Coding-Complete Genome Sequence of an African Swine Fever Virus Strain Liv13/33 Isolate from Experimental Transmission between Pigs and Ornithodoros moubata Ticks Amélie Chastagner, Rémi Pereira de Oliveira, Evelyne Hutet, Mireille Le Dimna, Frédéric Paboeuf, Pierrick Lucas, Yannick Blanchard, Linda Dixon, Laurence Vial, Marie-Frédérique Le Potier ### ▶ To cite this version: Amélie Chastagner, Rémi Pereira de Oliveira, Evelyne Hutet, Mireille Le Dimna, Frédéric Paboeuf, et al.. Coding-Complete Genome Sequence of an African Swine Fever Virus Strain Liv13/33 Isolate from Experimental Transmission between Pigs and Ornithodoros moubata Ticks. Microbiology Resource Announcements, 2020, 9 (17), 10.1128/MRA.00185-20. hal-02618493 ### HAL Id: hal-02618493 https://hal.inrae.fr/hal-02618493 Submitted on 25 May 2020 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. ## Coding-Complete Genome Sequence of an African Swine Fever Virus Strain Liv13/33 Isolate from Experimental Transmission between Pigs and Ornithodoros moubata Ticks Amélie Chastagner, a Rémi Pereira de Oliveira, a,b,c Evelyne Hutet, a Mireille Le Dimna, a Frédéric Paboeuf, d Pierrick Lucas, e Yannick Blanchard, e Linda Dixon, f Laurence Vial, b,c Marie-Frédérique Le Potiera ^aSwine Virology and Immunology Unit, ANSES Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France ABSTRACT Here, we report the coding-complete genome sequence of African swine fever (ASF) virus strain Liv13/33, isolated from experimentally infected pigs and Ornithodoros moubata ticks. The 11 sequences that we obtained harbored no notable differences to each other, and all of them were closely related to the genome seguence of the Mkuzi 1979 strain of genotype I. frican swine fever is a contagious and highly lethal disease of pigs and wild suids caused by the African swine fever virus (ASFV) (Asfarviridae, Asfivirus) and may involve soft ticks of the Ornithodoros genus as vectors and reservoirs of the virus (1). The strain Liv13/33 was initially isolated in 1983 from a tick of the Ornithodoros moubata group in Livingstone (Zambia, Africa) (2, 3). This strain was previously sequenced on two genes (B646L/P72 and E182L/P54) and identified as belonging to the genotype I (4, 5). The coding-complete genome sequence of Liv13/33 presented in this report was obtained from samples of a study that experimentally tested the vector competence of O. moubata sensu stricto ticks on pigs as previously described (6). Three 7-week-old specific-pathogen-free (SPF) Large White pigs were inoculated by the intramuscular route with a 10⁴ of the 50% hemadsorbing dose (HAD₅₀) of the ASFV Liv13/33 strain. Two hundred and sixty ASFV-free ticks were engorged on infected pigs on the first day of hyperthermia, when pig viremia ranged from 10^{7.8} to 10^{8.1} HAD₅₀/ml. Five engorged ticks were frozen 3 months postinfection for sequencing analysis, and the others were fed on three new SPF pigs to assess their ability to transmit ASFV to naive pigs. These pigs displayed hyperthermia 2 days after being bitten by infected ticks. Animal experiments performed at the air-filtered biosafety level 3 animal facilities at ANSES-Ploufragan were authorized by the French Ministry for Research (project no. 2017062615498464) and approved by the national ethics committee (authorization no. 11/07/17-3). DNA was extracted using the High Pure PCR template preparation kit (Roche Life Science) from 400 µl of heparin blood samples collected from the six pigs during the viremia peak and from supernatants of crushed ticks prepared by filtration at 0.45 μ m. All samples were sequenced at the ANSES Institute (Ploufragan, France) with Proton Ion Torrent technology (Thermo Fisher Scientific, Frederick, MD). Individual libraries were created for each of the 6 pig samples and each of the 5 infected ticks for a total of 11 Citation Chastagner A, Pereira de Oliveira R, Hutet E, Le Dimna M, Paboeuf F, Lucas P, Blanchard Y, Dixon L, Vial L, Le Potier M-F. 2020. Coding-complete genome sequence of an African swine fever virus strain Liv13/33 isolate from experimental transmission between pigs and Ornithodoros moubata ticks. Microbiol Resour Announc 9:e00185-20. https://doi.org/ 10.1128/MRA.00185-20. Editor Simon Roux, DOE Joint Genome Copyright © 2020 Chastagner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. Address correspondence to Marie-Frédérique Le Potier, marie-frederique.lepotier@anses.fr. Received 5 March 2020 Accepted 2 April 2020 Published 23 April 2020 ^bUMR ASTRE, CIRAD, Montpellier, France ^cUMR ASTRE, CIRAD, INRAE, University Montpellier, Montpellier, France dSPF Pig Production and Experimentation Unit, ANSES Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France eViral Genetic and Biosecurity Unit, ANSES Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France fOIE Reference Laboratory, The Pirbright Institute, Surrey, United Kingdom TABLE 1 Description of Liv13/33 libraries generated in this study | | | _ | | • | | | | |---------|---|-----------------------------|---------------------------|---|---|----------------------------|-------------------| | Isolate | Host | Total no. of produced reads | Total no. of mapped reads | Mean coverage ^a
on reference
sequence OmLF2 ^b | No. of nucleotide differences/
gaps compared to reference
sequence OmLF2 ^b | BioSample
accession no. | SRA accession no. | | 6517IM | SPF pig inoculated by the intramuscular route | 7,629,638 | 26,960 | 18.70 | 2/17 | SAMN13195023 | SRS6053714 | | 6524IM | SPF pig inoculated by the intramuscular route | 8,281,778 | 23,558 | 14.67 | 1/5 | SAMN13195024 | SRS6053715 | | 6540IM | SPF pig inoculated by the intramuscular route | 11,118,211 | 47,712 | 32.69 | 0/6 | SAMN13195025 | SRS6053707 | | OmLF1 | Infected O. moubata tick | 8,013,796 | 33,325 | 19.54 | 6/30 | SAMN13191038 | SRS6053706 | | OmLF2 | Infected O. moubata tick | 13,675,689 | 129,761 | 72.16 | Reference | SAMN13191036 | SRS6053705 | | OmLF3 | Infected O. moubata tick | 5,526,024 | 27,692 | 16.83 | 7/34 | SAMN13191040 | SRS6053708 | | OmLM1 | Infected O. moubata tick | 7,096,453 | 29,221 | 18.93 | 2/5 | SAMN13191039 | SRS6053709 | | OmLM2 | Infected O. moubata tick | 3,742,020 | 33,372 | 21.39 | 0/8 | SAMN13191042 | SRS6053710 | | 6573T | SPF pig infected by ticks | 12,708,781 | 26,414 | 17.14 | 1/10 | SAMN13194022 | SRS6053712 | | 6594T | SPF pig infected by ticks | 7,616,042 | 25,491 | 17.81 | 0/10 | SAMN13195022 | SRS6053713 | | 893T | SPF pig infected by ticks | 9,392,643 | 29,607 | 21.65 | 3/9 | SAMN13191216 | SRS6053711 | ^a The mean coverage corresponds to the mean number of reads mapped on the sequence of reference by position. libraries. The libraries for sequencing were prepared using the Ion Xpress plus fragment library kit and Ion Xpress barcode adapters 1-96 kit (Thermo Fisher Scientific). Magnetic beads from the Agencourt AMPure XP kit (Beckman Coulter, Villepinte, France) were used for DNA purification steps. The resulting reads were cleaned with Trimmomatic version 0.36 (options: ILLUMINACLIP: oligos.fasta: 2:30:5:1: true; LEADING: 3; TRAILING: 3; MAXINFO: 40:0.2; MINLEN: 36) and were first de novo assembled using the SPAdes version 3.10.0 (option: -careful -t 12 -m 50) and MIRA version 4.0.2 (option: IONTOR_SETTINGS -ASSEMBLY:mrpc = 100) programs. In parallel, reads were mapped on three reference ASFV genomes of genotype I (BA71 [GenBank accession no. KP055815], Mkuzi 1979 [AY261362], and Benin97/1 [AM712239]) using Burrows-Wheeler Aligner software version 0.7.15-r1140 (option: mem -M). For each library, contigs produced by the different methods were scaffolded to generate a single consensus sequence validated by an additional BWA alignment. De novo assemblers and alignment software could not deal with inverted terminal repeats (ITRs) present in the ASFV genomes (7); the obtained sequence was thus probably shorter than that in reality. A comparison of the 11 genomes obtained showed fewer than 7 nucleotide differences that were mainly in ITRs and up to 34 gaps located in mononucleotide repeats A or T (Table 1). The coding-complete genome sequence of Liv13/33 with the best coverage (72.09×) was isolated from tick OmLF2 (Table 1). This sequence of 188,277 bp (G+C content of 38.4%) harbored 228 open reading frames (ORFs) annotated with the help of Prokka (Galaxy version 1.13) based on the annotations of genomes available on the African Swine Fever Virus Database (http://asfvdb.popgenetics.net/), which proposed the most complete and homogeneous revised annotation (8). **Data availability.** The coding-complete genome sequence of isolate OmLF2 has been deposited in GenBank under the accession no. MN913970. Raw data from the 11 isolates for this project can be found in the GenBank SRA under accession no. PRJNA587575. #### **ACKNOWLEDGMENTS** We are grateful to Vectopole Sud for funding the insectary where *O. moubata* was raised and to the Direction Générale de l'Alimentation for the financial support to CIRAD. We are thankful to CIRAD and ANSES for funding the Ph.D. grant of R. Pereira de Oliveira. We are also thankful to the NSF-NIH-EEID ASF project (grant no. 2019-67015-28981) for their financial support to the publication of this research. This article is based upon work from COST Action ASF-STOP, supported by COST (European Cooperation in Science and Technology; www.cost.eu). We thank the technical staff of CIRAD laboratory for raising the ASFV-free ticks as well as staff of the SPPAE Unit for animal care and sampling at ANSES-Ploufragan. Volume 9 Issue 17 e00185-20 ^b GenBank accession no. MN913970. #### **REFERENCES** - Quembo CJ, Jori F, Vosloo W, Heath L. 2018. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transbound Emerg Dis 65:420-431. https://doi.org/10.1111/tbed.12700. - Dixon LK, Wilkinson PJ. 1988. Genetic diversity of African swine fever virus isolates from soft ticks (Ornithodoros moubata) inhabiting warthog burrows in Zambia. J Gen Virol 69:2981–2993. https://doi.org/10.1099/0022 -1317-69-12-2981. - Wilkinson PJ, Pegram RG, Perry BD, Lemche J, Schels HF. 1988. The distribution of African swine fever virus isolated from Ornithodoros moubata in Zambia. Epidemiol Infect 101:547–564. https://doi.org/10.1017/ s0950268800029423. - 4. Lubisi BA, Bastos ADS, Dwarka RM, Vosloo W. 2005. Molecular epidemiology of African swine fever in East Africa. Arch Virol 150:2439–2452. https://doi.org/10.1007/s00705-0602-1. - 5. Simulundu E, Lubaba CH, Van Heerden J, Kajihara M, Mataa L, Chambaro HM, - Sinkala Y, Munjita SM, Munang'andu HM, Nalubamba KS, Samui K, Pandey GS, Takada A, Mweene AS. 2017. The epidemiology of African swine fever in "nonendemic" regions of Zambia (1989–2015): implications for disease prevention and control. Viruses 9:236. https://doi.org/10.3390/v9090236. - Pereira de Oliveira R, Hutet E, Paboeuf F, Duhayon M, Boinas F, Perez de Leon A, Filatov S, Vial L, Le Potier MF. 2019. Comparative vector competence of the Afrotropical soft tick Ornithodoros moubata and Palearctic species, O. erraticus and O. verrucosus, for African swine fever virus strains circulating in Eurasia. PLoS One 14:e0225657. https://doi.org/10.1371/ journal.pone.0225657. - Dixon LK, Chapman DA, Netherton CL, Upton C. 2013. African swine fever virus replication and genomics. Virus Res 173:3–14. https://doi.org/10 .1016/j.virusres.2012.10.020. - Zhu Z, Meng G. 2019. ASFVdb: an integrative resource for genomics and proteomics analyses of African swine fever. bioRxiv https://doi.org/10 .1101/670109.