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Abstract: Extending digital soil mapping to the mapping of soil functions that can support end-user
decisions comes to coupling a digital soil mapping procedure and a soil function assessment method.
This can be done following various possible inference trajectories following the order with which
“combining primary soil properties”, “aggregating soil layers across depths” and “mapping” are
executed to provide the targeted output. Eighteen inference trajectories, designed for computing
soil available water capacity maps in the Languedoc–Roussillon region (France), were compared
with regard to their mapping performances. The best performance (SSMSE = 0.42) was obtained by a
trajectory that, before mapping, combined the three first GlobalSoilMap soil layers and computed the
available water capacity of each layer. The worst (SSMSE = 0.07) was observed when all the soil layers
and soil properties were combined prior to mapping. We explain the observed differences between
trajectories by examining the differences in mapping errors and in error propagation between the
compared trajectories, which involve both the correlations between the soil properties and between
their mapping errors. This paves the way to spatial soil inference systems that could perform an ex
ante selection of the best possible inference trajectory for mapping a soil function.

Keywords: available water capacity; soil functions; digital soil mapping; inference trajectory

1. Introduction

It is increasingly recognized that soils and their functions have a part to play in the large existential
challenges that have been recognized for the sustainable development of humanity and planet Earth [1].
Addressing such challenges needs to appropriately informing local and global decision making, which
requires a knowledge of soils at fine resolution and global extent [2]. Digital Soil Mapping (DSM) [3,4]
has been proposed as a methodology for reaching this requirement. Various applications of DSM
across the globe [5] demonstrated that DSM can now operationally produce sets of high resolution
images representing the spatial variations of the most currently required soil properties or “primary
soil properties” (e.g., soil textural fractions, soil carbon content, available water capacity, etc.).

In spite of these substantial efforts for moving to operationality, DSM has still not fully matched
the initial objective. A new step is to shift from mapping primary soil properties to mapping soil
functions. After the pioneering paper of Carré et al. [6] that advocated for digital soil assessment
approaches, there has been abundant literature providing conceptual advances for the description
of soil functions and the related ecosystem services [7] and also on the valuations of soil services [8].
Greiner et al. [9] recently proposed a set of soil function assessment (SFA) methods that cover the
multiple functionalities of soils and are applicable to ecosystem service supply assessments. These SFA
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methods use as inputs a minimum set of primary soil properties and pedotransfer functions which
makes them largely applicable provided that the spatial data on primary soil properties are made
available. This carries implicitly the idea that (digital) soil mapping and soil function assessment
methods are two independent processes that can be only loosely coupled through a straightforward
transfer of data. This is this idea that we want to question in this paper.

Beyond their differences, all the SFA methods share a similar data flow. They provide a single
output—the valuation of the soil function—from a set of soil properties that characterize different soil
layers. Figure 1 represents in a three-dimensional space the different possible inference trajectories
that can be envisaged for producing an SFA output, with the inclusion of the mapping process in
these trajectories. The inference trajectories may differ in the order with which “combining primary
soil properties”, “aggregating soil layers across depths”, and “mapping” are executed to provide the
common targeted SFA output. The commonly followed approach, i.e., mapping first then combining
soil property and aggregating soil layers, is one of the possible trajectories (shown in green on Figure 1),
but many others exist. Mapping could be the last executed process after having combined the soil
properties and the soil layers over the soil input dataset (“mapping last” in blue on Figure 1). Combining
first the soil properties at each single soil layer, then mapping and lastly aggregating SFA outputs is an
intermediate inference trajectory (shown in red on Figure 1) that can be envisaged too. Apart from
these three examples, one can imagine a large number of other inference trajectories since both partial
combinations of soil properties and partial aggregations of soil layers can be envisaged.
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Considering that SFA could be applied following these different mapping trajectories, the following
question comes; “which inference trajectory provides the most accurate SFA output?” Recently,
Laborczi et al. [10] provided a partial response to this question. They compared two inference
trajectories for mapping sand, silt and clay content at 0–30 cm depth, which consisted of either first
aggregating the GlobalSoilMap layers (0–5 cm, 5–15 cm, and 15–30 cm) then mapping or first mapping
each individual layer and then aggregating the layers. They obtained significantly different outputs
between the different trajectories, the former trajectory providing slightly worse predictions than the
latter one. To our knowledge, such a comparison has not been extended yet to a more generic case
study involving the whole inference trajectories for computing soil functions.

In this paper, we address the above evoked question by taking as an example the mapping of the
soil available water capacity (SAWC) of a soil profile. Although SAWC cannot be considered as a soil
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function per se, it shares the same issues of the choice of inference trajectories. Furthermore, SAWC is
involved in the assessment of several ecosystem services [7], either provisioning services—food, fuel,
and fiber production—or regulating services—climate and gas regulation, water regulation, or erosion
and flood control. SAWC is mapped over the Languedoc–Roussillon region using the same inputs as
earlier DSM papers dealing with the same region [11,12].

2. The Problem

SAWC is a well-known concept that has been used for a long time to express the capacity of soils
to store water for plants [13]; SAWC is computed using a classic expression:

SAWC =
∑n

i=1
dhi ∗ bdi ∗

(100− sti
100

)
∗ (θri − θwi) (1)

where SAWC is the soil available water capacity (cm), dhi = thickness of the ith horizon (cm), bdi = bulk
density of the ith horizon, sti = coarse fragment content of the ith horizon (% volumetric), and θri
and θwi are soil water contents at field capacity (FC) and at permanent wilting point (PWP) of the ith
horizon (cm3.cm−3), respectively.

When the mapping of SAWC is targeted, some modifications to Equation (1) are necessary.
First, bulk density, soil water contents at FC and at PWP are expensive to measure soil properties

that are rarely available in current soil databases, which prevent their mapping. The alternative solution
is to estimate these data from more easily mappable primary soil properties (e.g., particle size fractions
and organic carbon) by using pedotransfer functions (PTFs) [14]. Many PTFs have been developed
for estimating the soil properties required for computing SAWC [15,16]. In particular, PTFs can be
used to calculate volumetric water contents at FC and PWP (e.g., Wösten et al. [15]), which embeds the
bulk density information and avoids using a specific PTF to estimate bulk density. Volumetric water
contents are estimated as follows

θri =
n∑

j=1

α jPP j + ε (2)

θwi =
n∑

j=1

α jPP j + ε (3)

where θri = volumetric soil water content at FC (cm3.cm−3), θwi = volumetric soil water content
at PWP (cm3.cm−3), α1 . . . αn = the coefficient of the model, PP1 . . .PPn is the value of the selected
primary soil properties as input, and ε is an estimated error.

A second modification of Equation (1) is the replacement of horizons whose thicknesses are
variable across locations by soil layers with fixed depths. This has been introduced in digital soil
mapping as a simple way for dealing with soil variability across depths [17]. The general principle
is to fit a continuous depth function (spline) of a given property onto the values of the property for
the successive horizons, which allows further estimations of the soil properties for any possible layer
defined by a user-fixed interval of depth [18]. This enables the harmonization of soil depths intervals
across DSM input locations, which greatly facilitates further mapping. A discretization into six layers
(0–5, 5–15, 15–30, 30–60, and 60–100 cm) has been adopted in the specifications of the GlobalSoilMap
project [19], which has made this discretization the most commonly applied.

When PTFs and fixed depth soil layers are introduced in the SAWC formula, we obtain the
following formula.

SAWC =
∑n

i=1
SLhi ∗

(100− sti
100

)
∗

[(∑n

j=1
α jPP j + ε

)
−

(∑n

j=1
α jPP j + ε

)]
(4)

where SLhi is the thickness of soil layers fixed by soil depth interval for i = 1, . . . , 6 when the
specifications of the GlobalSoilMap project are followed.



Soil Syst. 2019, 3, 34 4 of 17

From Equation (4), the variety of possible inference trajectories for mapping SAWC can be
represented as an implementation of Figure 1 (Figure 2). The blue axis shows three different ways
to combine soil properties (the most straightforward ones, among others): (1) considering primary
property (PP), i.e., no combination; (2) considering the volumetric soil water contents at FC and PWP
(WCs), i.e., application of PTFs first; and (3) considering the available water capacity of a given soil
layer i (AWCi), i.e., whole application of Equation (4) first. On the red axis, we have six possibilities for
soil discretization across depths (the most straightforward, among others): from considering the six
GlobalSoilMap-fixed soil layers, i.e., no combination, to a full aggregation of soil layers, i.e., aggregating
layers to soil profile first. Four other possibilities are considered by merging an increasing number of
layers (Figure 2).

From Figure 2, it is possible to define 18 possible inference trajectories for mapping SAWC, i.e.,
three modalities of property combinations x six modalities of combining soil layers. For the sake of
readability, only five out of these 18 trajectories are presented in Figure 2. It must be noted that the
most classic inference trajectory (mapping first then aggregating properties and layers), which fully
dissociate mapping and SAWC computing, was included among the 18 tested strategies.

In this paper, we investigated whether these different inference trajectories provided similar results
or not, the input data and the underlying formula (Equation (4)) being the same for all trajectories.
If not, we also wanted to know which trajectory provided the best mapping performance.
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2.1. The Case Study

2.1.1. Study Area

Languedoc–Roussillon is one of the 22 former administrative regions in France (Figure 3), and is
now part of the country’s newest region, Occitanie, which resulted from the merging of Languedoc
Roussillon and Midi-Pyrénées. Located in Southern France, it covers 27,236 km2 of land and stretches
from the Mediterranean Sea to the Pyrenees and to the Massif Central Mountains. The region includes
a wide variety of climates, parent materials and landscapes: low sedimentary plains with vineyards
and/or cereals, dry limestone plateaus with scrublands and evergreen oak forests, slopes of Paleozoic
mountains covered by forests, and volcanic and granitic highlands with grasslands. The soil cover of
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the region is consequently very diverse, including 18 WRB major soil groups that represent 56% and
75% of the total number of the soil group populations in the world and in Europe, respectively.Soil Syst. 2019, 3, x FOR PEER REVIEW 5 of 17 
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2.1.2. Soil Data Input

In this study, we used a legacy dataset of 640 measured soil profiles selected from the 2024 used in
Vaysse and Lagacherie [11,12]. This selection was made to ensure that the same input data was used by
all of the inference trajectories. This motivated to select only the profiles that were fully documented
for each soil property and for each layer. Indeed, this restrictive condition was necessary for providing
non-null inputs for applying the “combine first” inference trajectory (i.e., combining all soil properties
and for all soil layers before mapping). Finally, the density of this dataset of the study area was one
soil profile for each 41 km2.

Documenting Soil Layer Thickness

The soil layer thicknesses (Equation (4)) that were initially defined through the fixed interval
depth, 5, 10, 15, 30, 40, and 100 cm for layers 1 to 6, respectively, needed to be updated to account for
soils having a depth less than 200 cm. This was done from the following formula.
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• If SD > ULi, then SLhi = ULi − LLi
• If ULi > SD > LLi, then SLhi = SD− LLi.
• If SD < LLi, then SLhi = 0.

(5)

where SD is the soil depth, SLhi is the soil thickness of the soil layer and, ULi and LLi are the upper and
lower limits of the considered soil layer, respectively.

Equation (5) requires first to document the soil depth (SD), i.e., the distance (in cm) from the soil
surface to the bedrock or a paralithic contact [20]. This was done by a prior classification tree that
determined whether or not the bottom horizon could be considered as bedrock or as a paralithic contact.
Figure 4 shows the decision tree that was used for classifying the bottom horizon. The type of soil
horizon was first used to identify lithic (R, M or D) vs. pedological horizons. Since the horizon type, C,
remained ambiguous with respect to the targeted classification, additional soil variables were used
(types of structure, compaction, and weathering), which allowed for the identification of paralithic
horizons vs. pedological horizons.

From this classification of horizons, the soil depths were determined by applying the following
rules:

• If the bottom horizon is lithic or paralithic, then the soil depth is the upper depth of the
bottom horizon.

• If the bottom horizon is still a pedological one, the soil depth cannot be determined and thus the
site is not selected. A total of 760 measured soil profiles were removed for this reason, which
corresponded to 55% of the total removal of sites.

Soil Syst. 2019, 3, x FOR PEER REVIEW 6 of 17 

 

Where SD is the soil depth, 𝑆𝐿ℎ௜ is the soil thickness of the soil layer and, 𝑈𝐿௜ and 𝐿𝐿௜ are the 
upper and lower limits of the considered soil layer, respectively. 

Equation 5 requires first to document the soil depth (SD), i.e., the distance (in cm) from the soil 
surface to the bedrock or a paralithic contact [20]. This was done by a prior classification tree that 
determined whether or not the bottom horizon could be considered as bedrock or as a paralithic 
contact. Figure 4 shows the decision tree that was used for classifying the bottom horizon. The type 
of soil horizon was first used to identify lithic (R, M or D) vs. pedological horizons. Since the horizon 
type, C, remained ambiguous with respect to the targeted classification, additional soil variables were 
used (types of structure, compaction, and weathering), which allowed for the identification of 
paralithic horizons vs. pedological horizons. 

From this classification of horizons, the soil depths were determined by applying the following 
rules: 

• If the bottom horizon is lithic or paralithic, then the soil depth is the upper depth of the bottom 
horizon. 

• If the bottom horizon is still a pedological one, the soil depth cannot be determined and thus the 
site is not selected. A total of 760 measured soil profiles were removed for this reason, which 
corresponded to 55% of the total removal of sites.  

 

Figure 4. Representation of the classification tree applied to the dataset for identifying lithic or 
paralithic horizons and for selecting the input sites. 

Documenting Layers with the Other Required Soil Properties 

As the described pedological horizons available in the soil database were defined by variable 
soil depths, a prior interpolation was required to document the soil layers. Spline functions work as 
an interpolator, respecting the average values of the target soil property, and assuming a continuous 
variation with depth [13]. As an outcome, spline functions deliver a set of interpolated values at 
specific depths which are, in our study, the depth intervals provided by GlobalSoilMap.net 
specifications (0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm). Then, the mass-preserving spline 
functions were applied to clay, silt, sand, and coarse fragment contents.  

The values of the soil properties for the tested aggregated layers (see Figure 2) were derived 
from their values at the six depth intervals using a weighted mean by soil layer thickness.  

Figure 4. Representation of the classification tree applied to the dataset for identifying lithic or paralithic
horizons and for selecting the input sites.

Documenting Layers with the Other Required Soil Properties

As the described pedological horizons available in the soil database were defined by variable
soil depths, a prior interpolation was required to document the soil layers. Spline functions work as
an interpolator, respecting the average values of the target soil property, and assuming a continuous
variation with depth [13]. As an outcome, spline functions deliver a set of interpolated values at
specific depths which are, in our study, the depth intervals provided by GlobalSoilMap.net specifications
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(0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm). Then, the mass-preserving spline functions were
applied to clay, silt, sand, and coarse fragment contents.

The values of the soil properties for the tested aggregated layers (see Figure 2) were derived from
their values at the six depth intervals using a weighted mean by soil layer thickness.

Local Continuous PTFs

As presented in Section 2, the common way to obtain soil water contents, that partially drives AWC
(i.e., soil water contents at FC and PWP), is to use pedotransfer functions. The continuous PTFs used
in this study are obtained from an investigation based on the analysis of a dataset of 294 pedological
horizons belonging to 115 soil profiles located in the Hérault River Valley in the former Languedoc
Roussillon region [21]. The dataset contained soil water volumetric contents at FC (10 kPa) and at PWP
(1500 kPa), particle size fractions (clay, silt, and sand), bulk density, and organic carbon content. Before
starting the investigation, bulk density and organic carbon were discarded from the dataset because not
all horizons of the STIPA database reported their values, making PTFs inapplicable for local prediction.
PTFs were fitted using a point estimation approach based on multiple linear regression carried out
with the stats R package [22]. Model variables were selected using the Akaike’s information criterion
(AIC) [23] applied to a backward/forward stepwise procedure. Linearity was visually analyzed on
linear model graphs, then tested with the RESET test for nonlinearity [24]. Linear models that fitted
to the data set are reported in Table 1. Since particle size fractions are compositional data, stepwise
selection will always remove at least one of them from the model. In this case, clay was selected for
both models, sand better explained water content at field capacity predictions, and silt, water content
at permanent wilting point predictions. Performance assessments showed great performances for both
PTFs, with a certain advantage for PWP’s PTF.

Table 1. Outcomes of the calibrated continuous pedotransfer functions (PTFs) for calculations of water
contents at field capacity (FC) and at permanent wilting point (PWP).

Stratum Water Contents B0 Sand Silt Clay R2 RMSE
(cm3.cm−3)

All horizons
(N = 294)

FC 0.4065 −0.0028 −0.0009 0.47 0.046

PWP −0.0064 0.0018 0.0036 0.63 0.036

2.1.3. Soil Covariates

The DSM process used in this study is based on the well-known scorpan model [3] that uses
quantitative relationships between targeted soil property and environmental variables also called
“covariates”.

The selection of the landscape covariates (Table 2) had been performed for a previous DSM
application in the region [11]. It was based on two criteria: (i) the covariates could be derived from
freely available geodatasets, at least at the French national level, and (ii) they have a logical and
deterministic relationship to the soil properties, according to the literature.

Classical geomorphometric indicators found in the DSM literature were computed from the
global Shuttle Radar Topographic Mission (SRTM) digital elevation model (DEM): the elevation,
slope, plan curvature, profile curvature, set of multiresolution valley bottom flatness (MRVBF), set of
multiresolution ridge top flatness (MRRTF), topographic position index, and topographic wetness index.

The parent materials were characterized from the National Geological 1:50,000 map obtained from
the French Geological Survey [25]. This map was translated into three parent material soil covariates,
namely, the hardness, mineralogy and texture of alteration materials, following a mixed approach that
involved both our pedologic knowledge and the measured legacy profiles described above (see details
in Vaysse and Lagacherie [11]).
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Land use was mapped across the region by a manual interpretation of Landsat 7 images from 2006.
The initial classification into 43 land use types was condensed into nine types that were considered to
be correlated with soil variations (e.g., artificial areas, greenhouse cultivation, permanent crops and
orchards, forests, heathlands and pastures, scrublands, wetlands, complex territories composed of
natural and agricultural areas, and forests in transition).

The basic climate data (maximum temperature, minimum temperature, and precipitation) were
extracted from the Global Climate Database at a resolution of 1 km2 [26]. Two aridity indexes were
derived from these data, namely, the De Martonne index and the Emberger index (see details in
Vaysse and Lagacherie [11]).

Additionally, we added to the covariate set the regional-scale soil map (1:250,000) that regroups
the major landscape types across the region.

Table 2. Exhaustive categorical and continuous covariates.

Variables Abbreviation Resolution/Scale Source Soil Forming
Factor 1 Type 2

Topography
Elevation ELEV 90 m SRTM r Q

Multiresolution Valley
Bottom Flatness MRVBF 90 m SRTM r Q

Slope SLOPE 90 m SRTM r Q
Topographic Wetness

Index TPI 90 m SRTM r Q

Plan Curvature PLANCURV 90 m SRTM r Q
Profile Curvature PROCURV 90 m SRTM r Q

Multiresolution Ridge
Top Flatness MRRTF 90 m SRTM r Q

Topographic Position
Index TPI 90 m SRTM r Q

Geology

Hardness HARDNESS 90 m Geological
map/soil profile p C

Texture TEXTURE 90 m Geological
map/soil profile p C

Mineralogy MINERALOGY 90 m Geological
map/soil profile p C

Climate
Martonne Index MARTONNE 90 m WorldClim c C
Emberger Index EMBERGER 90 m WorldClim c C

Maximum temperature TMAX 90 m WorldClim c Q
Minimum temperature TMIN 90 m WorldClim c Q

Precipitation PRECIPITATION 90 m WorldClim c Q
Organisms
Land use LANDUSE 30 m Landsat 7 o C

Soil
Soil map SOILMAP 1:250 000 RRP s Q

1: SCORPAN factors (s = soil property, c = climate, o = organisms, r = relief, p = parent material); 2: Q = quantitative,
C = categorical; SRTM = Shuttle Radar Topographic Mission; RRP = Référentiel Régional Pédologique.

3. Methods

3.1. Mapping Model: Quantile Regression Forest

The mapping model selected for this work is the Quantile Random Forest (QRF) [27], which is a
very popular machine-learning algorithm in recent DSM operational applications [11,12,28].

In this section, we first describe the random forest algorithm [29] from which QRF was extended
and then provide the specific features of QRF. In the following, we use excerpts from Meinshausen [27]
to present these algorithms. More details can be found in this paper.
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We let Y be a real-valued response variable and X be a covariate or predictor variable. A standard
goal of statistical analysis is to infer the relationship between Y and X. The random forest algorithm
grows a large ensemble of decision trees using n independent observations (Yi, Xi), i = 1, . . . , n.

For each tree and each node, the random forest algorithm implements a random selection to
determine a variable at which to split. For each tree, a bagged version of the training data is used.
In addition, only a random subset of predictor variables is considered for the split point selection at
each node. For regression, the prediction of a single tree of the random forest algorithm for a new data
point, X = x, can be represented as the weighted average of the original observations Yi, i = 1, . . . , n:

µ̂(x) =
∑n

i=1
wi(x, θ)Yi (6)

where wi(x,θ) is the weight vector given by a positive constant if the observation Xi is part of the same
leaf of the tree built from the random vector of variables in which X was dropped and is otherwise 0.
Using the RF algorithm, the conditional mean, E(Y |X = x), is approximated by the averaged predictions
of k individual trees, each constructed with an independent and identically distributed vector t, t = 1,
. . . , k. We let wi(x) be the average of wi(T) over such a collection of trees:

wi(x) = k−1
∑n

t=1
wi(x,θt) (7)

The final predictions are the average of predictions of individual trees [29–31]:

µ̂(x) =
∑n

i=1
wi(x)Yi (8)

Recently, Wright, and Ziegler (2015) developed a fast implementation of Breiman’s random
forest [29] and Meinshausen’s quantile regression forest [27], for high-dimensional data, which is
available as the ranger R package [32]. This implementation is faster than QRF in terms of i) superior
scaling of the number of samples, trees, and descriptive variables tried for splitting and ii) runtime and
memory usage (see details in Wright and Ziegler [32]).

QRF was applied for mapping all possible soil properties considered in the inference trajectories.
In particular, the thicknesses of soil layers (SLhi in Equation (4)) were mapped separately so that all
trajectories could be applied. However, the thicknesses of the upper soil layers (0–5 cm, 5–15 cm,
15–30 cm, 0–15 cm, and 0–30 cm) were not variable enough across the region for mapping (variance
< 20 cm2). In that case, the predicted values at each location were fixed as the mean soil layer thickness.

3.2. Evaluation Protocol

The performances of digital mapping of SAWC and of all its components (primary soil properties,
hydraulic properties (soil water contents at FC and PWP for different soil layers)) were evaluated by a
k-fold cross validation. This evaluation procedure involves randomly dividing the data into k subsets.
Then, the holdout method is repeated k times, such that each time one of the k subsets is used as the
evaluation set, the other k-1 subsets are merged to form the calibration set. Following this procedure,
every data point is included in an evaluation set exactly once and is included in a calibration set k-1
times. In our case, we choose k = 10 and, to increase the robustness of the evaluation, the 10-fold
cross-validation was repeated 20 times. The k-fold cross validation was performed using the cvTools R
package [33].

To evaluate the prediction performances, we used classic performance indicators, e.g., mean
square error skill score (SSMSE) [28] that has the same interpretation than the percentage of variance
explained by the model, root mean square error (RMSE) and bias.

The performance indicators were calculated for each of the 20 iterations and then averaged to
obtain a final pooled value.

Since soil compartment differs from one AWC mapping trajectory to another, soil properties and
AWC were predicted for varying soil layers. The evaluation protocol was adapted accordingly.
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4. Results

4.1. Preliminary Results

In this section, we present basic statistics of the soil properties used for calculating as well as their
correlations. We focused on correlations since they play a major role in error propagation [34], which,
therefore, can be of great interest for comparing the performance of the tested inference trajectories.

4.1.1. Basic Statistics

We provide in Table 3 the basic statistics of the study area. Languedoc Roussillon presents soil
texture with predominant sand fraction and significant amount of coarse fragment content, which
varies consequently.

Table 3. Basic statistics of soil properties for soil horizons.

Variable Unit Mean CV (%)

Clay % mass 21.46 58.18
Silt % mass 33.99 37.12

Sand % mass 44.45 41.76
Coarse fragment % vol 31.63 83.27

Thickness cm 102.41 40.40
FC cm3.cm−3 0.26 16.91

PWP cm3.cm−3 0.13 39.55
AWC cm 2.64 79.35

FC: volumetric water content at field capacity; PWP: volumetric water content at permanent wilting point;
AWC: available water capacity; CV: coefficient of variation.

4.1.2. Correlation Tables of Input Data: Combining Soil Properties

Table 4 shows the averaged correlations between the properties involved in the SAWC computing
(Equation (4)) with standard deviations that show the variations in correlation across the different
considered soil layers. Soil thickness was independent of the other properties, whereas the coarse
fragment content was weakly, but significantly, correlated with silt and sand. Additionally, sand content
was highly negatively correlated to silt and clay contents. As expected, FC and PWP showed high
correlations with the input properties of their PTFs (Table 1) and with each other, as the result of
application of PTFs that used the same properties or strongly correlated ones (Table 1). Low standard
deviations of all these correlations revealed their low variations across the soil layers.

Table 4. Soil layer properties combinations averaged on soil profiles when soil layers are support
SAWC computation.

Soil Properties

Clay Silt Sand Coarse
Fragment Thickness FC

Silt 0.13 (0.016) *** - - - - -

Sand −0.73 (0.001) *** −0.76 (0.010) *** - - - -

Coarse
fragment −0.07 (0.031) ns

−0.29 (0.031) *** 0.24 (0.023) *** - - -

Thickness 0.06 (0.017) * −0.05 (0.011) ns
−0.01 (0.007) ns 0.03 (0.043) ** - -

FC 0.61 (0.003) *** 0.86 (0.007) *** −0.99 (0.001) *** −0.27 (0.023) *** −0.01 (0.008) ns -

PWP 0.90 (0.002) *** 0.55 (0.016) *** −0.96 (0.001) *** −0.19 (0.024) *** 0.03 (0.010) ns 0.90 (0.002) ***

ns: not significant (p-value > 0.05); *: p-value ≤ 0.05; **: p-value ≤ 0.01; ***: p-value ≤ 0.001; FC: volumetric water
content at field capacity; PWP: volumetric water content at permanent wilting point.



Soil Syst. 2019, 3, 34 11 of 17

4.1.3. Correlation Tables of Input Data: Aggregating Soil Layers

Table 5 shows the averaged correlations of properties between soil layers with standard deviations
that show the variations in correlation across the soil properties. The three upper layers were greatly
correlated while the correlations decreased for the deeper layers.

Table 5. Correlations of combined soil properties and available water capacity (AWC) across depths.

Number
of Layers

Soil
Properties Depth Intervals (cm)

6 All 1 0–5 5–15 15–30 30–60 60–100

5–15 0.99 (0.005) *** - - - -

15–30 0.94 (0.030) *** 0.96 (0.015) *** - - -

30–60 0.78 (0.084) *** 0.79 (0.080) *** 0.87 (0.044) *** - -

60–100 0.58 (0.141) *** 0.57 (0.139) *** 0.64 (0.107) *** 0.85 (0.038) *** -

100–200 0.40 (0.174) ** 0.41 (0.174) ** 0.46 (0.162) *** 0.58 (0.137) *** 0.78 (0.164) ***

ns: correlation not significant (p-value > 0.05); *: p-value ≤0.05; **: p-value ≤ 0.01; ***: p-value ≤ 0.001; 1: clay, silt,
sand, coarse fragment contents, thickness, volumetric water content at field capacity (FC), volumetric water content
at permanent wilting point (PWP), and available water capacity (AWC).

4.2. Primary and Hydric Property Mapping Performances

For the trajectories that did not map the SAWC but rather its components, Table 6 provides a
summary of the performances obtained for each property across the different numbers of soil layers.
For sake of readability, only SSMSE values are shown with mean, min, and max values across the set of
trajectories with different numbers of soil layers. Concerning the primary soil properties, particle size
fractions mapping exhibited the best performances, while coarse fragment content and soil thickness
were very badly mapped. The hydraulic properties showed slightly similar results to those of particle
size fractions from which they are derived.

Table 6. Results of mean square error skill score (SSMSE) for primary and hydraulic properties for
different number of layers.

Variable Unit SSMSE

Min (SD) Max (SD) Mean (SD)

Clay % mass 0.11 (0.050) 0.25 (0.024) 0.17 (0.027)
Silt % mass 0.10 (0.076) 0.28 (0.028) 0.20 (0.021)

Sand % mass 0.20 (0.083) 0.33 (0.012) 0.28 (0.024)
Coarse fragment % vol 0.05 (0.030) 0.08 (0.016) 0.06 (0.024)

Thickness cm −0.02 (0.085) 0.07 (0.036) 0.03 (0.056)
FC cm3.cm−3 0.19 (0.092) 0.32 (0.009) 0.28 (0.028)

PWP cm3.cm−3 0.20 (0.058) 0.32 (0.010) 0.26 (0.025)

SD: standard deviation; FC: volumetric water content at field capacity; PWP: volumetric water content at permanent
wilting point.

It is also interesting to examine the correlations between mapping errors across properties and
layers since, according to the error propagation formula [34], it plays a role in the final errors on
AWC. Table 7 shows the correlations between mapping residuals for the soil properties used in the
trajectories. High correlations of residuals were observed between sand and the two other textural
fractions, whereas moderate but significant correlations of residuals can be noticed between coarse
fragment and two of the textural fractions (silt and sand).
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Table 7. Residuals correlations for soil property combinations.

Soil Properties

Clay Silt Sand Coarse
Fragment Thickness FC

Silt 0.03 (0.095) ns - - - - -

Sand −0.69 (0.027) *** −0.72 (0.047) *** - - - -

Coarse
fragment −0.08 (0.044) ns

−0.23 (0.139) *** 0.22 (0.102) *** - - -

Thickness 0.02 (0.060) ns
−0.02 (0.057) ns 0.00 (0.059) ns

−0.01 (0.108) ns - -

FC 0.54 (0.043) *** 0.83 (0.027) *** −0.98 (0.004) *** −0.23 (0.117) *** −0.01 (0.060) ns -

PWP 0.88 (0.010) *** 0.47 (0.087) *** −0.94 (0.011) *** −0.17 (0.080) ** 0.01 (0.052) ns 0.86 (0.026) ***

ns: not significant (p-value > 0.05); *: p-value ≤ 0.05; **: p-value ≤ 0.01; ***: p-value ≤ 0.001; FC: volumetric water
content at field capacity; PWP: volumetric water content at permanent wilting point.

Table 8 presents averaged correlations of property residuals between the six GlobalSoilMap
soil layers across the set of soil properties with their associated standard deviation. The pattern of
correlation of the soil properties residuals between layers is similar to the one drawn by the correlation
of input data (Table 4), i.e., (i) the great correlation of surface soil layers and (ii) decreasing correlation
when the residuals correlation coefficient between aggregated layers drops below 0.9.

Table 8. Residuals correlation of pooled properties across depths.

Number
of Layers

Soil
Properties Depth Intervals (cm)

6 All 1 0–5 5–15 15–30 30–60 60–100

5–15 0.98 (0.003) *** - - - -

15–30 0.92 (0.026) *** 0.94 (0.011) *** - - -

30–60 0.75 (0.056) *** 0.75 (0.049) *** 0.84 (0.028) *** - -

60–100 0.57 (0.110) *** 0.48 (0.213) ns 0.51 (0.220) ns 0.81 (0.048) *** -

100–200 0.39 (0.147) *** 0.33 (0.184) ns 0.36 (0.189) ns 0.51 (0.121) *** 0.65 (0.285) ***

ns: not significant (p-value > 0.05); *: p-value ≤ 0.05; **: p-value ≤ 0.01; ***: p-value ≤ 0.001; 1: clay, silt, sand, coarse
fragment contents, thickness, volumetric water content at field capacity (FC), volumetric water content at permanent
wilting point (PWP), and available water capacity (AWC).

4.3. SAWC Mapping Trajectories Performance Comparisons

In this study, we tested 18 SAWC mapping trajectories. Table 9 shows the indicators of performance,
SSMSE, RMSE, and Bias of the 18 tested trajectories with their mean values and standard deviations
across the 20 iterations of the evaluation protocol.

The results showed substantial differences in performance across the tested trajectories (SSMSE

between 0.08 and 0.42). These differences occurred both between trajectories that mapped different
soil properties (SL.PP, SL.WC, and SL.AWC) and between trajectories that did not consider the same
number of layers, although the former often exhibited differences that could be interpreted as being
within the error margin of the evaluation process [35]. Roughly the same hierarchy of performances
was found whatever the examined indicator.

Concerning the differences in performance between trajectories that mapped different soil
properties, the best performances were mainly obtained by calculating first an AWC (SL.AWC) then
mapping, although mapping the soil properties first (SL.PP) seems slightly better than calculating
AWC first for the six-layer trajectory. However, this ranking should be considered with care because
of the above noticed small differences of performances. Concerning the difference in performance
between trajectories that do not consider the same number of layers, the maximum performances
were obtained by considering four soil layers. The performances increased moderately from the
six-layer trajectory to the four-layer trajectory, i.e., from SSMSE = 0.33 to SSMSE = 0.42 for SL.AWC
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trajectories and then dramatically decreased from the three-layer trajectory to the one-layer-trajectory,
i.e., from SSMSE = 0.39 to SSMSE = 0.07 for SL.AWC trajectories.

According to the performance indicators, the best performance was obtained by an intermediate
trajectory that considered four soil layers and mapped SAWC. It is also interesting to note that the
classic trajectory, i.e., using DSM outputs for calculating a spatialized SAWC (the SL.PP trajectory with
six layers) was not the best among the 18 tested.

Table 9. Averaged values of performance indicators SSMSE, root mean square error (RMSE), and Bias,
and their corresponding standard deviation (SD).

Number of Layer Depth (cm) Trajectory SSMSE RMSE (cm) Bias (cm)

Mean (SD) Mean (SD) Mean (SD)

6 0–200 SL.PP 0.35 (0.006) 4.21 (0.019) 0.5 (0.018)

SL.WC 0.33 (0.006) 4.27 (0.02) 0.25 (0.018)

SL.AWC 0.33 (0.004) 4.27 (0.012) −0.54 (0.013)

5 0–200 SL.PP 0.35 (0.003) 4.19 (0.01) −0.37 (0.009)

SL.WC 0.39 (0.004) 4.08 (0.013) −0.24 (0.008)

SL.AWC 0.41 (0.003) 4.02 (0.01) −0.07 (0.01)

4 0–200 SL.PP 0.39 (0.004) 4.05 (0.014) −0.28 (0.011)

SL.WC 0.4 (0.005) 4.02 (0.015) −0.18 (0.009)

SL.AWC 0.42 (0.005) 3.96 (0.017) 0 (0.008)

3 0–200 SL.PP 0.36 (0.006) 4.15 (0.018) −0.24 (0.014)

SL.WC 0.37 (0.005) 4.12 (0.015) −0.15 (0.013)

SL.AWC 0.39 (0.004) 4.07 (0.015) 0.04 (0.011)

2 0–200 SL.PP 0.23 (0.009) 4.57 (0.027) −0.24 (0.017)

SL.WC 0.24 (0.008) 4.55 (0.023) −0.15 (0.018)

SL.AWC 0.26 (0.009) 4.48 (0.027) −0.01 (0.014)

1 0–200 SP.PP 0.08 (0.01) 4.78 (0.026) 0.71 (0.025)

SP.WC 0.11 (0.009) 4.7 (0.023) 0.31 (0.03)

SP.AWC 0.07 (0.009) 4.79 (0.024) −0.68 (0.023)

5. Discussion

5.1. Level of Performances and Limitations

5.1.1. Level of Performances in Predicting Primary Soil Properties

In this study, we considered inference trajectories that involved mapping of soil primary properties
by using a DSM model. The partial results presented in Section 4.2 can then be compared to those of
previous studies in similar conditions. The performances delivered for particle size fractions were
slightly worse than those provided recently by Román Dobarco et al. [36] for all of France (R2 = 0.27,
0.43, and 0.46 for clay, silt, and sand content, respectively) with, however, the same hierarchy between
sand, silt, and clay mapping performances. Vaysse and Lagacherie [11] obtained in the same study
area better mapping performances for particle size fractions (between 0.19 and 0.36) but the same
poor performances for thickness and coarse fragment, however, with another validation technique
(independent validation test instead of cross validation). A comparison with results from Vaysse and
Lagacherie [12] that used a cross validation confirmed the previous results for a given soil property
(clay content for the 5–15 cm layer). The performance gap could be explained by the reduction in the
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size of the input dataset between Vaysse and Lagacherie [12] applications and this study (from 1945
to 640).

5.1.2. Level of Performance in Predicting SAWC

Among the 18 inference trajectories, the most appropriate for predicting SAWC was the one
considering four soil layers (e.g., 0–30, 30–60, 60–100, and 100–200 cm) to directly predict SAWC.
This trajectory obtained much better results than any mapping of SAWC components, i.e., individual
soil properties at a given depth. This can be explained by the removal of intraprofile variabilities and
noise that did not play any more when SAWC is considered.

In addition, this inference trajectory exhibited similar results to those obtained by
Leenhardt et al. [21] with a R2 ranges from 0.36 to 0.45 according to the scale of the SAWC map
chosen. Except for this study, evaluation of SAWC mapping has rarely been applied and this paper is,
to our knowledge, among the first that has performed such an evaluation. However, this evaluation
remains incomplete since we did not take into account the error of the PTFs coefficient applied.
However, Román Dobarco [36] found that PTF error played a minor role in SAWC mapping error.

5.2. Drivers of the Variability in Performance between Trajectories

The results exhibited substantial differences of mapping performance across the tested inference
trajectories (Table 9). The most important differences in performance were observed when different
numbers of soil layers were considered. The best performances were obtained when highly correlated
soil layers (correlation >0.9 between layers 1, 2, and 3, cf. Table 5) were merged before mapping
whereas the worst ones were obtained when fewer correlated soil layers were merged (correlation <

0.80 between layers, Table 5). The former came from averaging the DSM model inputs, which may
decrease the input errors of the DSM models whereas the latter forced the DSM models to cope with
contradictory drivers of the combined soil layer, which could negatively impact the performance.
This result is partially in accordance with Heuvelink & Pebesma [37] who advocated a mapping
first trajectory since it “enables a more efficient use of the spatial characteristics of the individual
inputs”. We however brought a nuance to this statement by considering a correlation threshold beyond
which combining first could be a better solution. These differences were not modified by the further
combination of the soil layer maps for calculating the final SAWC since no noticeable differences
were observed in mapping error correlations (Table 8) that could have created differences in error
propagation through this additive operation [34].

The differences in performance observed between trajectories that mapped different soil properties
(primary soil properties, hydraulic properties, or SAWC) were more difficult to interpret. First the
differences in mapping performance were much smaller than previously observed. Furthermore,
in contrast to the combination of soil layers, the combination of soil properties is multiplicative
(Equation (4)). Therefore, the impacts of the correlations between soil properties and between their
mapping errors could be very different.

More comparisons of such inference trajectories involving contrasted mapping results and a
larger range of soil function expressions would be necessary for a full understanding and an ex ante
prediction of the hierarchy of performances across the trajectories.

Finally, it must be noticed that the comparisons of the inference trajectories “all things being equal”
required considering the same number of measured soil profiles across trajectories. This corresponded
to the number of fully complete measured soil profiles that were necessary for mapping SAWC after
combining all soil properties and all soil layers. However, other less restrictive inference strategies
could use more locations for mapping some of the SAWC components. Indeed, mapping separately
the soil properties at each soil layer would allow an increase in the amount of input data which could
increase the mapping performance of some SAWC components and, in turn, might have a positive
effect on the overall performances. However, this reasoning does not hold for the depth prediction
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that is still limited by the soil input, whatever the trajectories. The value added provided to the final
mapping of SAWC should therefore be investigated in the future.

5.3. Toward Soil Spatial Information Systems

Digital mapping of soil function introduces an additional degree of complexity relative to the
usually practiced monovariate digital soil mapping. Different inference trajectories could be envisaged
and we showed that the decision of selecting one or another could substantially impact the performance
of the soil function mapping.

This can provide motivation to develop tools that would select the best possible trajectories from
a prior knowledge of error propagation mechanisms and of causes of mapping errors. Such tools may
refer to the ideas of soil inference systems applied to the building of pedotransfer functions [38] that
were further extended to digital soil mapping by Lagacherie and McBratney [39].

This could imply a revision of the strategies of diffusion of the digital soil mapping products since
we showed that the current practice, i.e., providing a set of spatial layers of soil properties that could
be further combined for obtaining soil function maps could not be the optimal one. An alternative
could be to provide to the users the soil spatial inference system of a given region so that they could
produce the best possible soil function map by themselves.

6. Conclusions

The main lessons of this study are as follows.

• A large number of inference trajectories can be envisaged for mapping soil functions. This makes
the mapping of soil function much more complex than classic monovariate digital soil mapping

• Mapping a single value per soil profile that traduces a soil function (for example, soil available
water capacity) gives better results in terms of the explained variance than mapping individual
soil properties for individual soil layers.

• The best trajectory is not found among the extreme ones (e.g., first map the individual properties
then combine or the converse).

• The decision of combining soil layers before mapping should be made after looking at the
correlations of soil properties between layers.
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