver-

sion of the SIR on the standard estimates of the

SIR problem that cannot be computed in the high-

dimensional setting.

Moreover, the other differences between these two

approaches can be summarized in two points:
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– using the approach of Li and Yin (2008) based on

shrinkage coefficients, the indices αj where αj > 0

are the same on all the d components of the EDR.

This makes sense because the vectors aj themselves

are not relevant: only the space spanned by them is

and so there is no interest to select different vari-

ables j for the d estimated directions. Moreover,

this allows to formulate the optimization in a sin-

gle problem. However, this problem relies on a least

square minimization with dependent variables in a

high dimensional space Rp;
– on the contrary, the approach of Chen and Li (1998)

relies on a least square problem based on projec-

tions and is thus obtained from d independent opti-

mization problems. The dimension of the dependent

variable is reduced (1 instead of p) but the different

vectors which span the EDR space are estimated

independently and not simultaneously.

In our proposal, we combine both advantages of Li

and Yin (2008) and Li and Nachtsheim (2008) using

a single optimization problem based on the correla-

tion formulation of SIR. In this problem, the dimension

of the dependent variable is reduced (d instead of p)

when compared to the approach of Li and Yin (2008)

and it is thus computationally more efficient. Identi-

cal sparsity constraints are imposed on all d dimen-

sions using a shrinkage approach, but instead of select-

ing the nonzero variables independently, we adapt the

sparsity constraint to the functional setting to avoid se-

lecting isolated measurement points. The next section

describes this approach.

3 Sparse and Interpretable SIR (SISIR)

In this section, a functional regression framework is as-

sumed. X is thus a functional random variable, tak-

ing value in a (infinite dimensional) Hilbert space.

(xi, yi)i=1,...,n are n i.i.d. realizations of (X,Y ). How-

ever, xi are not perfectly known but observed on a

given (deterministic) grid τ = {t1, . . . , tp}. We denote

by xi = (xi(tj))j=1,...,p ∈ Rp the i-th observation, by

xj = (xi(tj))i=1,...,n the observations at tj and by X

the n × p matrix (x1, . . . ,xn)>. Unless said otherwise,

the notations are derived from the ones introduced in

the multidimensional setting (Section 2) by using the

xi as realizations of X.

Some very common methods in functional data

analysis, such as splines (Hastie et al, 2001), use the

supposed smoothness of X to project them in a re-

duced dimension space. Contrary to these methods, we

do not use or need that the observed functional pre-

dictor is smooth. We take advantage of the functional

aspects of the data in a different way, using the natural

ordering of the definition domain of X to impose spar-

sity on the EDR space. To do so, we assume that this

definition domain is partitioned into D contiguous and

non-overlapping intervals, τ1, . . . , τD. In the present sec-

tion, these intervals are supposed to be given a priori

and we will describe later (in Section 4) a fully auto-

mated procedure to obtain them from the data.

The following two subsections are devoted to the

description of the two steps (ridge and sparse) of the

method, adapted from Bernard-Michel et al (2008); Li

and Yin (2008); Li and Nachtsheim (2008).

3.1 Ridge estimation

The ridge step is the minimization of Equation (4), over

(A,C) to obtain Â and Ĉ. In practice, the solution is

computed as follows:

1. The estimator of A ∈ Rp×d is the solution

of the ridge penalized SIR and is composed of

the first d
(
Σ̂ + µ2Ip

)
-orthonormal eigenvectors

of
(
Σ̂ + µ2Ip

)−1
Γ̂ associated with the d largest

eigenvalues. In practice, the same procedure as

the one described in Ferré and Yao (2003); Ferré

and Villa (2006) is used: first, orthonormal eigen-

vectors (denoted hereafter (b̂j)j=1,...,d) of the ma-

trix
(
Σ̂ + µ2Ip

)−1/2
Γ̂
(
Σ̂ + µ2Ip

)−1/2
are com-

puted. Then, Â is the matrix whose columns are

equal to
(
Σ̂ + µ2Ip

)−1/2
b̂j for j = 1, . . . , d. It is

easy to prove that these columns are
(
Σ̂ + µ2Ip

)
-

orthonormal eigenvectors of
(
Σ̂ + µ2Ip

)−1
Γ̂ .

2. For a given A, the optimal Ĉ = (Ĉ1, . . . , ĈH) ∈
Rd,H is given by the first order derivation condi-

tion over the minimized criterion. This is equiva-

lent to
[
A>Σ̂A+ µ2A

>A
]
Ĉh = A>

(
Xh −X

)
that

gives Ĉh =
[
A>Σ̂A+ µ2A

>A
]−1

A>
(
Xh −X

)
=

A>
(
Xh −X

)
because the columns of A are(

Σ̂ + µ2Id
)

-orthonormal.

3.2 Interval-sparse estimation

Once Â and Ĉ have been computed, the estimated pro-

jections of (Ê(X|Y = yi))i=1,...,n onto the EDR space

are obtained by: PÂ(Ê(X|Y = yi)) = (Xh − X)>Â,

for h such that yi ∈ Sh. This d dimensional vector will

be denoted by (P1
i , . . . ,Pdi )>. In addition, we will also
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denote by Pj (for j = 1, . . . , d), Pj = (Pj1 , . . . ,Pjn)> ∈
Rn.

D shrinkage coefficients, α = (α1, . . . , αD) ∈ RD,

one for each interval (τk)k=1,...,D, are finally estimated.

If Λ(α) = Diag
(
α1I|τ1|, . . . , αDI|τD|

)
∈ Rp×p, this leads

to solve the following Lasso problem

α̂ = arg min
α∈RD

d∑
j=1

n∑
i=1

‖Pji − (Λ(α) âj)
>

xi‖2 + µ1‖α‖`1

= arg min
α∈RD

d∑
j=1

‖Pj − (X∆(âj))α‖2 + µ1‖α‖`1 ,

with ∆(âj) the (p×D)-matrix such that ∆lk(âj), is the

l-th entry of âj , âjl, if tl ∈ τk and 0 otherwise.

This problem can be rewritten as

arg min
α∈RD

‖P−∆(XÂ)α‖2 + µ1‖α‖`1 (7)

with P =

P1

...

Pd

, a vector of size dn and ∆(XÂ) =

X∆(â1)
...

X∆(âp)

, a (dn)×D-matrix.

α̂ are used to define the âsj of the vectors spanning

the EDR space by:

∀ l = 1, . . . , p, âsjl = α̂k âjl for k such that tl ∈ τk.

Once the sparse vectors (âsj)j=1,...,d have been

obtained, an Hilbert-Schmidt orthonormalization ap-

proach is used to make them Σ̂-orthonormal.

Of note, as a single shrinkage coefficient is defined

for all (âjl)tl∈τk , the method is close to group-Lasso

(Simon et al, 2013), in the sense that, for a given

k ∈ {1, . . . , D}, estimated (âsjl)j=1,...,d, tl∈τk are ei-

ther all zero or either all different from zero. However,

the approach differs from group-Lasso because group-

sparsity is not controlled by the L2-norm of the group

but by a single shrinkage coefficient associated to that

group: the final optimization problem of Equation (7)

is thus written as a standard Lasso problem (on α).

Another alternative would have been to use fused-

Lasso (Tibshirani et al, 2005) to control the total vari-

ation norm of the estimates. However, the method does

not explicitely select intervals and, as illustrated in Sec-

tion 6.1, is better designed to produce piecewise con-

stant solutions than solutions that have sparsity prop-

erties on intervals of the definition domain.

4 An iterative procedure to select the intervals

The previous section described our proposal to detect

the subset of relevant intervals among a fixed, prede-

fined set of intervals of the definition domain of the

predictor, (τk)k=1,...,D. However, choosing a priori a

proper set of intervals is a challenging task without ex-

pert knowledge, and a poor choice (too small, too large,

or shifted intervals) may largely hinder interpretability.

In the present section, we propose an iterative method

to automatically design the intervals, without making

any a priori choice.

In a closely related framework, Fruth et al (2015)

tackle the problem of designing intervals by combin-

ing sensitivity indices, linear regression models and a

method called sequential bifurcation (Bettonvil, 1995)

which allows them to sequentially split in two the most

promising intervals (starting from a unique interval cov-

ering the entire domain of X). Here, we propose the in-

verse approach: we start with small intervals and merge

them sequentially. Our approach is based on the stan-

dard sparse SIR (which is used as a starting point) and

iteratively performs the most relevant merges in a flex-

ible way (contrary to a splitting approach, we do not

need to arbitrary set the splitting positions).

The intervals (τk)k=1,...,D are first initialized to a

very fine grid, taking for instance τk = {tk} for all

k = 1, . . . , p (hence, at the beginning of the procedure,

D = p). The sparse step described in Section 3.2 is

then performed with the a priori intervals (τk)k=1,...,D:

the set of solutions of Equation (7), for varying values

of the regularization parameter µ1, is obtained using a

regularization path approach, as described in Friedman

et al (2010). Three elements are retrieved from the path

results:

– (α̂∗k)k=1,...,D are the solutions of the sparse problem

for the value µ∗1 of µ1 that minimizes the GCV error;

– (α̂+
k )k=1,...,D and (α̂−k )k=1,...,D are the first solu-

tions, among the path of solutions, such that at most

(resp. at least) a proportion P of the coefficients are

non zero coefficients (resp. are zero coefficients), for

a given chosen P , which should be small (0.05 for

instance).

Then, the following sets are defined: D1 = {k :

α̂−k 6= 0} (called “strong non zeros”) and D2 = {k :

α̂+
k = 0} (called “strong zeros”). This step is illustrated

in Figure 1. Intervals are merged using the following

rules:

– “neighbor rule”: consecutive intervals of the same

set are merged (τk and τk+1 are merged if both k

and k+1 belong to D1 or if they both belong to D2)

(see a) and b) in Figure 2);
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Fig. 1 Example of regularization path with D = 20:
(α̂k)k=1,...,D are plotted according to different values of the
tuning parameter µ1. The vertical dotted line represents the
optimal value µ∗1 that provides the solutions (α̂∗k)k=1,...,D of
the sparse problem. (α̂k)k∈D1

and (α̂k)k∈D2
are respectively

represented in bold and in pointed lines for P = 0.1.

– “squeeze rule”: τk, τk+1 and τk+2 are merged if both

k and k + 2 belong to D1 while k + 1 /∈ D2 (or if

both k and k + 2 belong to D2 while k + 1 /∈ D1)

and lk + lk+2 > lk+1 with lk = max τk −min τk (see

c) and d) in Figure 2).

If the current value of P does not yield any fusion

between intervals, P is updated by P ← P+P0 in which

P0 is the initial value of P . The procedure is iterated

until all the original intervals have been merged.

The result of the method is a collection of mod-

els (α̂∗k)k=1,...,D, starting with p intervals and finishing

with one. The final selected model is the one that min-

imizes the CV error. In practice, this often results in a

very small number of contiguous intervals which are of

the same type (zero or non zero) and are easily inter-

pretable (see Section 6).

Let us remark that the intervals (τk)k=1,...,D are not

used in the ridge step of Section 3.1, which can thus be

performed once, independently of the interval search.

The whole procedure is described in Algorithm 1.

5 Choice of parameters in the high dimensional

setting

The method requires to tune four parameters : the num-

ber of slices H, the dimension of the EDR space p, the

penalization parameter of the ridge regression µ2 and

of the one of the sparse procedure µ1. Two of these

parameters, H and µ1, are chosen in a standard way

Algorithm 1 Overview of the complete procedure
1: Ridge estimation
2: Choose µ2 and d according to Section 5
3: Solve the ridge penalized SIR to obtain Â and Ĉ, ridge

estimates of the SIR (see details in Section 3.1)
4: Sparse estimation
5: Initialize the intervals (τk)k=1,...,D to τk = {tk}
6: repeat
7: Estimate and store (α̂∗k)k=1,...,D the solutions of the

sparse problem that minimizes the GCV error
8: Estimate (α̂+

k )k=1,...,D and (α̂−k )k=1,...,D such that
at most (resp. at least) a proportion P of the coefficients
are non zero coefficients (resp. are zero coefficients), for a
given chosen P (details in Section 4)

9: Update the intervals (τk)k=1,...,D according to the
“neighbor” and the “squeeze” rules (see Section 4)

10: until τ1 6= [t1, tp]
11: Output : A collection of models (α̂∗k)k=1,...,D

12: Select the model (α̂∗k)∗k=1,...,D∗ that minimizes the CV
error

13: Active intervals (for interpretation) are consecutive τk
with non zero coefficients α̂∗k

(see Section 6 for further details). This section presents

a method to jointly choose µ2 and d, for which no so-

lution has been proposed that is suited to our high-

dimensional framework. Two issues are raised to tune

these two parameters: i) they depend from each other

and ii) the existing methods to tune them are only valid

in a low-dimensional setting (p < n). We propose an it-

erative method which adapts existing approaches only

valid for the low dimension framework and combine

them to find an optimal joint choice for µ2 and d.

5.1 A Cross-Validation (CV) criterion for µ2

Using the results of Golub et al (1979), Li and Yin

(2008) propose a Generalized Cross-Validation (GCV)

criterion to select the regularization parameter µ2 and

Bernard-Michel et al (2008) explain that this criterion

can be applied to their modified estimator, using similar

calculations. However, it requires the computation of

Σ̂−1/2, which does not exist in the high dimensional

setting.

We thus used a different strategy, based on L-fold

cross-validation (CV), which is also used to select the

best dimension of the EDR space, d (see Section 5.2).

More precisely, the data are split into L folds, L1, . . . ,

LL and a CV error is computed for several values of µ2

in a given search grid and for a given (large enough d0).

The optimal µ2 is chosen as the one minimizing the CV

error for d0.

The CV error is computed based on the origi-

nal regression problem E1(A,C). In the expression of

E1(A,C) and for the iteration number l (∈ {1, . . . , L}),
A and Ch are replaced by their estimates computed



Interpretable sparse SIR for functional data 7

Fig. 2 Illustration of the merge procedure for the intervals.

without the observations in fold number l. Then, an er-

ror is computed by replacing the values of p̂h, Xh, X

and Σ̂ by their empirical estimators for the observa-

tions in fold l. The precise expression is given in step 5

of Algorithm 2 in Appendix B.

5.2 Choosing d in a high dimensional setting

The results of CV (i.e., the values of E1(A,C) estimated

by L-fold CV) are not directly usable for tuning d. The

reason is similar to the one developed in Biau et al

(2005); Fromont and Tuleau (2006): different d corre-

spond to different MLR (Multiple Linear Regression)

problems which cannot be compared directly using a

CV error. In such cases, an additional penalty depend-

ing on d is necessary to perform a relevant selection and

avoid overfitting due to large d.

Alternatively, a number of works have been dealing

with the choice of d in SIR. Many of them are asymp-

totic methods (Li, 1991; Schott, 1994; Bura and Cook,

2001; Cook and Yin, 2001; Bura and Yang, 2011; Liquet

and Saracco, 2012) which are not directly applicable in

the high dimensional framework. When n < p, Zhu et al

(2006); Li and Yin (2008) estimate d using the number

of non zero eigenvalues of Γ , but their approach re-

quires setting a hyper-parameter to which the choice of

d is sensitive. Portier and Delyon (2014) describes an

efficient approach that can be used when n < p but

it is based on bootstrap sampling and would thus be

overly extensive in our situations where d has to be

tuned jointly with µ2 (see next section).

Another point of view can be taken from Li (1991)

who introduces a quantity, denoted by R2(d), which

is the average of the squared canonical correlation be-

tween the space spanned by the columns of Σ1/2A

and the columns of the space spanned by the columns

of Σ̂1/2Â. As explained in Ferré (1998), a relevant

measure of quality for the choice of a dimension d is

R(d) = d − E
[
Tr
(
ΠdΠ̂d

)]
, in which Πd is the Σ-

orthogonal projector onto the subspace spanned by the

columns of A and Π̂d is the Σ̂-orthogonal projector onto

the space spanned by the columns of Â. This quantity

is equal to 1
2E
∥∥∥Πd − Π̂d

∥∥∥2
F

(in which ‖.‖F is the Frobe-

nius norm; see the proof in Appendix A).

In practice, the quantity Πd is unknown and

E
[
Tr
(
ΠdΠ̂d

)]
is thus frequently estimated by re-

sampling techniques as bootstrap. Here, we choose a

less computationally demanding approach by perform-

ing a CV estimation: E
[
Tr
(
ΠdΠ̂d

)]
is estimated dur-

ing the same L-fold loop described in Section 5.1. An

additional problem comes from the fact that, in the

high dimensional setting, the Σ̂-orthogonal projector

onto the space spanned by the columns of Â is not

well defined since the matrix Σ̂ is ill-conditioned. This

estimate is replaced by its regularized version using

the (Σ̂ + µ2Ip)-orthogonal projector onto the space

spanned by the columns of Â and Π̂d is the (Σ̂+µ2Ip)-
orthogonal projector onto the space spanned by the

columns of Â. Finally, for all l = 1, . . . , L, we computed

the (Σ̂\l + µ2Ip)-orthogonal projector onto the space

spanned by the columns of Â(l) in which Σ̂\l and Â(l)

are computed without the observations in fold num-

ber l and averaged the results to obtain an estimate of

E
[
Tr
(
ΠdΠ̂d

)]
.

In practice, this estimate is often a strictly increas-

ing function of d and we chose the optimal dimension

as the largest one before a gap in this increase (“elbow

rule”).

5.3 Joint tuning

The estimation of µ2 and d is jointly performed using

a single CV pass in which both parameters are varied.

Note that only the number of different values for µ2

strongly influences the computational time since SIR

estimation is only performed once for all values of d,
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and selecting the first d columns of Â for the last com-

putation of the two criteria, the estimation of E(A,C)

and that of R(d). The overall method is described in

Appendix B.

6 Experiments

This section evaluates different aspects of the methods

on simulated and real datasets. The relevance of the

selection procedure is evaluated on simulated and real

datasets in Sections 6.1 and 6.3. Additionally, its effi-

ciency in a regression framework is assessed on a real

supervised regression problem in Section 6.2.

All experiments have been performed using the R
package SISIR. Datasets and R scripts are provided at

https://github.com/tuxette/appliSISIR.

6.1 Simulated data

6.1.1 Model description

To illustrate our approach, we first consider two toy

datasets, built as follow: Y =
∑d
j=1 log |〈X,aj〉| with

X(t) = Z(t) + ε in which Z is a Gaussian process in-

dexed on [0, 1] with mean µ(t) = −5 + 4t − 4t2 and

the Matern 3/2 covariance function (Rasmussen and

Williams, 2006), and ε is a centered Gaussian variable

independent of Z. The vectors aj have a sinusoidal

shape, but are nonzero only on specific intervals Ij :

aj = sin
(
t(2+j)π

2 − (j−1)π
3

)
IIj (t).

From this basis, we consider two models with in-

creasing complexity:

– (M1): d = 1, I1 = [0.2, 0.4]

– (M2): d = 3 and I1 = [0, 0.1], I2 = [0.5, 0.65] and

I3 = [0.65, 0.78].

For both cases the datasets consist of n = 100 ob-

servations of Y , digitized at p = 200 and 300 evalua-

tion points, respectively. The number of slices used to

estimate the conditional mean E(X|Y ) has been cho-

sen equal to H = 10: according to Li (1991); Coudret

et al (2014) among others, the performances of SIR es-

timates are not sensitive to the choice of H, as long as

it is large enough (on a theoretical point of view, H is

required to be larger than d+ 1).

The datasets are displayed in Figure 3, with a pri-

ori intervals provided to test the sparse penalty (see

Section 6.1.3 for further details).

6.1.2 Step 1: Ridge estimation and parameter selection

The method described in Section 3.1 with parameter se-

lection as in Section 5 has been used to obtain the ridge
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Fig. 3 Summary of the two simulated datasets: top (M1),
bottom (M2). The left charts display ten samples of X, the
colors showing the actual relevant intervals; the middle charts
display the functions that span the EDR space with the rel-
evant slices highlighted in color; the right charts display the
distribution of Y .

estimates of (aj) and to select the parameters µ2 (ridge

regularization) and d (dimension of the EDR space).

Figure 4 shows the evolution of the CV error and of the

estimation of E(R(d)) versus (respectively) µ2 and d

among a grid search both for µ2 ∈ {10−2, 10−1, ..., 105}
and d ∈ {1, 2, . . . , 10}. The chosen value for µ2 is 1 for

(M1) (M2)

Fig. 4 Top: CV error versus µ2 (log10 scale, for d = 1) and
Bottom: estimation of E(R(d)) versus d (for µ2 = 1 in both
cases), for models (M1) (left) and (M2) (right).

both models and the chosen values for d, given by the

“elbow rule” are d = 1 for both models. The true values

are, respectively, d = 1 and d = 3, which shows that

the criterion tends to slightly underestimate the model

dimension.
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6.1.3 Step 2: Sparse selection and definition of

relevant intervals

The approach described in Section 4 is then applied

to both models. The algorithm produces a large collec-

tion of models with a decreasing number of intervals: a

selection of the estimates of a1 for (M1), correspond-

ing to those models is shown in Figure 5. The first chart

(a) 200 intervals (b) 142 intervals

(c) 41 intervals (d) 5 intervals

Fig. 5 (M1) Values of âs1 corresponding to four models ob-
tained using the iterative procedure with a different numbers
of intervals. (b) is the chosen model and (a) corresponds to a
standard sparse estimation with no constraint on intervals.

(Figure 5,a) corresponds to the standard sparse penalty

in which the constraint is put on isolated evaluation

points. Even though most of selected points are found

in the relevant interval, the estimated parameter âs1 has

an uneven aspect which does not favor interpretation.

By constrast, for a low number of intervals (less

than 50, Figure 5, c and d), the selected relevant points

(those corresponding to nonzero coefficients) have a

much larger range than the original relevant interval

(in red on the figure).

The model selected by minimization of the cross-

validation error (Figure 5, b) was found relevant: this

approach lead us to choose the model with 142 intervals,

which actually correspond to two distinct and consecu-

tive intervals (a first one, which contains only nonzero

coefficients and a second one in which no point is se-

lected by the sparse estimation). This final estimation

is very close to the actual direction a1, both in terms

of shape and support.

The same method is used for (M2). A comparison

between the true relevant intervals and the estimated

ones is provided in Figure 6 (left). The support of each

of the estimate â1 is fairly appropriate: it slightly over-

estimates the length of the two real intervals and con-

SISIR standard sparse

Fig. 6 (M2) Left: comparison between the true intervals
and the estimated ones. True intervals are represented in the
upper side of the figure (in black) and by the gray background.
Estimated intervals are represented by the red lines in the
bottom of the figure and by the pink background. Right: same
representation for the standard sparse approach (penalty is
applied to tj and not to the intervals).

tains only three additional isolated points which are not

relevant for the estimation. Compared to the standard

sparse approach (right part of Figure 6), the approach

is much more efficient to select the relevant intervals

and provide more interpretable results by identifying

properly important contiguous areas in the support of

the predictors.

As a basis for comparison, fused Lasso (Tibshirani

et al, 2005), as implemented in the R package genlasso,

was used with both (M1) and (M2) datasets. For com-

parison with our method, we applied fused Lasso on the

output of the ridge SIR so as to find as1 ∈ Rp that min-

imizes:
n∑
i=1

[
Pâ1

(X|yi)− (as1)>xi
]2

+

λ1‖as1‖`1 + λ2

p−1∑
j=1

|as1j − as1,j+1|,

for as1 = (as1,1, . . . , a
s
1,p). The tuning parameters λ1 and

λ2 were selected by 10-fold CV over a 2-dimensional

grid search. The idea behind fused Lasso is to have

a large number of identical consecutive entries in as1.

In our framework, the hope is to automatically design

relevant intervals using this property. Results are dis-

played in Figure 7 for both simulated datasets. Con-

trary to simple Lasso, fused Lasso produces a piecewise

constant estimate. However, both for (M1) and (M2),

the method fails to provide a sparse solution: almost the

whole definition domain of the predictor is returned as

relevant.

6.2 Tecator dataset

Additionally, we tested the approach with the well-

known Tecator dataset (Borggaard and Thodberg,

1992), which consists of spectrometric data from the
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(M1) (M2)

Fig. 7 (M1) Values of âs1 obtained with fused Lasso. The
target relevant interval is highlighted in red. (M2) Compar-
ison between the true intervals and the estimated ones. True
intervals are represented in the upper side of the figure (in
black) and by the gray background. Fused Lasso estimated
intervals are represented by the red lines in the bottom of the
figure and by the pink background.

food industry. This dataset is a standard benchmark for

functional data analysis. It contains 215 observations

of near infrared absorbency spectra of a meat sample

recorded on a Tecator Infratec Food and Feed Ana-

lyzer. Each spectrum was sampled at 100 wavelengths

uniformly spaced in the range 850–1050 nm. The com-

position of each meat sample was determined by ana-

lytic chemistry, among which we focus on the percent-

age of fat content. The data is displayed in Figure 8:

the left chart displays the original spectra whereas the

right chart displays the first order derivatives (obtained

by simple finite differences). The fat content is repre-

sented in both graphics by the color level and, as is

already well known with this dataset, the derivative is

a good predictor of this quantity: these derivatives were

thus used as predictors (X) to explain the fat content

(Y ).

Fig. 8 Tecator. 215 near infrared spectra from the “Teca-
tor” dataset (left) and corresponding first order derivatives
(right). The color level indicates the percentage of fat con-
tent.

We first applied the method on the entire dataset

to check the relevance of the estimated EDR space and

corresponding intervals in the domain 850–1050 nm.

Using the ridge estimation and the method described

in Section 5, we set µ2 = 10−4 and d = 1.

The relevance of the approach was then assessed

in a regression setting. Following the simulation set-

ting described in Hernández et al (2015), we split the

data into a training and test sets with 150 observa-

tions for the training. This separation of the data was

performed 100 times randomly. For each training data

set, the EDR space was estimated and the projection of

the predictors on this space obtained. A a Support Vec-

tor Machine (SVM, ε-regression method, package e1071

Meyer et al, 2015) was used to fit the link function F

of Equation (1) from both the projection on the EDR

space obtained by a simple ridge SIR and the projec-

tion on the EDR space obtained by SISIR. The mean

square error was then computed on the test set. We

found an averaged value equal to 5.54 for the estima-

tion of the EDR space obtained by SISIR and equal to

11.11 when the estimation of the EDR space is directly

obtained by ridge SIR only. The performance of SISIR

in this simulation is thus half the value reported for the

Nadaraya-Watson kernel estimate in Hernández et al

(2015).

Even if some methods achieve better performance

on this data set (Hernández et al (2015) reported an av-

erage MSE of 2.41 for their non parametric approach),

our method has the advantage of being easily inter-

pretable because it extracts a few components which

are themselves composed of a small number of relevant

intervals: Figure 9 shows the intervals selected in the

simulation with the smallest MSE, compared to the val-

ues selected by the standard Lasso. Our method is able

to identify two intervals in the middle of the wavelength

definition domain that are actually relevant to predict

the fat content (according to the ordering of the col-

ors in this area). On the contrary, standard sparse SIR

selects almost the entire interval.

Fig. 9 Tecator. Left: original predictors (first order deriva-
tives) with a gray background superimposed to highlight the
active intervals found by our procedure. Right: same figure for
the standard sparse approach (no constraint on intervals).



Interpretable sparse SIR for functional data 11

6.3 Sunflower yield

Finally, we applied our strategy to a challenging agro-

nomic problem, the inference of interpretable climate-

yield relationships on complex crop models.

We consider a process-based crop model called SUN-

FLO, which was developed to simulate the annual grain

yield (in tons per hectare) of sunflower cultivars, as

a function of time, environment (soil and climate),

management practice and genetic diversity (Casadebaig

et al, 2011). SUNFLO requires functional inputs in the

form of climatic series. These series consist of daily mea-

sures of five variables over a year: minimal temperature,

maximal temperature, global incident radiation, precip-

itations and evapotranspiration.

The daily crop dry biomass growth rate is calculated

as an ordinary differential equation function of incident

photosynthetically active radiation, light interception

efficiency and radiation use efficiency. Broad scale pro-

cesses of this framework, the dynamics of leaf area, pho-

tosynthesis and biomass allocation to grains were split

into finer processes (e.g leaf expansion and senescence,

response functions to environmental stresses). Globally,

the SUNFLO crop model has about 50 equations and 64

parameters (43 plant-related traits and 21 environment-

related). Thus, due to the complexity of plant-climate

interactions and the strongly irregular nature of cli-

matic data, understanding the relation between yield

and climate is a particularly challenging task.

The dataset used in the experiment consisted of 111

yield values computed using SUNFLO for different cli-

matic series (recorded between 1975 and 2012 at five

French locations). We focused solely on evapotranspi-

ration as a functional predictor because it is essentially

a combination of the other four variables (Allen et al,

1998). The cultural year (i.e., the period on which the

simulation is performed) is from weeks 16 to 41 (April

to October). We voluntarily kept unnecessary data (11

weeks before simulation and 8 weeks after) for testing

purpose (because these periods are known to be irrele-

vant for the prediction). The resulting curves contained

309 measurement points. Ten series of this dataset are

shown in Figure 10, with colors corresponding to the

yield that we intend to explain: no clear relationship

can be identified between the the value of the curves at

any measurement point and the yield value.

Using the ridge estimation and the method de-

scribed in Section 5, we set µ2 = 103 and d = 2. Then,

we followed the approach described in Section 4 to de-

sign the relevant intervals.

Figure 11 shows the selected intervals obtained af-

ter running our algorithm, as well as the points selected

using a standard sparse approach. The standard sparse

Fig. 10 Sunflo. Ten series of evaportranspiration daily
recordings. The color level indicates the corresponding yield
and the dashed lines bound the actual simulation definition
domain.

SIR (top of the figure) captures well the simulation in-

terval (with only two points selected outside of it), but

fails to identify the important periods within it. In con-

trast, SISIR (bottom) focuses on the second half of the

simulation interval, and in particular its third quarter.

This matches well expert knowledge, that reports little

influence of the climate conditions at early stage of the

plant growth and almost none once the grains are ripe

(Casadebaig et al, 2011).

Fig. 11 Sunflo. Top: standard sparse SIR (blue). Bottom:
SISIR (pink). The colored areas depict the active intervals.
The dashed lines bound the actual simulation definition do-
main.
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A Equivalent expressions for R2(d)

In this section, we show that R2(d) = 1
2
E
∥∥∥Πd − Π̂d∥∥∥2

F
. We

have

1

2

∥∥∥Πd − Π̂d∥∥∥2
F

=
1

2
Tr

[(
Πd − Π̂d

)(
Πd − Π̂d

)>]
=

1

2
Tr [(ΠdΠd)]− Tr

[(
ΠdΠ̂d

)]
+

1

2
Tr
[(
Π̂dΠ̂d

)]
.

The norm of a M -orthogonal projector onto a space of
dimension d is equal to d, we thus have that

1

2

∥∥∥Πd − Π̂d∥∥∥2
F

= d− Tr
[(
ΠdΠ̂d

)]
,

which concludes the proof.

B Joint choice of the parameters µ2 and d

Notations:

– Ll are observations in fold number l and Ll are the re-
maining observations;

– Â(L, µ2, d) and Ĉ(L, µ2, d) are minimizers of the ridge
regression problem restricted to observations i ∈ L. Note
that for d1 < d2, Â(τ, µ2, d1) are the first d1 columns of

Â(L, µ2, d2) (and similarly for Ĉ(L, µ2, d));

– p̂Lh , X
L
h , X

L
and Σ̂L are, respectively, slices frequencies,

conditional mean of X given the slices, mean of X given
the slices and covariance of X for observations i ∈ L;

– Π̂Ld,µ2
is the (Σ̂L + µ2Ip)-orthogonal projector onto the

space spanned by the first d columns of Â(L, µ2, d0) and

Π̂d,µ2
is Π̂Ld,µ2

for L = {1, . . . , n}.

Algorithm 2

1: Set Gµ2
(finite search grid for µ2) and d0 ∈ N∗ large

enough
2: for µ2 ∈ Gµ2

do
3: for l = 1, . . . , L do
4: Estimate Â(Ll, µ2, d0) and Ĉ(Ll, µ2, d0)
5: With the observations i ∈ Ll and for d ∈
{1, . . . , d0}, compute

CVerrld,µ2
=

H∑
h=1

p̂Llh

∥∥∥(XLlh −XLl)−
Σ̂LlÂ(Ll, µ2, d)Ĉh(Ll, µ2, d)

∥∥∥2
(Σ̂Ll+εI)−1

in which ε is a small positive number that makes (Σ̂Ll+εI)
invertible.

6: For d ∈ {1, . . . , d0}, compute Π̂Lld,µ2

7: For d ∈ {1, . . . , d0}, compute

R̂µ2
(d) = d−

1

L

L∑
l=1

Tr
(
Π̂Lld,µ2

Π̂d,µ2

)
8: end for
9: Compute

CVerrµ2,d =
1

L

L∑
l=1

CVerrlµ2,d

10: end for
11: State d∗ ← d0.
12: repeat
13: Choose µ∗2 = arg minµ2∈Gµ2 CVerrµ2,d∗

14: Update d∗ with an “elbow rule” in R̂µ∗
2
(d)

15: until Stabilization of d∗

16: Output: µ∗2 and d∗
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