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Abstract: Despite the existence of human vaccines, Japanese encephalitis (JE) remains the leading
cause of human encephalitis in Asia. Pigs are described as the main amplifying host, but their role in
JE epidemiology needs to be reassessed in order to identify and implement efficient control strategies,
for both human and animal health. We aimed to provide a systematic review of publications linked
to JE in swine, in terms of both individual and population characteristics of JE virus (JEV) infection
and circulation, as well as observed epidemiological patterns. We used the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to select and analyze relevant
articles from the Scopus database, 127 of which were included in the review. Pigs are central,
but the implication of secondary hosts cannot be ruled out and should be further investigated.
Although human vaccination cannot eradicate the virus, it is clearly the most important means of
preventing human disease. However, a better understanding of the actual involvement of domestic
pigs as well as other potential JEV hosts in different JEV epidemiological cycles and patterns could
help to identify additional/complementary control measures, either by targeting pigs or not, and in
some specific epidemiological contexts, contribute to reduce virus circulation and protect humans
from JEV infection.

Keywords: Japanese encephalitis virus; pig; epidemiology; control

1. Introduction

Japanese encephalitis (JE) is a serious vector-borne zoonosis and probably the most important
cause of human viral encephalitis in South East Asia (SEA). In 2011, the last attempt to estimate
the overall incidence of JE reported an approximated incidence of 67,900 JE cases in 24 Asian and
Western Pacific countries. Approximately three-quarters of these concerned children, and JE remains
a substantial public health issue even in areas that have developed human vaccination programs [1].
The fatality rate can reach 30%, and 30% to 50% of survivors may continue to suffer definitive
neurological or psychiatric sequelae [2]. There are no licensed anti-JE drugs available, and the
management of patients remains symptomatic.
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JE is caused by a flavivirus, which is part of the JE virus (JEV) serocomplex along with West
Nile Virus (WNV), Murray Valley encephalitis virus (MVEV), Saint Louis encephalitis virus (SLEV),
and Usutu virus (USUV). JEV distribution has long been limited to SEA but has now extended to
Australia, Papua New Guinea, and a human indigenous case was recently confirmed in Africa [3].
To date, five genotypes (GI to GV) have been described, with most isolated strains belonging to
genotypes I, II, and III [4]. While genotype III (GIII) was the most frequently isolated genotype
throughout most of Asia from 1935 until the 1990s, a genotype shift occurred in the last 30 years.
In pigs, genotype I (GI) started to be the most isolated genotype after the 90s in Japan, South Korea,
India, Nepal, Thailand, Vietnam, and Cambodia [5,6].

JEV is transmitted from animals, especially pigs, to humans by Culex mosquitoes, such as
Culex tritaenyorhynchus or Culex gelidus, and probably by some Aedes mosquitoes [7–15]. The commonly
described cycle implicates Ardeid birds as JEV reservoirs, pigs as the main amplifying hosts, and Culex
mosquitoes as vectors [16–20]. In addition to vector-borne transmission, recent findings suggest that
direct transmission between pigs could also occur [21–23]. Domestic birds might also be involved in
the cycle. Indeed, they were shown to be exposed to JEV and could develop sufficient viraemia to
re-infect mosquitoes when bitten [24–27]. Other animals, such as cattle or dogs, were shown to be
exposed to JEV, but no study investigated their potential role in the epidemiological cycle, and they are,
for now, considered to be dead-end hosts [28–35]. Humans and horses, also subjected to developing
fatal encephalitis, are, for now, only known to be dead-end hosts [36,37].

Since there is no antiviral treatment or antiviral prophylaxis, human vaccination remains the
only available tool to protect humans from JEV infection [38], but it does not prevent JEV circulation.
As a matter of fact, human JE cases still occur in countries where mass vaccination campaigns
are implemented. If pigs are the main amplifying host of JE, breaking the mosquito–pig transmission
cycle should stop virus circulation and protect humans from JEV infection. Thus, improving our
knowledge on the characteristics of swine infection by JEV in terms of viraemia, the immune response,
mechanisms of transmission, and clinical signs is necessary to better assess the role of domestic pigs in
the epidemiological cycle, and to identify additional control measures focusing on pigs. How prevalent
is JEV in swine? What are the different JE epidemiological patterns? Do pig-targeted control measures
allow control of JEV circulation? The present review aimed at synthesizing the knowledge related to
pigs and JEV, at both the individual and population levels, in order to discuss the importance of swine
in the JEV transmission cycle. The role of pigs in the JEV epidemiological cycle is described based on
the available studies, and potential pig-related control measures are discussed.

2. Materials and Methods

2.1. Protocol, Search Process, and Databases

This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) method for systematic reviews and meta-analyses [39]. All studies dealing with both JEV
and swine were eligible for the systematic review. Serological surveys, experimental and ecological
studies, and JEV outbreak investigations were considered. We only reviewed articles written in English
and no publication date restriction was imposed, thus, the publication year extended from 1947 to 2019.
The Scopus database was searched electronically using the following request: (“Japanese encephalitis”
or “Japanese B encephalitis”) and (“pigs” or “swine”). We used the “all field” option in order to collect
the articles in which the search terms appeared in the titles, abstracts, or keywords.

The same person conducted all of the initial searching and screening. Articles were listed in
an Excel file to sort them and keep track of any excluded ones. Duplicates were removed and the
study selection was made in three steps: i) title screening, ii) abstract reading of papers kept after title
screening, and iii) full-text reading of papers kept after abstract reading.
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2.2. Inclusion and Exclusion Criteria

The study selection was based on the following inclusion criteria: English-written articles
reporting cross-sectional or longitudinal serological surveys, experimental infections, description
of clinical disease, pathogenicity, transmission routes, viraemia, immune response and diagnosis,
effects of vaccination, control measures, epidemiological cycle and systems, and all subjects being
directly related to swine. The exclusion criteria included reviews, notes and reports from congresses,
travelers’ recommendations, genome sequencing alone, experimental virology alone (viral structure,
virus–cell interactions), development of diagnostic tests, not focused on swine (i.e., focused on
humans, mosquitoes), human outbreak notifications, focus on viruses other than JEV, and mathematical
modeling approaches.

3. Results

3.1. Study Selection

The query of the Scopus database was performed on 15 March 2019 and returned 667 records.
The study selection process is represented in Figure 1. At the end of the selection process, 127 studies
were included in the qualitative synthesis.
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3.2. Individual Characteristics of JEV Infection in Swine

All mentioned virologic and serological tests are described in Supplementary Material File S1 [40–46].

3.2.1. Viraemia in JEV-Infected Pigs

Viraemia is the presence of virus in the blood. During this phase, JEV can be transmitted to
mosquitoes that bite the viraemic pig if viraemia level is high enough. It was experimentally shown
that viraemia levels of about 104 infectious units per mL appeared to be sufficient to transmit the virus
to mosquitoes [47–50]. Six articles reported experimental works related to viraemia in JEV-infected pigs.
Sows and piglets were inoculated with different JEV strains and bled daily in order to detect the
virus, by intracerebral inoculation of suckling mice (ICISM) in the earliest studies, and JEV ribonucleic
acid (RNA) by reverse transcription-polymerase chain reaction (RT-PCR) in the more recent ones.
The results are presented in Table 1. Depending on the study, viraemia was detected between one and
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five days post-infection (dpi), and lasted from three to five days [22,47,51–54]. One study concluded
that the higher the concentration of inoculated virus, the earlier the virus was detected (as early as
one day). When detected, virus titers reached 2.6 log LD50/0.03 mL of blood upon titration intracranially
in weanling mice, with LD50 being 50% of the lethal dose [47]. More recently, viraemia was quantified
by detecting JEV RNA using quantitative RT-PCR (RT-qPCR) on the inoculated piglets, reaching about
104 RNA units/mL [22,54].

Table 1. Viraemia and active immune response in pigs after Japanese encephalitis virus (JEV)
experimental infection.

Protocol
Viraemia Immune Response

Reference

Test Detection
Period Peak Value Test Antibody

Detection

5 sows, IV inoculation,
Kanagawa strain, bled daily ICISM 1–4 dpi NA VN in mice >7 dpi [51]

4 piglets, SC inoculation,
M5/596 and pig9 strains,

bled daily
ICISM For 4 days

2.6 log
LD50/0.03

mL
HIA 7–35 * dpi [47]

2 piglets, SC inoculation,
9215 strain, bled daily ICISM 1–4 dpi NA HIA All positive

at 7 dpi [52]

6 piglets, SC inoculation,
Nakayama strain,

bled daily

ICISM +
RT-PCR 2–5 dpi NA SNT All positive

at 14 dpi [53]

12 piglets, IV + ID
inoculation,

Nakayama strain,
bled daily

RT-PCR 1–5 dpi 10ˆ4 U/mL ** SNT 3–11 * dpi [22]

10 piglets, IV inoculation,
JE-91 strain, bled daily RT-PCR 3–5 dpi 10ˆ3.5 U/mL

** SNT All positive
at 28 dpi [54]

IV—intravenous; SC—subcutaneous; ID—intradermal; LD50—50% lethal dose; TCID50—50% tissue culture infective
dose; ICISM—intracerebral inoculation of suckling mice; RT-PCR—reverse transcription-polymerase chain reaction;
VN—virus neutralization; HIA—hemagglutination inhibition assay; SNT—seroneutralization test; dpi—day
post-infection; *All piglets positive at the date when monitoring ended; ** One U was defined as the viral RNA
quantity corresponding to 1 TCID50 of the virus preparation used as the standard by the authors; NA: non-applicable,
when viraemia detection was qualitative.

Neither of these measures of viraemia can be quantitatively compared, as infectivity assays detect
the presence of infectious virions whereas RT-qPCR detects RNA from both non-defective and defective
virions [53].

These experimental studies consistently showed that JEV viraemia was early and short. This may
explain why JEV is difficult to isolate from pigs under field conditions in cross-sectional studies as well
as in longitudinal studies if the periodicity of blood sampling is not high enough. In comparison with
other pig diseases of importance, African Swine Fever (ASF) causes viraemia for three weeks to up to
two months [55–57] and Classical Swine Fever (CSF) for one to three weeks [58,59].

Viraemia characteristics under field conditions could be documented through the follow-up of
pigs and the detection of JEV in blood. Ueba et al. followed up piglets for several months, and tested
them from once a day to once every four days using ICISM. The results confirmed the viraemia
durations observed under experimental conditions, as viraemia was detected for three to five days [60].

3.2.2. Humoral Response of Pigs after JEV Infection

The humoral response after experimental infection was studied in six articles (Table 1). Depending
on the protocol of the study (JEV strain, inoculation route and dose, age of the piglets), antibodies
after JEV experimental infection appeared at 3 to 7 dpi, and were detected until the end of the study
(7–35 dpi). Ueba et al. reported that viraemia dropped as soon as hemagglutination inhibition assay
(HIA) antibodies were detected [60]. This suggested that the viraemia was relatively short due to
the early onset of the immune response. In the 90s, Geevarghese et al. monitored piglets under real
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conditions for a longer time and showed a persistence of antibodies detected by HIA for up to three
years [61], although this long-lasting immunity may have been due to repeated exposure to JEV, thereby
boosting immunity.

3.2.3. Clinical Signs

Clinical signs, either in sows or in piglets after experimental virus inoculation or after natural
infection, were described in fourteen articles. Detailed methodology of the surveys and their results
are provided in Table 3.

One experimental work described JEV-associated sow reproductive failure (Table 2) [51].
Depending on the JEV strain used for sow inoculation, the consequences of experimental infection
of seronegative sows ranged from no impact on the litter to reproductive disorders in two out of
six sows. Reproductive failure was characterized as presence of mummified or hydrocephalic fetuses
in the litters. In both cases, sows developed viraemia and an immune response after infection.

It was shown that experimentally JEV-infected piglets also developed clinical signs. Results of the
four concerned studies are summarized in Table 2. Fever was detected one day post-infection and
mild neurological signs, such as hind limbs tremor or depression, were observed until a maximum
of 10 dpi. All clinical signs disappeared in few days without treatment. No macroscopic lesions were
detected, but three articles reported unspecific microscopic lesions on inoculated piglets.

Table 2. Sow reproductive disorders after experimental JEV infection and clinical signs and lesions
after experimental JEV infection of piglets.

Method Clinical Signs Macroscopic
Lesions Microscopic Lesions Reference

5 pregnant sows, IV
inoculation, Fuji strain, bled

daily until farrow
No / / [51] 1st experiment

6 pregnant sows, IV
inoculation, Kanagawa

strain, bled daily
until farrow

Mummified and
hydrocephalic

fetuses in 2/6 litters
/ /

[51] 2nd
experiment

14 piglets, IV inoculation,
clinical signs monitoring

and histopathology
after euthanasia

Fever until 4 dpi,
depression and

hind limbs tremor
No

Non-suppurative encephalitis
with perivascular cuffing of

mononuclear cells and multifocal
gliosis in grey and white

matter cerebrum

[62]

10 piglets, intranasal
inoculation, clinical signs

monitoring and
histopathology
after euthanasia

Fever until 4 dpi,
depression and

slight hind limbs
tremor on 4 piglets

until
10 dpi maximum

No

Non-suppurative encephalitis
with perivascular cuffing of

lymphocytes, multifocal gliosis,
neuronal degeneration,

and necrosis

[63]

12 piglets, IV and ID
inoculation, clinical signs

monitoring, histopathology
after euthanasia and RT-PCR

on tissues

Fever until 5 dpi,
reduce appetite,

less manure,
and reluctance to

move until 6
to 9 dpi

No Signs of viral
meningoencephalomyelitis [22]

10 piglets, IV inoculation,
clinical signs monitoring,

histopathology after
euthanasia and RT-PCR

on tissues

Fever until 5 dpi,
mild depression

and lethargy until 5
dpi, mild ataxia

between 10 and 13
dpi, 2 pigs with
hind limb ataxia
between 19 and

27 dpi

No No [54]

IV—intravenous; ID—intradermal; dpi—day post-infection; RT-PCR—reverse transcription-polymerase chain
reaction; /—not investigated.

The clinical impacts of JEV are more difficult observe under field conditions. In seven articles,
authors tested tissues of aborted of stillborn piglets in herds with apparent reproductive failure and in
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which JEV was suspected. These results are summarized in Table 3. JEV was isolated in 5/37 to 8/8 of
the brains of aborted or stillborn piglets. Four articles also gave quantitative information about sow
reproductive failure (i.e., the presence of stillborn piglets or aborted or mummified fetuses in one litter)
in the affected herds. The authors identified reproductive failure rates ranging from 15% to 36% of
the reproductive sows [50,64–66]. Another study based its analysis on breeders’ interviews in a herd
where anti-JEV antibodies were detected in sows. Information related to reproductive performances
were collected (number of piglets born in total and alive in the last litter, occurrence of abortion and
birth of stillborn or weak born piglets with or without neurological symptoms). According to farmers,
in the first herd, 31 out of 51 sows showed reproductive disorders. The authors then showed a positive
correlation between the detection of anti-JEV antibodies (based on Enzyme-Linked Immunosorbent
Assays detecting IgG (IgG ELISA) results) and the number of stillborn piglets for sows younger than
1.5 years old [67], suggesting that JEV infection caused both reproductive failure and the appearance of
protective antibodies in young pregnant sows.

Table 3. Detection of JEV in pig herds with reproductive failure and quantification of
reproductive disorders.

Lab Method Material Result
Differential
Diagnosis
Intention

Reproductive
Failure Country Reference

RT-PCR Aborted fetuses Detection No No quantitative data China [68]

RT-PCR Sample of 37 CSF of
aborted piglets 5/37 No No quantitative data China [69]

ICISM, virus
isolation,
RT-PCR

Sample of 108 brain
tissues of

stillborn piglets
20/108 No No quantitative data China [70]

RT-PCR
Sample of 3 brain

samples of
stillborn piglets

3/3

CSFV,
PRRSV, PRV,

PPV not
detected

30 sows with RF/200
sows (15%) China [64]

RT-PCR

31 brain samples of
stillborn piglets

(all stillborn piglets
of the farm)

7/31 No

10 sows with RF/28
sows (36%),

2–5 sb/sow, 31 sb in
total

India [65]

RT-PCR
Sample of 8 brain

samples of
stillborn piglets

8/8

CSFV,
PRRSV, PRV,

PPV not
detected

37 sows with RF/128
sows (29%) China [66]

HIA on body
fluids and

virus
isolation

(unspecified
method)

Aborted fetuses
Isolation on

“some”
fetuses

No 50 sows with RF/320
sows (3 farms) (16%) Japan [50]

RT-PCR—reverse transcription-polymerase chain reaction; ICISM—intracerebral inoculation of suckling mice;
HIA—hemagglutination inhibition assay; CSF—cerebrospinal fluid; CSFV—classical swine fever virus;
PRRSV—porcine respiratory syndrome virus; PRV—pseudorabies virus; PPV—porcine parvovirus; sb—stillborn;
RF—reproductive failure (abortion or at least one stillborn piglet in the litter).

Two field studies reported clinical signs in piglets potentially induced by JEV. In 2009, piglets
developed viral encephalitis and died in a farm in Japan. Seven brains were sampled, in which JEV
was detected by RT-PCR [71]. In 2014 in India, a study was conducted in pigs with a history of
reproductive failure. Macroscopic and microscopic lesions were detected in association with JEV
infection in stillborn piglets, confirmed by RT-PCR [65]. Stillborn piglets showed subcutaneous
hemorrhages, hydranencephaly, or swollen brains with dilatation of the ventricular spaces and
thinning of the surrounding parenchyma. Histopathology of brain tissue revealed widespread edema,
congestion, microhaemorrhages in parenchyma, neuronal degeneration, and accumulation of glial cells.
These microscopic lesions were in accordance with the experimental work presented above.
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Finally, JEV might cause reproductive problems in boars, but studies are limited. Ogasa et al.
detected JEV in the semen of two out of five experimentally inoculated boars by ICISM, and reported
a reduced spermatozoal motility and concentration in two other boars [72]. On the other hand,
in Teng et al. two out of twelve diseased boars showing testicular swelling tested positive by RT-PCR
on seminal fluid [69].

In conclusion, both experimental and field studies showed that the JEV clinical signs mainly
consisted of reproductive disorders in females (and to a lesser extent in males), ranging from weak
piglet births to abortions. JEV was detected in the brain tissues of infected piglets that developed
unspecific signs of encephalitis.

3.2.4. Anti-JEV Maternal Antibodies

The persistence of anti-JEV maternal antibodies in piglets under field conditions was described in
four articles. The results are presented in Table 4. All four studies were based on the follow-up of
piglets in Japan, Cambodia, and South India. In early studies, anti-JEV maternal antibodies disappeared
in piglets aged 1.5 to 4 months [51,73]. These results were confirmed by recent studies that showed
a disappearance of anti-JEV maternal antibodies in piglets aged between 2 and 3.5 months [74,75].

Table 4. Persistence of anti-JEV maternal antibodies in piglets under field conditions.

Protocol Test
Average Age of Waning of

Anti-JEV Maternal
Antibodies

Country Reference

80 piglets, 2–7 months old,
from farms, bled monthly HIA >4 months old Japan [47]

9 piglets, in mosquito traps,
bled monthly HIA >1.5 months old Japan [47]

2 cohorts of 15 piglets, 2
months old, bled every
10 days for 4 months

IgG ELISA >3 months old Cambodia,
peri-urban [74]

2 cohorts of 15 piglets, 2
months old, bled every
10 days for 4 months

IgG ELISA Peri-urban: >2 months
oldRural: >3.5 months old

Cambodia,
peri-urban and

rural
[75]

5 piglets, 2 months old, bled
every month for 3 years HIA >2 months old South India [61]

HIA—hemagglutination inhibition assay; ELISA—Enzyme-Linked Immunosorbent Assay.

3.2.5. JEV Excretion

Few studies analyzed JEV excretion. Three studies focused on JEV oro-nasal shedding, which
may explain the diffusion of JEV in pig herds where they are no or few mosquitoes. Piglets were
experimentally infected and monitored for clinical signs, viraemia, excretion, and virus tropism.
Viral shedding in nasal secretions was detected by RT-qPCR from 2 to 8 dpi at levels similar to viraemia,
i.e., from 10 to 104 units/mL, depending on the study [22,23,54]. Authors also reported a prolonged
detection of JEV RNA in the tonsils, until at least 28 dpi.

No studies looked for JEV excretion in abortion fluids, whereas the virus was detected in brain
tissues of aborted or stillborn piglets (see Table 5). Ricklin et al. detected JEV RNA in urine at a low
frequency (in one urine sample of the 28 monitored piglets) [21], and authors suggested tropism
differences between JEV and other flaviviruses, such as WNV or dengue virus (DENV) [76,77].

One study detected JEV in seminal fluids of diseased wild boars [69].
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3.3. JEV Transmission Mechanisms and Patterns and Pig-Related Control

3.3.1. JEV Transmission Mechanisms

To date, two transmission mechanisms of JEV to and between pigs have been studied,
i.e., the well-known vector transmission and potential direct transmission through oro-nasal shedding.

JEV Vector-Borne Transmission

In 1964, an experimental study analyzed the mosquito-pig and the pig-mosquito transmission [78].
Authors inoculated Cx. tritaeniorhynchus mosquitoes with JEV and let them bite pigs with varying
anti-JEV antibody titers. Pigs were bled daily before and after their contact with the infected mosquitoes.
ICISM tests were performed on blood samples (intracranial inoculation to 3-day-old mice) and virus
titer was expressed as a LD50. JEV was detected in all pigs except from the one that had the highest
anti-JEV antibody titer, showing that the mosquito–pig transmission was effective. While the virus
was detected in pigs (during the viraemic period), healthy mosquitoes were allowed to feed on them.
Fourteen days later, authors showed the presence of JEV in salivary secretion of these mosquitoes.
Anti-JEV antibody-free pigs presented the highest viraemia (log 1.1–2.5 LD50) and re-infected 10%–96%
of the mosquitoes feeding upon them. These results were confirmed a few years later [52].

More recently, in China, the genomes of JEV strains isolated from pigs and mosquitoes were found
to be very similar, demonstrating JEV vector-borne circulation under field conditions [70].

JEV Direct Transmission

Besides vector-borne transmission, the three experimental studies showing nasal and oral
shedding of JEV presented above (3.2.5. JEV excretion) suggested a risk of direct transmission between
pigs [22,23,54]. Table 5 presents the results of two additional studies that showed the effectiveness
of this direct transmission. Authors first inoculated piglets with known doses of JEV and put them
in contact with naïve ones in absence of mosquitoes [21]. Then, piglets were orally and intra-nasally
inoculated with known doses of JEV and monitored [21,63]. In both studies, clinical signs were
observed and viraemia and oro-nasal shedding of JEV were detected by RT-PCR. The incubation
period for pigs infected by contact was three to five days with respect to the development of viraemia.
The incubation period for pigs oro-nasally infected ranged from one to three days depending on the
inoculated doses. Viraemia reached 103 to 104 U/mL, with 1 U corresponding to the RNA quantity
found in one 50% tissue culture infective dose (TCID50) of a virus preparation they used.

Table 5. Experimental evidence of JEV direct transmission between piglets.

Infection Route Test for Viraemia and
Oro-Nasal Fluids

Clinical
Signs Viraemia Oro-Nasal

Shedding Reference

Contact with infected pigs in
vector-free buildings RT-PCR Yes Yes, 3–10 dac

~ 104 U/mL
Yes, 5–10 dac
~101.5 U/mL

[21] 1st

experience

Oro-nasal inoculation RT-PCR Yes Yes, 1–9 dpi
~103.5 U/mL

Yes, 3–9 dpi
~103 U/mL

[21] 2nd

experience

Intranasal inoculation / Yes / / [63]

dpi—day post-infection; dac—day after contact; RT-PCR—reverse transcription-polymerase chain reaction;
/—not investigated.

Furthermore, a recent study suggested that nasal epithelium could be a route of entry and
exit for JEV in pigs. As JEV is shed to both the apical and basolateral sides of the epithelial cells,
such an infection could mediate virus entry into the host as well as oro-nasal virus spread to other
hosts in a manner principally comparable to that of respiratory viruses such as influenza virus [79].
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3.3.2. Geographical Distribution of JEV in Swine

From 1966 to 2016, the presence of anti-JEV antibodies was reported in swine in seventeen Asian
and/or Pacific countries, from India in the west to Japan in the east and from the north of Australia in
the south to China in the north (Figure 2). However, since the antibodies detected by either ELISA
or HIA might have corresponded to those of other viruses in the same serological complex with
JEV, only seroneutralization tests, such as the plaque reduction neutralization test (PRNT), allow the
confirmation of true JEV exposure. In some studies, a good consistency between high HIA titer and
50% plaque reduction titer was observed [74,75,80].Viruses 2019, 11, x FOR PEER REVIEW 10 of 28 
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Globally, the prevalence levels ranged from 3.1% to 74% (in Table 6, the prevalence was only
calculated if more than 100 swine were tested). In the most recent studies (pigs sampled after 2007),
the highest seroprevalences in domestic pigs (>50%) were found in Laos, Cambodia, Vietnam, and India.
In Cambodia (2007, [80]) and in Thailand (1983, [81]), seroprevalence detected by HIA was shown
to increase with age once piglets had loss their maternal antibodies. However, in Sri Lanka in 1988,
authors did not observe any significant correlation between the ages of the sampled animals and the
seroprevalence detected by the reference seroneutralization test (SNT) [82].

Few seroprevalence data were reported for China, even though the virus was detected in pigs by
RT-PCR on several occasions [64,68–71]. However, in Tibet, three studies reported IgM prevalence
levels using capture ELISA ranging from 5% to 33% of the sampled pigs. JEV infection was confirmed
by RT-PCR in some of the positive animals, suggesting a relatively high level of the incidence of JEV
infection in Tibetan pigs.
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Table 6. Detection and seroprevalence of JEV in swine in the world.

Sampling
Region

Sampling
Year

Origin of Sampled Animals
(A/F if Pigs)

Age of
Sampled
Animals

Tested
Animals

Serological
Test

Anti-JEV
Antibodies Evidence

Confirmation Test
and Result Reference Older

References

Australia (T.) 1995 F NS 90 HIA 63/90 SNT + [34]

Australia (T.) 1998 Feral pigs NS 113 HIA 90/113 nd [83]

Cambodia 2007 A and F ~4.3 m (20
d–12 m) 505 HIA

and IgG ELISA 65.7% and 63.5% nd [80] [74,75]*

Hong Kong 1968 F NS 558 HIA 60,4% nd [84]

India 2014 F >3 m 51 IgG ELISA 35/51 RT-PCR + [85] [86–88]

Indonesia 2015 F NS 80 IgG ELISA 32/80 nd [89] [90,91]

Japan (M.) 2008 Wild boars NS 36 SNT 30/36 SNT + [92] [93,94]

Japan (Is.) 2010 F NS 128 HIA 3.1% RT-PCR - [95] [96,97]**

Japan (Ir.) 2010 Wild boars NS 117 HIA 44.4% RT-PCR - [95] [98,99]

South-Korea 2011 Wild boars NS 288 SNT 66% SNT + [100]

Laos 2009 A 4–12 m 727 HIA 74.7% nd [101]

Malaysia 2016 F NS 90 IgG ELISA 40/90 nd [31] [102]

Myanmar 1999 F NS 36 HIA 12/36 nd [103]

Nepal 2010 F 4–48 m 454 IgG ELISA 16.7% nd [104] [105,106]

Singapore 1999 Wild boars NS 28 HIA 28/28 SNT + [107]

Sri Lanka 1988 F 1–24 m 951 SNT 32.6% SNT + [82]

Thailand 1983 A 4–12 m 100 HIA 74% ICISM + [81] [13]

China (Tibet) 2015 A 1–6 m 102 IgM ELISA nr RT-PCR + [108] [109,110]

Vietnam 2010 A 4–8 m 641 IgG ELISA 60.4% SNT + [111] [67,112–115]

Taiwan 1966 F 3–8 m 6000 HIA 37.3% nd [116]

d—days; m—months; T.—Torres strait, Australia; M.—Main; Is.—Ishigaki; Ir.—Iriomote (Japanese islands); A—abattoir; F—farm; NS—not specified; nr—not relevant as authors looked
for IgM; nd—not done. * more recent longitudinal studies—no measured JEV seroprevalence but JEV confirmed by RT-PCR; ** JEV confirmed by either RT-PCR, ICISM, or SNT.
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Concerning wild boars and feral pigs, high JEV seroprevalence levels were found in Japan (between
44% (n = 117) and 83% (n = 36)), South Korea (66% (n = 288)), and Singapore (100% (n = 68), last study
in 1999). In 1998, anti-flavivirus antibodies were detected by HIA in almost 80% of feral pigs in the
north of Queensland, Australia [83]. These feral pigs were sampled during a JE outbreak investigation,
suggesting that some of these anti-flavivirus detected antibodies were anti-JEV antibodies and that
there may be a link between wildlife and JE circulation. Only SNT tests could confirm this statement.
In other countries, the comparison between JEV seroprevalence levels observed in domestic pigs and
in wild boars is difficult; in Japan, wild boars and domestic pigs were sampled from different islands,
and in South Korea, only wild boars were sampled. In Singapore, however, wild boars were sampled
in the same year and the same area as domestic pigs, and both seroprevalences were high (respectively
100% (n = 28) and 94% (n = 81)).

Table 6 summarizes the most recent cross-sectional and longitudinal serological surveys undergone
in swine for each country, with older references being indicated in the last column.

3.3.3. Epidemiological Patterns

Results of several field studies suggested that either the peak of mosquito abundance or the rise of
infected mosquitoes (detection of JEV by ICISM) coincided with the seroconversion period of the pigs
(detected by an increase of the proportion of positive pigs for anti-JEV antibodies using HIA) [73,102,117–119]
and was linked to the occurrence of clinical signs in humans [14,78,82,113,120,121]. These latter results
raised the question of the seasonality of JEV transmission (see Figure 6 in Konno et al. reviewed in Van den
Hurk et al. [120,122]).

Seasonality of JEV circulation in pigs was shown either by longitudinal serosurveys (in which
pigs were followed-up), or by repeated cross-sectional serosurveys in slaughterhouses or on farms.
In the longitudinal studies, depending on the protocol, 2- to 4-month-old piglets were put into pens
and blood sampled daily to monthly for four months to two years. In the longest surveys, the piglets
were replaced when they seroconverted [14,73–75,78,81,83,117,123–125]. In repeated cross-sectional
surveys, pigs aged from four to twelve months were sampled every month in slaughterhouses over
one to ten years, depending on the protocol [50,101,102,112,114,118,120,121,126–128], and reproductive
sows were sampled monthly on a farm in south Vietnam [67]. These results are presented in Table 7.

Three main epidemiological patterns can be distinguished:

(i) An endemic pattern with no seasonality, where JE circulation is high all year round, as in
Cambodia where two longitudinal surveys showed that all monitored piglets seroconverted in
less than four months, regardless of the time of year [74,75].

(ii) An endemic pattern with seasonality, where JE circulation also occurs all year round but
peaks during the hot and rainy seasons, as in north Vietnam [112,114], Laos [101,126],
Malaysia [102], Indonesia [125], Thailand (except for the mountainous Chang Mai district) [14,123],
and Taiwan [73,78,116].

(iii) An epidemic pattern, with peaks of JEV transmission separated by periods of non-detection, as in
north Australia [83], north India [117], Sri Lanka [82], the Chang Mai district in Thailand [124],
and Japan [50,118,120,121,127,128]. In Japan, Konno et al. detailed cyclic outbreaks of JE among
swine and human populations linked to vector abundances, which was reviewed in 2009 [120,122].

For the two latter epidemiological patterns, periods of high JE circulation were identified thanks
to longitudinal studies; these are given in Table 7. Usually, JEV seroconversion rates peaked during the
hot and rainy season. Longitudinal studies showed that during high circulation periods, almost all of
the monitored piglets seroconverted against JEV from as early as one week (in Taiwan) to five and
a half months (in Indonesia).
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Table 7. Detected seasonality in JEV infection in pigs.

Country/Region

Sampling Protocol
(Longitudinal or
Cross-Sectional

(Abattoir or Farm))

Detected Seasonality in
Pig Infection Corresponding Climate References

Cambodia Longitudinal1 All year Not relevant ** [74,75]

North Vietnam Abattoir 2 February–October * Summer/rainy season [114]
January–October * [112]

South Vietnam Farms 1 All year Not relevant ** [67]

Laos Abattoir 1 June–July * Summer/rainy season [101]
August * [126]

Malaysia Abattoir 2,3 November–January * Summer/rainy season [102]

Indonesia Longitudinal 2,4 October–March * Summer/rainy season [125]

Thailand
Bangkok Longitudinal 2,1 February–May* Hot and dry season [14,123]

Chiang Mai Longitudinal 2,3 May–July Hot/rainy season [124,129]

Taiwan Longitudinal 2,4 March–October, peak in
August/July* Summer monsoon [73,78,116]

Japan, main Island

Abattoir 1,5 July–November, peak in
August/September Summer (rainfall)

to fall (typhoons)

[127]

Abattoir 2 June–December [50]
Abattoir 2,4 July–August [118]
Abattoir 2 May-March, peak in August [120]

Japan, Okinawa Abattoir 2 August Tropical climate [121,128]
Abattoir 2,4 April–October

North East India Longitudinal 2 June–August Monsoon [117]

Sri Lanka
Dry zone

Longitudinal 3 October–November Hot/rainy season [82]
Wet zone March–April

North Australia Longitudinal 2,3 February–April Hot/rainy season [83]

* Period of highest detected circulation, but circulation all year around; 1ELISA; 2HIA; 3SNT; 4ICISM; ** Not relevant
because there is no seasonality.

In the 90s, in north Vietnam, two studies showed periodic variations of JEV seroprevalence in
pigs (higher circulation in the wet and hot season), suggesting a seasonal circulation of JEV [112,114].
These results contrasted with those obtained in south Vietnam (Mekong delta), where a recent study
did not identify any correlation between JEV seroprevalence in sows and season [67]. In Thailand,
JE seasonality was reported to be much more marked in the Chiang Mai district [124], 700 km north
from Bangkok, than in Bangkok; JE circulation in pigs was detected only from March to December
(reaching 90% of JEV seroconversion between May and July), while circulation was detected all year
round in Bangkok district [78,123]. In Taiwan, it is believed that the circulation of JE also occurs
in winter, since Chan et al. detected HIA antibodies in 15.6% of 5-month-old pigs raised in winter,
suggesting that this prevalence was not of maternal origin but due to a slight circulation [116].

Besides these temporal patterns, the intensity of JEV circulation also varies with the landscape.
Cx. tritaeniorhynchus, Cx. gelidus, and Culex quinquefasciatus, the main vectors of JEV, are rural mosquito
species that are mainly distributed in rice field agroecosystems of Asian countries, flooded either by
rain or irrigation [11,122,130–137]. For this reason, JEV seroprevalence studies were mainly conducted
in swine reared in (or close to) such ecosystems. In such contexts, JEV seroprevalence was shown to be
potentially very high, with values ranging from about 40% in Indonesia to more than 75% of HIA-
or ELISA-positive results (confirmed by SNT) in Hong Kong or Laos [31,34,84,85,89,101,103,104,116].
These high prevalence levels led to JE being considered mainly a rural disease, and proximity to rice
fields and pig rearing, particularly backyard farming, were identified as major risk factors of JE in
humans [89].
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However, several studies conducted in Taiwan [116], Thailand [14,81], Hong Kong [84], Japan [128],
and more recently in Cambodia [74,75], Vietnam [113,115], and Malaysia [31] showed that JEV can
also circulate in swine in peri-urban or even urban areas. The JEV seroprevalence values ranged
from 26.5% to more than 90% of HIA- or IgG ELISA-positive results in cross-sectional studies,
and seroconversion rates reached 100% of the monitored piglets in longitudinal studies performed
in Cambodia. These observations suggest the implication of other vectors and/or other host species in
the corresponding epidemiological systems.

3.3.4. Pig-Related JEV Control

Pig-related control measures have already been reviewed elsewhere [20,138,139]. Both JEV
inactivated and live-attenuated vaccines derived from cell cultures are used, and pig vaccination has
been reported in Japan, Nepal, Taiwan, and South Korea, but to a limited extent and only in order to
protect pregnant sows from reproductive disorders [140]. Human vaccines are widely used [141,142],
and mass vaccination program in humans were put into place in several countries, such as Japan, South
Korea, and Taiwan, where programs are long-lasting and of high quality, or Nepal, Malaysia, India, Sri
Lanka, Thailand, Vietnam, and China, where programs are emerging [1]. In the animal sector, vaccine
development and vaccine program implementation are more limited [48,143,144], except in South
Korea where a vaccination program in swine with a live-attenuated vaccine has been implemented
over the last 30 years, reducing the prevalence of the disease in pigs [145,146].

In our selection, two articles reported the impact of JEV vaccination on the frequency of
reproductive failure in sows. The effectiveness of JEV vaccination on reproduction was first shown in
1971 in the field by monitoring vaccinated and unvaccinated groups of sows. The vaccinated group
presented two times less abnormal farrows (partial or total abortion or stillbirths), fewer malformed
or stillborn piglets (1%–7% against 31%–54% in the unvaccinated group), and larger litters (two to
three more piglets by litter) [147]. In experimental conditions, vaccination protected against fetus
mummification [49].

Three surveys suggested that JEV pig vaccination interfered with the JEV epidemiological
cycle, thereby reducing the impact of JE on public health. A live-attenuated vaccine with Freund’s
complete adjuvant showed a drastic decrease in viraemia in piglets [60,148]. A few years later,
the live-attenuated vaccine was confirmed to reduce viraemia and prevent mosquito re-infection
in pigs [48,147]. However, the impact of mass vaccination in pigs on human disease has not been
demonstrated yet. In South Korea, after 30 years of the JEV vaccination program in swine, outbreaks in
humans were still not prevented [145].

4. Discussion

This review confirmed that pigs are central in JE epidemiology, not only for virus maintenance and
amplification, but also in transmission to humans. Pigs develop high levels of viraemia that last for two
to four days and attract JE vectors, and the rapid turnover of piglets in any kind of pig farming induces
a permanently high proportion of susceptible individuals that facilitate JEV circulation. Moreover, pig
farms are often located close to human dwellings, especially with backyard farming, which is common
in Asia; this proximity facilitates human infection.

From 1966 to 2016, the presence of anti-JEV antibodies was reported in swine in seventeen Asian
and/or Pacific countries, with seroprevalence levels ranging from 3.1% to 74%. Although the diversity
of study areas, periods, and protocols partly explain this wide interval, the reported seroprevalence
levels are difficult to compare due to the variety of the serological tests used and the lack of specificity
of some of these tests. Indeed, the reference technique for the serological diagnosis of flavivirus
infections is SNT [122]. Only a few cross-sectional surveys selected in this review used SNT to confirm
that the flavivirus they detected (either by HIA or ELISA) was JEV [34,35,82,96,102,105,111]. In the
remaining studies, authors used HIA or IgG ELISA. HIA exploits the ability of viral envelope proteins
to aggregate erythrocytes in the absence of neutralizing envelope antibodies, and is subject to many
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cross-reactivities in the JEV serocomplex and with other flaviviruses due to the type of antigen used [149].
Similarly, ELISA tests, which are based on a colorimetric reaction for which the color intensity is related
to the antibody concentration, are specific to flaviviruses but not exclusively to JEV, depending of
the type of antigen used [150]. Moreover, although all of the selected HIA studies used the same
technique [149], many ELISA kits are available and were used in the published surveys. Flaviviruses
other than JEV, such as WNV and DENV, are known to circulate in JEV-infected countries [151]. This
co-circulation poses a diagnostic challenge due to antibody cross-reactivity within and between the
different serocomplexes [53,152–159]. Thus, confirming HIA- and ELISA-positive results via SNT
appears essential in the proper evaluation of JEV seroprevalence [160]. It is also worth noting that,
although it is the reference test, SNT may be subject to limited cross-reactions within the serocomplex
of Japanese encephalitis. This sometimes requires testing other flaviviruses (such as WNV and DENV)
in parallel to JEV, and the implementation of a decision algorithm based on the SNT titers, in order to
identify the flavivirus to which the animals were exposed [150]. This complex confirmation procedure
was used in few selected studies [34,82,111]. High-quality data on the seroprevalence and incidence of
JE are thus lacking in various countries, and there is a real need for research efforts into virological and
serological methods for diagnosis and monitoring of JE.

JE is often described as a significant cause of reproductive disorders in sows and boars. Only one
experimental study provided evidence of the impact of JEV infection on sows [51]. The reproductive
impact of JEV appears difficult to quantify under field conditions, and statistical correlations between
JEV infection and reproductive failure are rarely investigated. Moreover, the frequency of reproductive
disorders appears to be linked to the epidemiological pattern of JEV. In endemic areas with no marked
seasonality, year-round contact of swine with the virus leads to immunity in most gilts before sexual
maturity; JEV infection in pigs is consequently of minor importance on reproductive performance [67].
Under seasonal transmission conditions, sows are more likely to present reproductive disorders if they
are still susceptible when they reach sexual maturity. These observations might affect the pig-related
control strategies that are discussed below.

Several experimental studies showed that domestic pigs developed high viraemia, allowing
for pig–mosquito–pig transmission [22,47,54]. Several surveys showed that the primary JEV vectors
Cx. tritaeniorhynchus, Culex vishnui, and Cx. gelidus have a trophic preference for cows and pigs [161–165].
However, the two former species often showed higher rates of blood feeding on pigs than on cows,
probably due to their plasticity to host availability, since in rural areas, pigs are often more abundant than
cows [166]. Moreover, the number of susceptible pigs is always large due to a large turnover stemming
from the breeding system. Finally, pig farming in Asia is often backyard breeding, which situates pigs
very close to human dwellings. All these elements support the major importance of pigs in the JEV
transmission cycle.

However, recent studies suggested that other JE epidemiological systems may exist with small
or no implications resulting from the domestic pig. First, autochthonous human JEV cases occurred
in Seoul, South Korea, even though no pigs are reared in the city [26]. In 2013, in China, Teng et al.
isolated JEV in mosquitoes, humans, and pigs, and showed that the same strain was identified in
mosquitoes and human, but not in pigs [69]. Finally, two studies, one being very recent, showed that
JEV continued to circulate decades after the abolition of pig farming on Singapore Island [35,167].

It is generally considered that Ardeid birds, such as egrets and herons, are the wild reservoir
hosts [168–173]. However, little recent evidence of this statement is available [18,168,174].
Several surveys or observations showed that other species, such as domestic birds, are exposed,
and suggested that secondary reservoirs may be involved in JEV circulation. In the 60s, Gresser et al.
discussed the potential implication of domestic birds in the JEV cycle in addition to pigs [175].
More recently, domestic birds have been shown to be exposed to JEV in Nepal and Cambodia,
as antibodies were detected by both ELISA and SNT [106,176]. Anti-flavivirus antibodies were also
detected in domestic birds in Malaysia, suggesting possible JEV circulation [31]. Experimental studies
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showed that inoculated ducks and chicken developed different levels of JE viraemia, probably high
enough to re-infect mosquitoes [24,177].

The question of a non-avian wild reservoir for JEV has never really been assessed, while Southeast
Asia hosts the highest wild pig (Suidae family) diversity in the world [178]. As presented above, wild
boars were shown to be highly exposed to JEV on two Japanese islands, with the virus genome showing
a high homology with JEV that was previously isolated from pigs reared on another Japanese island.
The detection of JEV RNA and anti-flavivirus IgG antibodies in wild boars suggested that they could
act as additional reservoirs in rural and forest areas [99]. In the north of Queensland, Australia,
cross-reacting anti-flavivirus antibodies were detected in almost 80% of feral pigs during a JE outbreak,
and the authors suggested that they possible became amplifying hosts [83].

JE was traditionally considered a rural disease. However, several surveys showed that the virus
could be transmitted in peri-urban and urban areas, suggesting the presence in these areas of mosquito
species able to transmit JEV. That could be the case for Cx. quinquefasciatus, which is anthropophilic and
competent for JEV transmission [179,180]. Cx. tritaeniorhynchus, Cx. gelidus, and Cx. quinquefasciatus
were also trapped in urban households in Vietnam, regardless of whether or not there were pigs in the
area [181]. In peri-urban areas, people do not traditionally rear large numbers of pigs or domestic birds.
However, increasing urbanization is likely to increase pig numbers on farms, as well as the numbers
of farms close to urban areas, thus bringing human and pig JEV-susceptible populations into close
proximity with each other. Thus, there is a need to improve our knowledge of the JEV transmission
cycle that may not be as simple as we think it is. The existence of secondary reservoirs could explain
JEV transmission in areas with no or low pig density, which is the case in some urban or peri-urban
areas in Cambodia or Laos for example, or in mountainous areas [108,110,167,182].

JE is primarily a vector-borne disease, but recent surveys suggested that direct transmission
from pigs to pigs could occur [21,63]. Two additional in silico studies performed with Cambodian
and Hong Kong data showed that incorporating direct transmission in models allowed a better fit
to be observed from the serological data than a vector-borne transmission model alone [183,184].
The reemergence of JEV cases in the same locations from one year to another indicates that JEV can
overwinter locally [50]. Among others, direct transmission could explain the overwintering of JEV in
pig herds in epidemic or endemic regions where JEV transmission and human cases are seasonal [21].

Human vaccines are widely used in humans [141,142], and mass vaccination programs were
put into place in several countries, such as Japan, South Korea, and Taiwan, where the programs are
long-lasting and of high quality, or Nepal, Malaysia, India, Sri Lanka, Thailand, Vietnam, and China,
where programs are emerging [1]. As humans are dead-end hosts, human vaccination alone cannot
stop virus circulation. Moreover, human cases may re-occur in case of vaccination failure or the
emergence of a new strain for which the current vaccine is not effective. JE did re-emerge in South Korea
(2010–2015) after a mass vaccination program, which was presumed to have failed to induce lifelong
immunity, so older age groups became susceptible again [185]. Vaccines are also expensive, require
multiples doses, and remote and/or poor people may not be able to afford them. Additionally, some of
these human vaccines may not be 100% effective, as demonstrated in Tandale et al. [186].

Pig vaccination could be used as an alternative to control JEV circulation. Vaccinating pigs not
only protects them from possible reproductive disorders, but also helps to break the transmission cycle,
thus reducing the impact on human health. In northern Bangladesh, Khan et al. built a compartmental
model to describe JEV transmission dynamics in this region and to estimate the potential impact of pig
vaccination. They showed that vaccinating 50% of the total pig population each year would result in
an 82% reduction in the annual incidence of JE infection in pigs [187]. Vaccines are widely used in
Japan, Taiwan, and South Korea, where the incidence of disease in swine has been reduced thanks
to the use of a live-attenuated strain (Anyang300) conducted throughout these countries for the past
30 years [145,146,188].

In epidemic or endemic areas with seasonality patterns, the birth season of pigs has an influence
on the age at which pigs get infected by JEV, thereby determining the existence or not of
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reproductive disorders. In northern Vietnam where the transmission peak occurs between July
and September, Ruget et al. used temperature and pig serological data to predict the age of initial
JE infection. Pigs born at the end of the winter become susceptible to JEV infection during the period
of high circulation and before reaching sexual maturity. On the other hand, pigs born later during the
summer are protected by their maternal antibodies during the transmission peak season. They lose
their maternal anti-JEV antibodies and thus become susceptible again during winter, when vector
abundance is very low. According to authors, around 20% of these pigs did not infected with JEV before
8 months, thus experienced reproduction disorders when getting infected during the following summer.
These animals (born between July and September) should be targeted for vaccination [111].

However, pig vaccination has several limitations:

(i) The large South Korean vaccination program has not prevented outbreaks in the human population
in recent years [145];

(ii) Whatever the pig production system and the socio-economical context, the turnover of pig
populations is always rapid and therefore the cost of vaccination is high;

(iii) JEV may still circulate within vaccinated pig populations [144];
(iv) Pig vaccines are based on GIII viruses, the dominant circulating genotype in Asia. However, there

are now several studies showing the replacement of GIII by GI that could negatively modify the
effectiveness of current vaccines [113,189,190]. JEV was indeed detected in vaccinated populations
in aborted fetuses and stillborn piglets in China [68,70]. The authors warned against a potential
lack of effectiveness of the vaccine and suggested that the safety of the SA14-14-2 strain belonging
to GIII, which is used for vaccine development in pigs, should be reassessed;

(v) The currently available vaccines do not confer full protection against the emerging JEV GV
strain [191,192].

Finally, the fact that the cycle, at least in some regions, is much more complex (multi-host without
or with a weak implication of domestic pig), suggests that a single pig vaccination would not solve the
problem directly either [193].

Modeling studies were conducted to test new alternative control measures, such as pig
herd management. Indeed, the intensity of transmission within a herd depends on the proportion
of susceptible and immune animals, and therefore partly depends on the management of the herd.
Depending on pig herd size and herd management practices, the proportion of immune pigs within
a herd may vary and favor or reduce viral circulation between pigs. For example, the synchronization of
piglet birth, which is common in semi-commercial and commercial pig herds, induces regular bursts of
susceptible animals when these piglets lose their anti-JEV maternal antibodies. Increasing the duration
between two successive litters, which could be controlled through insemination synchronization,
would possibly prevent JEV circulation between successive piglet births [194].

As JEV is mainly a vector-borne disease, an alternative to vaccination exists in vector control.
Insecticide spray for adults, larvicides such as Bacillus thuringiensis toxin for juvenile stages, extracts of
Piper retrofractum (Piperaceae), or essential oils as oviposition deterrents are techniques that have been
used previously [195–197]. Another option which is already used in some Cambodian rural areas is to
cover pigpens with mosquito nets. The use of insecticide-treated mosquito nets was shown to reduce
seroconversion rate in humans and pigs in India [198].

In conclusion, this review underlines that JEV epidemiological patterns vary according to the region.
Pigs, when present, play a central role, but other hosts may also be involved, such as wild boars or
domestic birds. Human vaccination remains the most effective way to protect human populations, but it
does not stop the circulation of the virus. It is therefore also necessary to act on the reservoir–mosquito
cycle and to adapt existing measures according to the functioning of this multi-host system.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/10/949/s1,
File S1: Variability of the JEV diagnostic tests for pigs.
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