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Abstract:

Terminal follicular differentiation and ovulatiorreaessential steps of reproduction.
They are induced by the increase in circulating Rl lead to the expulsion from the ovary
of oocytes ready to be fertilized. This review suanizes our current understanding of
cellular and molecular pathways that control ovalatusing a broad mammalian literature,
with a specific focus to the mare, which is uniqueome aspects of ovarian function in some
cases. Essential steps and key factors are apgahache first part of this review concerns
LH, receptors and signaling, addressing the desamnipof the equine gonadotropin and
cloning, signaling pathways that are activatedoleihg the binding of LH to its receptors,
and implication of transcription factors which leetknown are CCAAT-enhancer-binding
proteins (CEBP) and cAMP response element-bindimtem (CREB). The second and major
part is devoted to the cellular and molecular actithin follicular cells during preovulatory
maturation. We relate to 1) molecules involved asaular permeability and vasoconstriction,
2) involvement of neuropeptides, such as kisspepteurotrophins and neuronal growth
factor, neuropeptide Y (NPY), 3) the modificatiohsteroidogenesis, steroids intrafollicular
levels and enzymes activity, 4) the local inflamiorat with the increase in prostaglandins
synthesis, and implication of leukotrienes, cytesinand glucocorticoids, 5) extracellular
matrix remodeling with involvement of proteasesti@oteases and inhibitors, as well as
relaxin, and finaly 6) the implication of oxytocinesteopontin, growth factors and reactive
oxygen species. The third part describes our cukmowledge on molecular aspect of in vivo
cumulus-oocyte-complexe maturation, with a speddmus on signaling pathways, paracrine
factors, and intracellular regulations that oceucumulus cells during expansion, and in the
oocyte during nuclear and cytoplasmic meiosis rggiom. Our aim was to give an overall
and comprehensive map of the regulatory mechanisatantervene within the preovulatory

follicle during differentiation and ovulation
2
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Introduction:

In mammals, while the basal concentrations of F8H BH are sufficient for the
proliferation of follicle cells, preovulatory mattion occurs under the influence of an
increase in circulating LH levels. LH and FSH levate highly dependent on GnRH secretion
from hypothalamic neuronsThe hypothalamic-pituitary-gonadal axis has beecemgy
revisited by using knockouts animals, leading tpdtliesis related to mammalian evolution
[1]. It is well known that kisspeptin stimulates KA neurons leading to GnRH release in
both in vitro andin vivo studies [2]. Two other neuropeptides (neurokinifNBKB) and
dynorphin (DYN)) interact with kisspeptin as keyplayhalamic regulators of reproductive
function, and are thought to be co-secreted witlsgeptin to regulate GnRH secretion [3-5].
The kisspeptin neural system play therefore a maler in the control of reproduction, and
may be highly valuable for the development of nstetegies for the management of fertility
in mammals [6]. Nevertheless kisspeptin seems mdiet an universal ovulation-inducing
agent since it failed to have an effect in the njas8].

The increase in circulating LH level causes a seofemorphological and functional
changes in the follicle destined to ovulate thatles in: 1/ the differentiation of follicle cells,
granulosa and thecal, in preparation for follicutapture, referred to as ovulation, 2/ the
differentiation of follicle cells, granulosa ancettal, for the formation of a functional corpus
luteum, referred to as luteinisation, 3/ the expansf cumulus cells surrounding the oocyte
and, lastly, 4/ oocyte maturation. All these eventsst be coordinated in order to result in the
production of mature and fertilisable oocytes ahdavpus luteum capable of supporting the
beginning of pregnancy. The delay between LH peakavulation vary according to species

(Table 1), being the longest in sows and mares.
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The conditions under which preovulatory maturatb@aurs are unusual in the equine
species compared to other mammals. The circulatithdevel does not exhibit a short-term
high-amplitude peak before ovulation but ratheradgal increase over several days reaching
a maximum 1-3 days after ovulation [9, 10]. In &, the concomitant increase in FSH
observed before ovulation in cows and in women adaésake place in the mare [11].

Under breeding conditions, preovulatory maturat@md ovulation can be induced by
hormone injection. Human Chorionic Gonadotropin@)Chas been used to induce ovulation
in mare since 1960’s. Chorulon® (lyophilised hCG) largely used in horse breeding.
However, repeated administration of hCG resultsmmunological reaction and antibody
formation in most mares [12, 13]. In order to avtits deleterious effect, equine pituitary
gland extracts can also be used [13]. These egttgptcally induce ovulation in 34 hours
when administrated to mares in estrus with a fielliarger than 35 mm. Nevertheless, equine
pituitary gland extracts are not commercially aafalié, and were only experimentally used.
The efficiency of GnRH agonists in hastening ovolabver consecutive cycles has also been
reported. Deslorelin acetate (Ovuplant®) is thetmadely used in Australia, North America
and in Europe. Repeated injections of buserelicéR@l®), another GnRH agonist proved as
effective as hCG [14, 15]. Few years ago, the 1l4kBalation inducing factor” from the
seminal plasma of camelids has been identifiedeagengrowth factor beta (NGF) [16, 17].
To date, it is able to induce ovulation in alpaesl llamas but no data are available
concerning the capability of neurotrophins and@unmonal growth factors to induce ovulation
in the marelLast year, the absence of NGF in equine ejaculessbeen demonstratfiB].

Nevertheless, the use of recombinant equine gorgaons proved efficiency (see below).

1 - LH, receptor and signal transmission
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LH is a glycoprotein made up of two subuni#s,and B, bound together non-
covalently. In each species, subuhkits responsible for binding the hormone to its ptoe
and is common to all glycoprotein hormones (LH, FSIKbH and CG), whereas subunit
B confers biological specificity [19]. In horse, sufit A is made up of 96 amino acids and
subunit B is made up of 149 amino acids. Glycoslbaids are joined to the asparagine
residues of subunit A and to serine residues otistilB. The protein structure of eLH is
identical to that of eCG, since these two hormaimse from the same gene, expressed in the
pituitary gland and placenta respectively. Howeettdi and eCG differ at least in terms of
their glycosidic bonds. In human, LH and CG shotfedences in their expression pattern,
biopotency and regulation [20]. It is interestirg riote also that eLH (and therefore eCG)
exhibits dual heterologous LH/FSH activity [21, 24lhe cDNAs coding for théA and
B subunits of eLH/CG have been cloned [23, 24] aretluisr co-transfecting COS-7 cells
[25]. Since then, several works described the developrardt efficiency of genetically
cloned recombinant equine gonadotropins to induadation in the mare [26-29]. Three
years ago, molecular characterization, modellindyiarsilico analysis of eLH/CG A has been
realized [30].This enable the use of recombinant eLH to induadation in mare.

For preovulatory follicle maturation occurence, Ligceptors (LHR) must be
expressed at the follicular cell surface and tlgmai generated must be transmitted. As a
general rule, LHR are present on thecal cells mmgrg follicles and are also present on
granulosa cells in the preovulatory follicle. Theoeession of LHR by granulosa cells depends
on FSH, or even on prolactin [31, 32]. In mare, LHIR present in the granulosa cells once
follicles have reached 5mm in diameter [33]. Sinyiawe have shown during this work that,

at the end of the follicle phase, the number of LiHRhe mural granulosa cells increases in
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relation to the follicle diameter. This study confs that conducted by Fay & Douglas [34] in
the mare, and is consistent with several studiggedaout in other species.

LHR are members of the family of G protein-couplegeptors that interact with
adenylate cyclase via the Gs subunit. They catdlysdormation of CAMP which activates
protein kinase A (PKA). LH binding to its recept@lso increases the intracellular levels of
inositol phosphate [35] and activates the pathwhylKC [36]. It also acts via tyrosine
kinases [36, 37]. The activation pathway taken KARs nonetheless the best known. It has
been shown that in the rat, the differentiatiomy@Enulosa cells at the preovulatory stage does
not occurs together with an increase in the inthalee concentration of the catalytic subunit
of PKA, but rather with a change in its cellulacation [38]. On the other hand, the
expression of its regulatory MIsubunit is induced in the preovulatory follicldisewhich
would make it possible to specifically modulate #ativity of PKA and therefore the effects
of LH [39, 40]. In mare, it has been demonstraid fear ago that LHR expression on the
ovarian epithelium surface is linked with expreasid metalloproteinases (MMP), implicated
in tissue remodelling41]. The same year, a study reported the up-réguland regulatory
control of Regulator of G-protein Signaling prot@ifRGS2) in equine preovulatory follicles
[42], a protein known to control signalling throu@hprotein coupled receptors.

The involvement of the two transcription factorstleé family of CCAAT-enhancer-
binding proteins CEBPA and CEBPB, in preovulatasiliédle maturation was reported [43].
In rats, the intrafollicular levels of CEBPA mRNAG protein increase during follicle growth,
suggesting that they are dependent on oestrogéonraffiH expression. Their decrease after
ovulation have been induced using hCG [44]. A fgvars later, the same authors clearly
showed the key role played by CEBPA in the capazitthe dominant follicle to respond to
preovulatory stimulation [45]. On the other hanuk expression of the CEBPB gene (also

referred to as LAP) is induced in the granulosdscef the dominant follicle following
6
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stimulation by LH or hCG. In other systems (3T3 tek, adipocytes), CEBPAnd CEBPB
are believed to contribute to cell growth and déflerentiation and to intervene in regulating
the expression of numerous metabolic enzymes; thgiression is regulated mainly by the
cytokines IL-6 and TNF [46, 47]. By analogy, itdgnvenient to imagine that these factors are
involved in regulating certain ovarian functionsREB, a transcription factor of the bZIP
family, is regulated by gonadotropic hormones hie dévary, CREB regulates the transcription
of the Cypl9 gene, coding for P450 aromatase, via the modulaifoccAMP levels [40, 48,
49] and also regulates the gene coding forAhsub-unit of inhibininhA [50]. CREB also
regulatesHspala gene (Computational analysis) [51]. It has beleows that the CREB
transcript and CREB protein levels do not vary dgiithe rat oestrous cycle, but that activity
concerning the regulation of the transcription diist factor, which depends on its
phosphorylation state, increases under the inflaefcgonadotropic hormones [52fh the
mouse, CREB activity (i.e. phorphorylation) is regd for LH-induced expression of EGF-
like factors in granulosa cells [53]. The mIRNA miR2, known to be regulated by CREB,
has been shown to decrease in equine preovulaithictd [54].

Other transcription factors such as SF1, SP1, PBNGFIB, MYC [55], as well as
histone acetylation- or methylation-related ge[s6] are also involved in the hormonal
regulation of the expression of certain genes enavary. To our knowledge, the transcription
factors involved during preovulatory differentiatidvave not been studied yet in domestic
mammals such as the bovine, ovine, caprine ancheecies.

All these studies clearly show the complexity of tmechanisms involved in

regulating preovulatory follicle maturation.

2 — Cellular aspects of the follicle maturation
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Ovulation, luteinisation and maturation of the deegumulus complex depend on the
presence of numerous factors within the preovwafoilicle. Most of these factors are
produced by the follicle cells in response to Lihsiation, which induces cell differentiation
towards the luteal phenotype and the resumptionocfte meiosis. In the rat, it has been
shown that follicle cells are entirely reprogramnagbroximately 7 h after LH injection [57,
58]. Major steps are summarized in Figure 1.

Increase in vascular permeability: Shortly after the endogenous gonadotropin surge

or injection of LH/hCG, observations of the folkcldestined to ovulate indicate that
considerable changes occur in the capillariesefriternal theca which becomes oedematous.
The blood flow increases, associated with hyperaewohithe preovulatory follicle [59-61].
Gonadotropins modulate capillary permeability o thvarian blood-follicle barrier, mainly
through increased numbers of large pores, sinolardlassical inflammatory response [62].

The local production of bradykinin and histamine a&ssociated with these
modifications in the vascularisation of the pre@aty follicle [63, 64]. Moreover, it has
been shown that the intrafollicular concentratidncertain vasoactive molecules such as
platelet-activating factor (PAF) increases after it peak [65, 66]. On the other hand, work
by Pellicer [67], and then by Daud et al [68] andftNlin et al. [69, 70], have shown that
molecules of the Renin-Angiotensin System, known d&ffect blood pressure and
vasoconstriction, are involved in ovulation anceiotsation. The precise mechanism of action
of these various molecules remains to be deterntnédhas been discussed in cattle [71, 72].
Their ovarian expression in mares is unknown, witle exception of histamine, the
concentration of which remains stable after ovalatias been induced [73].

Cdll proliferation arrest: At preovulatory maturation, the size of the folialestined

to ovulate increases only little or not at all doehe arrest of cell multiplication. In the rat,

hCG via the cAMP/PKA pathway, is known to rapidhduces (about 4 h) the arrest of the
8
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transcription of cyclin D2 (CCND2) which, when assded with CDK4 or CDK®6, enables
the granulosa cells to progress to phase 1 [74,THg] inhibition of cyclin E (CCNE) -which
when associated with CDK2 enables the cells to rackvanto phase S- occurs less rapidly,
and is visible 24 h after the injection of hCG [74At the same time, the induction of the
transcription of P27KIP1, a protein that inhibite tactivity of CDK2, 4, 6 and CDC2, is
initiated. This blocks the phosphorylation cascadésvarious points, and confirms the
hypothesis that granulosa cells withdraw from thaiferation process. However, numerous
studies also suggest that P27KIP1 is involved ieimisation and the formation of the
functional corpus luteum [76-78]. More recent dat@] suggest that cumulus granulosa cells
continue to proliferate for up to 10 h after an latory stimulus, possibly via CCNE/CDK2
A very recent study performed also in rodent dertrated that at least two factors known to
regulate differentiation and cell division (ERRRf&d IFRD1) may be essential for follicular

cell differentiation and cumulus expansion [80]

Neuropeptide expression:

Kisspeptin: Kisspeptin is a family of neuropeptides well knotenbe released from
the neurons of hypothalamus and to stimulate Gn&Elase via the GPR54 receptor [81].
Moreover, GPR54 is present on granulosa and cunudls [82-84]. Immunohistochemical
studies have shown that kisspeptin is distributedheca, granulosa, luteal, and interstitial
cells of human, marmoset, hamster, and rat ovi8®&s85, 86]. It has been shown in rodents
that kisspeptin mRNA synthesis, that increasehéavary during proestrous, is stimulated
by hCG[86], and that estrogens regulate kisspeptin esmrsn granulosa cell87]. More
recent data confirm and extend this study and dstreed the relevance of kisspeptin to the
differentiation of granulosa cells into luteal &ell88], suggesting an important role in

ovulation.
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NGF, ADCYAP and VIP

A recent review describes the importance of neapdtins and neuronal growth factors in the
ovary [89]. The neurotrophin family consists of NGRe neurotrophins 3 and 4 (NTF3 and
NTF4), and brain-derived neurotrophic factor (BDNE&ihd the neuronal growth factors are
glial derived neuroptrophic factor (GDNF) and vadestinal peptide (VIP). The two
neuropeptides, VIP and ADCYAP (previously named RRCfor Pituitary Adenylate
Cyclase Activating Polypeptide), have been idesdifin the rat ovary [90], in granulosa and
cumulus cells of mouse [91] and in women [92]. Wk of Julio-Pieper et al. [93] suggests
a role of neurotrophins in the maintenance of ¢allir and luteal vasculature. The addition of
VIP to secondary mouse follicles culturgdvitro induced follicular growth and oestradiol
production [94]. NGF that was identified in antfallicles of rats, goats, sheep and humans
[95-98], promotes ovarian secretion of steroid hammes and prostaglandins [99-101]. The
work by Salas et al. [101] shows that NGF also gaduan increase in FSH receptor
expression and exhibits an increase in FSH seitgitiv human granulosa cells [101]. The
high affinity NGF receptor NTRK1 (formely named &)k has been identified in granulosa
cells and oocytes of mouse and rat [95, 102]. MeeeoONTRK1 has been implicated in
ovulation [103]. ADCYAP and VIP have two major gpsuof receptors sites. ADCYAP and
its type 1 receptor ADCYP1R1 are expressed by dosaucells after the LH stimulation of
the preovulatory follicle [104], under the regudeati of other genes [105]. It requires in
particular the prior synthesis of the progesteromeeptor [106]. ADCYAP and VIP are
activators of cCAMP production and thus stimulate piheovulatory production of progesterone
[107, 108]. Moreover, ADCYAP has a role in oocytataration [109], and displays an
apoptosis-inhibiting role [105] . The localisatiamd functional activity of ADCYAP, VIP

and their receptors has been described in mousyg [RED].

10
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Neuropeptide Y

Few studies have been carried out on the presarteole of neuropeptide Y (NPY)
in the ovary. The studies conductedvitro by Barreca et al. [111], show that NPY is
involved in regulating the production of oestradial the beginning of luteinisation.
Otherwise, oestradiol modifies the number of NP¥Ynmoreactive neurones and regulates
NPY release in the hippocampal dentate gyrus irfdheale rat [112]. Moreover, it has been
suggested that NPY directly inhibits ovarian cealbliperation and promotes apoptosis via
transcription factor p53 [113].

Nevertheless, the expression of neurotransmitterthe preovulatory follicle in the

equine species remains unknown.

Modification of steroidogenesis. Ovarian steroidogenesis is entirely modified after

LH surge since, in many domestic mammals, the mialu of androgens and oestrogens
decreases, whereas the production of progesterooeeases [114]. This change in
steroidogenesis occurs together with modulationghim expression and activity of the
enzymes involved. In mare, steroid evolution durfil dominant follicle maturation is
similar, with a decrease in oestradiol level andimcrease in progesterone level in the
follicular fluid [33, 115-118], whereas a transiemtrease in oestradiol disrupts periovulatory
LH surge in mare [119]. The decrease in oestra@w¢l is related to the decrease in the
intracellular amount of aromatase [33, 117]the rat adrenomedullin2 has been proposed, to
regulate estradiol synthesis and to support owargtl20] Moreover, it has been shown that
the granulosa cell concentration of mMRNA for theARStprotein (Steroidogenic Acute
Regulatory protein), involved in transporting chatéxol from the external membrane to the
internal membrane of mitochondria, increases #fiel.H surge in mares [121]. Our study on

the expression of the protein itself in the lysatesquine granulosa cells did not confirm this
11
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observation [117]. Slough and collaborators [1&2)wed that StAR mMRNA decreases after
day 12 in the mare. This decline is time-related ttecrease in circulating progesterone level.
These results correspond to data from other spantisating that StAR plays a rate-limiting

role in steroidogenesis [123], but are not in agre@ with the results obtained in the mare

[121].

Progesterone is well known for its endocrine actittralso exhibits local action since
receptors are present in the follicle. It has bebown in the rat that the expression of
progesterone receptors (PGR) by granulosa cellshef preovulatory follicle after LH
stimulation occurs rapidly but transiently [124-1;26 is amplified by progesterone. Mutant
mice deficient for PGR do not ovulate even after itjection of an ovulating dose of hCG
[127]. PGR are transcription factors and so thdgrirene in inducing the expression of
several genes involved in preovulatory maturatl®@R activity requires interactions with
many transcriptional coregulators, which can bectieators or corepressors, as SRC, FRG2,
NCOA3 and MSANTD1 (formely named SRC1, SRC2, SR@8 &CO1, respectively)
which interact with the ligand binding domain of RGThe absence of NCOA3 in mice
decreases the ovulation rate [128]. Nowadays, istereceptors modulators could be
considered as therapeutic targets in case of ewnldeficiency [129].

It appears that progesterone, in many speciesu@at to ovulation and luteinisation
[40, 130]. In fact, it was shown several years #g LH-induced ovulation can be blocked
by HSD3B-inhibitors (rat: [131]; primate: [132])y lanti-progesterone antibodies (rat: [133])

and by RU486 (mouse: [134, 135]).

Local inflammation: The ovarian synthesis of prostaglandins (PGF2, BRGEGI2) is

increased after LH stimulation, particularly in fm@ovulatory follicle [136-140]. At the basal
12
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level, they are synthetized via the transformabbarachidonic acid by PTGSL1 that displays
cyclooxygenase and peroxidase functions and isesgpd in the theca. Following LH
stimulation, the PTGS2 isoform is induced in grasal cells and therefore increases
prostaglandin production in the ovary (rat: [14Bt4Low: [144, 145]). The transcription of
the PTGS2 gene is induced by the activation offti@&, PKC and tyrosine kinase pathways
[36] and involves the transcription factor CEHBPL46]. Moreover, transcription factors from
the RUNX family would be involved in the LH-induc&IGS2 gene expression [14The
involvement of prostaglandins in follicular ruptuteas been shown by the use of anti
PGF2alpha antibodies [148] or indomethacin, a reyogtal anti-inflammatory and PTGS-
inhibitor [149-152]. The specific PTGS2 inhibitorS898 also decreases prostaglandin
production and ovulation rate in rats, in a dosgetielent manner [153]. PTGS2 deficient
mice are infertile, due to the absence of ovulat[@b4]. However, the luteinisation
phenomenon (functional corpus luteum) and oocyidean maturation are not disrupted by
the inhibition of PTGS [155]. As recently reviewdil GS2 inhibitor may be suitable for use
as an emergency (but not monthly) contraceptive6][13n mare, intrafollicular PGF
concentration has been measured firstly by Watsorsettich [115], who observed no
variation after injection of an ovulating dose @®. Then, Watson & Sertich [73] and Sirois
& Dore [157] observed a late increase (>30h) in P@&d PGF in the preovulatory follicular
fluid in mare after injection of an ovulating dosehCG. This increase is due to the induced
expression of PTGS2 by equine granulosa cells efptleovulatory follicle [121, 157]. The
intrafollicular injection of indomethacin does riahibit ovulation in mare, but increases the
induction-ovulation interval [73]Again in the mare, the intrafollicular injection BIGE2 and
PGF restores ovulation of luteinized unrupturedidiegls [158] and induction of luteolysis

with PGF2alpha alters the level of follicular fluactors (IGF1 and PGE?2) [159].
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Leukotrienes, other derivatives of arachidonic aaldo appear to be involved in final
follicle maturation [160-163]. In mares the inwHicular levels of leukotrienes B4 and C4
have been measured and, as opposed to observiaticats [164, 165], they do not increase
after induction of ovulation [73]. This same résubhs observed in goats [166]. The current
hypothesis is that eicosanoids (prostaglandinslenkbtrienes) stimulate the synthesis and
activity of collagenases involved in matrix degraaia at follicular rupture (rat: [167]). This
has not been confirmed for all the species stusitefér.

On the other hand, the presence of several inflawmaytokines has been shown in
the ovary during the preovulatory period and seemwslved in ovulation. In fact, ovulation
in the broad sense of the term is often compareahtmflammatory-type reaction [130, 168,
169]. Inflammation that is induced by gonadotrogittmulation has a physiologic role,
creating a weakening in the follicle wall and ewsattrupture [130, 168]. Several studies show
that these cytokines potentiate the LH effect [170je mechanism of action of cytokines
during preovulatory maturation is probably simitarthat observed during inflammation; in
particular, TNF and IL-1 activate proteolytic enaynactivity and the production of
prostaglandins and nitric oxide [171]. Moreovereythmodulate steroidogenesis [171] and
stimulate the maturation of the oocyte-cumulus demrabbit : [172]).A recent study
showed that specific inflammatory mediators areralt in PRKO mice ovaries, leading to the
hypothesis that progesterone regulates featureglammation at ovulation [173].

The interleukin-1 system, composed of IL-1A, IL;1fBe natural antagonist ILIRA
and IL1 receptors, is the best known. IL1IB1IRN and the type 1 receptor ILIR1 are
expressed in the human ovary [170]. IL1A and ILddne from two different genes, but act
on the same receptors. They must undergo proteal@avage to become biologically active.
The antagonist ILIRA has a local role as a regulatdL1 activity. Biologically active IL1

has been measured in the follicular fluid of wonjgi4, 175] and sows [176]. In the rat,
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IL1B is expressed by thecal cells, mainly afteritijection of a dose of hCG [177], as well as
by the oocyte [178], whereas in women granulosks @k the source of ovarian IL1 [179-
182]. We demonstrated the presence of IL1B in exdatlicular fluid and the presence of
IL1B and ILIRA mRNA in equine granulosa cells [1884]. Importantly, the expression of
IL1B gene in granulosa cells, as well as IL1B fallar fluid content seem to be influenced by
equine gonadotropin in mare [183]. Moreover, it baen demonstrated that ILJBBomotes
the ovulation process in the rat [185], the raiif2] and the mare [186]. In mare,
intrafollicular injection of IL1B induces synchraad ovulations [187]. These results are in
agreement with those obtained by Martoriati eshbwing that the intrafollicular injection of
ILLRA reduces the ovulation rate or delays the atrah time [186]. The effects of IL1B on
the oocyte could be mediated by cumulus cells. IltdBeasesn vitro the germinal vesicle
breakdown of oocytes in the rabbit model [172],vesl asin vivo in the mare [186],
demonstrating its beneficial role in oocyte nucleaaturation. For review see Gerard and
collaborators [188].

Only the type 1 receptor IL1IR1 appears to be esacksn human ovary [180],
whereas in rats, IL1R2 has also been identified6[1@ther cytokines such IL6, the
granulocyte macrophage colony stimulating factd8K{; and TNF have also been measured
in the follicular fluid of the preovulatory folliel (rat: [189]; human: [170, 190, 191]). IL6 may
intervene in the IL1 role in rat ovary [192]. Inrhan, exogenous IL8 induces a similar
increase in follicular growth to that produced Ime tLH surge, suggesting that IL8 is an
important actor of the ovulatory process [193]. ld@er, no study has been conducted in the
mare on the role of IL8 in the ovary. The potent@e of other interleukins (IL2, L4, IL7,
IL11, IL12, IL13, IL15, IL18, 1L23) on folliculogeesis, oocyte maturation and ovulation is
treated in details in the revue by Smolikova e{Ed4]. A very recent study performed in the

rat preovulatory follicle showed that IL11 is stilated during ovulation, and increases
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progesterone production [195]. Moreover, it hasnbehown that chemokine receptor 4
(CXCR4) was induced by hCG in both granulosa aeddtequine cells [196]

A preovulatory increase in cortisol, anti-inflammat glucocorticoid, has also been
reported in several studies (human: [197, 198])codding to the studies of S. Hillier,
conducted mainly in humans, this increase is duthéosynthesis of the isoform 1 of the
hydroxysteroid dehydrogenase 11B (HSD11B1) by domaucells stimulated by LH. This
enzyme reduces cortisone to cortisol [199]. HSD1iBexpressed by follicles at the earlier
stages.

In the human ovarian follicle, glucocorticoid metébm is a scale between HSD11B2
dehydrogenase activity (with high cortisol-bindeinity) and HSD11B1 dehydrogenase and
reductase activities (with low cortisol-binding iaffy) [200-203]. Responsiveness of
granulosa cell HSD11B to gonadotropins favors nwdisim of cortisol to cortisone in
immature follicles, and the converse is true inigerdatory follicles [202, 204], with
increased cortisol production by luteinized grasaleells positively associated with oocyte
maturation [205]. Its level decreases after LHmstation [199], explaining why the
cortisol/cortisone ratio increases in folliculauil at ovulation [197]. The role of the
preovulatory increase in cortisol is not clearlydarstood. Cortisol may intervene in cell
differentiation in relation to ovulation and/or tlegmation of the corpus luteum; a local role
of glucocorticoids in oocyte maturation has alserbsuggested [205, 206 the mare,
involvement of glucocorticoids in follicular and @de maturation has recently been shown
[207].

Degradation of the extracellular matrix (ECM): In order the tissue to be reorganised,

which takes place during follicular rupture and teemation of the corpus luteum, the
extracellular matrix has to be remodelled. The imement of proteases in ovulation was

initially suggested in 1916 by Schochet [208]. the ovulatory follicle after LH stimulation,
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the degradation of the basal lamina is initiatdib¥ang an increase in the local production of
plasminogen activator (PLA) (mainly tissue type HDA plasmin activator and
metalloproteinase/collagenase activator (see revi¢gé4, 209, 210]). PLA transforms
plasminogen into plasmin, which in turn activatestain collagenases [211]. At the same
time, the inhibiting activity of SERPINE1 (formeBAIl) increases at the intrafollicular level
after ovulation has been induced (human: [212]; [2t3]; pig: [214]). The preovulatory
increase in collagenase activity within a follidestined to ovulate was demonstrated in 1985
by Reich et al. [215]. Then, the zymography techaighowed that this collagenase activity is
mainly due to MMP1 and MMP-2 [216]. On the otha@nd, collagenase inhibitors TIMP1
and TIMP2 are present in the preovulatory folliafeer ovulation has been induced (rat: [167,
217, 218]; ewe: [219, 220]; cow: [221] women: [2R2] he expression of MMP and TIMP is
regulated by steroids (increase in progesterondoandecrease in oestradiol) and by
prostaglandins [167, 223, 224i. the equine ovary, changes in MMP2 and MMP9 @i
occur in follicular cells, and may be essential th@ tissue organization necessary for
ovulation [225, 226]Alpha 2 macroglobulin which exhibits collagenasabiting activity, is
also present in the follicular fluid in the murispecies [227], in humans [228, 229], and in
the mare [230]. Its expression by granulosa caliseiases following injection of hCG [227].
The concomitant expression of proteases and ategses in the preovulatory follicle
probably makes it possible to modulate both the aitd degree of degradation of the follicle
wall at rupture.Collagenase alpha 2 has recently been describ#teiequine preovulatory
follicle from young and old animals [231]

Relaxin participates to extracellular matrix remlbdg by regulating proteolytic
enzymes activity in the ovary. Relaxin is a memdethe insulin family; it has been studied
in particular for its role in parturition and lattm. In the ovary, relaxin has been found in the

follicular fluid (women [232]), and its level sigmaantly increases with follicle size in the sow
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[233]. Its production by granulosa cells is stintethin vitro by LH [234, 235]. Relaxin
appears to be a paracrine factor of preovulatoticli® maturation [236], probably by
modulating the activity of certain collagenases.stws, it appears that exogenous relaxin
influences its own receptors expression, improvasyi® nuclear maturation [237]. Equine
relaxin was purified and characterised by StewaRafokoff in 1986 [238], and its expression
in the mare ovary has been studied [239]. Thedeoasiconfirmed that relaxin is present in
equine follicular fluid, but its concentration doest increase during follicle growth or
maturation. Moreover, it has not been possiblegi@a any mRNA transcript in the follicle
cells. Indirect evidence indicates that, similardythe rat, relaxin might contribute to the
ovulatory process in the mare. Actually, Song ef2#0] studied the role of relaxin in stromal
tissue remodeling by evaluating its regulating \afgti of gelatinase and TIMP, PLA and
SERPINEL1 produced by ovarian equine stromal cellsuiture. MMP and PLA systems are
coordinated during ECM proteolysis. Equine relarmodulates both the MMP and PLA
systems in culture, which suggests that it poténtarticipates in ECM degradation in the
ovary by simultaneously regulating proteolytic em®g and their inhibitors, providing
additional evidence that this hormone plays sigaiit roles in tissue remodeling associated

with follicle growth and ovulation in equine ovasif240], for recent review see Klein [241].

Other molecules:

Oxytocin like progesterone is a luteinisation marker. daotfin the ovary, oxytocin is
produced mainly by the corpus luteum. Howevehnag been shown in monkey and cow that
the granulosa cells of antral follicles already queoce oxytocin [242, 243] and that this
production is stimulated by the preovulatory insean LH. In women, the presence of
oxytocin and its receptor have been demonstrateaimmulus cells at the preovulatory stage

[244]. However, the studies conducted in mare d@idaonfirm these observations [245, 246].
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As in other species, the release of equine end@hB{GF2 is stimulated by oxytocin. During
late dioestrus, initial oxytocin secretion comestirthe pituitary. In contrast to other species,
no significant luteal oxytocin synthesis existdhe mare. Of note is the fact that equine is the
only domestic species in which oxytocin has beesalleed in the endometrium where
specific secretory cells containing oxytocin haweet described [247]. These data suggest
that, in this species, oxytocin is not involvedra@gulating the preovulatory maturation or the
luteal differentiation.

Osteopontin (SPP1) is a 41.5kDa secreted glycoprotein whosdlAfRas described
for the first time in mice ovary in 1991 [248] amdhuman ovary in 1992 [249]. Expression
of this protein, implicated in angiogenesis anduesremodelling, was then studied in bovine
ovarian follicles and in corpus luteum. SPP1 mRN#&swiletected in bovine granulosa, theca
and luteal cells, but the authors showed no eff#gctgonadotrophic hormones mRNA
expression of ovarian cells culture [250]. More emtty, upregulation of SPP1 has been
shown in mouse granulosa cells in response to adgiropin surge through epidermal
growth factor receptor (EGFR) signaling [251], wheeems the main mediators of LH surge
in the ovulatory follicle [252]. Thus, SPP1 expiessis involved in corpus luteum formation
and function during the early-luteal phase, andaanbs progesterone synthesis but also
promotes the expression of VEGF, which encodesominent factor in the early luteinizing
period [251]. To date no data is available to onowledge concerning SPP1 and follicle
maturation or ovulation in the mare.

Growth factors are important actors of the preovulatory maturatow ovulation.
Intense expression of VEGF, receptors and angitipsibave been detected in periovulatory
equine ovaries [253]. A contradictory work descdb@& decrease in preovulatory
intrafollicular VEGF [254].The concentration of festher growth factors has been shown to

change in the preovulatory follicle, without anyretit effect on ovulation. In the mare,
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modulation of intrafollicular levels of insulin-l&kgrowth factor 1 (IGF1), IGFBP®&hA, and
activin A have been observed [116, 254]. Moreogpitegulin and amphiregulin (members of
the EGF family) mRNA significantly increase in falilar cells from equine preovulatory
follicles [255, 256]. Interestingly, a recent stuggrformed in the mare, indicated that
TGF/BMP signaling pathway in granulosa cells isutated by exosomes present in the
preovulatory follicular fluid, that thus may inteme in follicle maturation [257]. Very
recently, a protein array analysis performed in seogranulosa cells highly suggest that
signaling parthways of IGF1R, FGFR2 and EPHB1, astvated by the preovulatory LH
surge [258].

Reactive oxygen specieglROS) and antioxidant are highly important in @lenealth,
and have significant roles in the ovary to ensurelation of a well-matured oocyte [259].
Ovarian levels of superoxide dismutase 1-2 andasgavary in relation to steroids, and are
regulated by gonadotropins. Few years ago, theradisen of stimulation of sulfiredoxin and
hyperoxidization of peroxiredoxin during the petidatory period led to suggest the presence
of an antioxidant system within the ovary at timeetiof ovulation [260].

Only few otherglobal analysis i.e. proteomic, transcriptomic and metabolomics
studies describe follicular factors which synthesisegulated by the LH surge in the mare,
and may intervene in the terminal differentiatidribee follicle before ovulation in this species
[116, 261-264]. These approaches are of greateisitéo point out key actors of this process,
but are highly dependent to availability and perfance of biochemical and bioinformatics

tools and strategies.

3 - Maturation of the oocyte-cumulus complex
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In several mammalian species, including horses ][266cytes that have finished
growing are able to mature when isolated from tfalicles and are cultureth vitro. This
observation suggests that follicle inhibition egid¥laturation of the oocyte-cumulus complex
takes placen vivo in the ovulatory follicle following the LH surgét. consists of expansion of
the cumulus oophorus (population of granulosa ca&lisounding the oocyte), of nuclear
maturation of the oocyte with resumption of meiosisd cytoplasmic maturation, i.e.
organelle reorganization and molecular changes.usrcells play an important role during
oocyte maturation, acting by gap juntional commatians and soluble factors [266, 267].
Recent studies focused on the second messengér agenosine monophosphate (CAMP)
and oocyte secreted factors (OSFs) which possialy @ key role in the regulation of oocyte
maturation [268]. cAMP is produced by cumulus caltgl transported through gap junctions
into the oocyte.In the mare, phosphodiesterase 4D increases in loanoells after LH
induction of ovulation, as well as activation oftlbooocyte specific G-protein-coupled
receptor 3 and phosphodiesterase 3A [2@@cyte regulates cumulus cell differentiation via
the secretion of soluble paracrine growth factdtspwn as the OSFs regulation of
folliculogenesis [269]. OSFs regulate cumulus c¢elighich in turn modulate oocyte
development. This microenvironment is crucial focyte development and maturation [270].
The role of cumulus cell’s macrophage colony-steting factor (M-CSF) in the process of
LH-induced resumption of meiosis has recently bdmmonstrated in the mouse to act via the
vital inhibition of natriuretic peptide receptorRRP2) [271].Growth differentiation factor 9
(GDF9) [272] and bone morphogenetic protein 15 (BBIP[273], from the transforming
growth factor beta superfamily (TGFB), are the miagportant OSFs in this contexthe
preovulatory LH surge upregulates BMP15 secretedhay oocyte, and may be used to
interact with somatic follicular cells [256, 274loreover, it has been recently hypothesized

that alteration of oocyte-specific galactosyl- ambtylglucosaminyltransferases may affect
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BMP15 activity and hyaluronan production, a vitaktnx constituent of the cumulus-oocyte
complexe [275]. Recently in the mare, immunizatgainst BMP15 and GDF9 demonstrated
a lower ovulation rate, and has been proposed @mu@maceptive [276]In addition to gap
junctional communications and paracrine signallbgfween the oocyte and surrounding
cumulus cells, is a less well characterized waysighalling including exosomal transfer
which allow the transfer of various molecules, &yvrecently reviewed [277]. All these
communication pathways regulate signalling evemtsurad ovulation that lead to oocyte
maturation and competence for fertilization and gmolevelopment.

The morphological studies conducted on the equimaulus oophorus [278,
279], show it similar to that in other domestic @ps: the 3 or 4 regular layers of cells close
to the oocyte make up the corona radiata. It Efitsurrounded by a large number of less
organised cells making up tlsamulus [280]. However, the equine cumulus is more strpngl
attached to the follicle wall than the bovine cunsu[281]. As studied in mouse and pig, the
cumulus expansion is characterized by the synthekiByaluronan which associates to
proteins and proteoglycans (mainly the inter alplgpsin inhibitor family) to constitute an
expanded hyaluronan-rich extracellular matrix [288] parallel to the cumulus expansion,
meiotic oocyte resumption and organelle and cytelqal reorganization are orchestrated for
successful oocyte maturation. These are under ohé&rad of molecular changes, such as
proteins degradation or de novo synthesis. Thustunng oocytes depend on post-
transcriptional regulation of stored transcriptey&s & Ross recently published a review that
encompass the key importance of cytoplasmic polygddon mechanism and associated
factors during oocyte maturation in mammals, basedtudies performed mainly in Xenopus
[283]. These authors describe the expression ofapehnylation and translational regulator
associated factors in human, mouse and cattle imedap2 oocytes, and address the

complexity of the molecular mechanisms associatedocyte maturationFactors affecting
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meiotic and developmental competence of the eqoowyte have been reviewed [284L
least, the oocyte of the dominant follicle resumesosis when it has reached 80% of its
definitive size, i.e. just a few hours before owala [285]. In mare, no clear relationship has
been established between the size of an oocytésandpacity to resume meiosis [286]. As is
the case for other domestic mammals, the oocytéeamucnaturation stages in the equine
species include nuclear envelope breakdown, completf the first meiotic division, with
polar body extrusion and arrest in metaphase IV]28Equine oocytes are ovulated at the
metaphase Il stage [288, 289] [290], as in most mals. Meiosis is completed at
fertilisation. A chronology ofn vivo oocyte maturation in the equine species afterdadu
ovulation showed that the metaphase | and metaghatsges were reached respectively 24
and 35 h after the injection of exogenous gona@oisd[291].Two important phenomena
occur during nuclear maturation: chromatin condeosa and the disappearance of the
nuclear membrane. It has been shown that the MepReomoting Factor (MPF) is involved
in both these phenomena. The expression of mitagéwated protein kinases (MAPK) and
of MPF components CDK1 (formely CDC2) and cyclinrBmare oocytes during bothn
vivo andin vitro maturation was studied in our team several yegog 2092, 293]It has been
shown that MAPK activity in equine oocyte is redath by calcium homeostasis [294].
Nuclear configuration, spindle morphology, histone acetylation and
microtubules/microfilaments content were recentggatibed during meiosis resumption in
equine [295-297]At cytoplasmic scale, few studies describe theasttucture of the equine
oocyte and the organisation of cytoplasmic orgaselk was reported the absence of granular
endoplasmic reticulum and Golgi apparatus in mareyes [298], as well as a particular
abundance of lipid droplets. Duririg vivo maturation of the equine oocyte, Bézard et al.
[290] and Grondahl et al. [287] in 19%bserved the disruption of the junctions between

cumulus cells and the oocyte, the migration oficaltgranules towards the periphery of the
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cytoplasm and the migration of mitochondria towatttks centre of the cytoplasr@ince few
years, research has focused on mitochondrial DNAdaoytes. In the mare, the reduced
fertility observed with maternal aging is relatednitochondrial damage and loss [256, 299,
300]. If several cytoplasmic changes were reported dunaguration of equine oocytes [286,
287, 301], migration of cortical granules has basesessed as an indicator of cytoplasmic
maturation, the final sign being the ability of thecyte to undergo fertilization [302, 303].
Concerning intra-oocyte lipids, mainly stored ipidi droplets, Prates et al. [304]
recently reviewed their implication during oocyt@ulus complex maturation and oocyte
competence for fertilization.ipid droplets distribution is related to cumulugpension and
oocyte maturation in the mare [305]. Moreover, @amatleptin has been studied in the horse
[306], leading these authors to proposed that @olgitin and leptin receptors contents, its
maturation competence, and adiposity are relavetabolic changes and in particular the
increase in the intra-oocyte level of glutathioeseem to have considerable consequences for
fertilisation. Some glutathion comes from the cumsulcells, which would explain the
involvement of these cells in the quality of matima [307]. Few year later, we studied the
glutathione content and glutathione peroxidase esgion in equine oocytes and cumulus
cells before and after maturation [308]. The growtiimone (GH) receptor was detected in
the oocyte and in cumulus and granulosa cells,iandgtro addition of eGH to maturation
medium increased the rate of cytoplasmic maturatioequine oocytes [309-311]. Recently,
hemoglobin has been described in mouse oocyteshasdeen hypothesized to intervene
during cumulus oocyte complex maturation [277]miay be transferred from the cumulus
cells to the oocyte and may act as O2/NO gas bgngiiatein. Nevertheless, strong evidences
about the regulation, function and mechanism abaadf hemoglobin in the cumulus oocyte
complex during the ovulatory period, as well itterduring oocyte maturation have yet to be

established.
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Conclusion:

As described here, a large number of regulatoryofachave been shown within
ovarian follicles and are potentially involved iontrolling the development and maturation of
the follicle and/or of the oocyte that it containrSome of them originate from local synthesis
and others from the passage from the circulatompaostment to the follicular fluid, and
sometimes the two simultaneously. However, few hé#een conducted on mares in
comparison to other species.

However in the equine species, requirements in fiblel of reproduction often
resemble those in human medicine; it is often pable to obtain descendants from
individuals capable of conceiving vivo or of carrying a pregnancy to term. On the other
hand, compared to other mammals, the horse exhabitain particularities that make it an
interesting model for studying follicle developmeahd maturation. Some of these
particularities are quoted in this report, sucloaary morphology, the length of the oestrus
phase, and the absence of any real preovulatorpeak. Moreover, the follicle and oocyte
maturation mechanisms appear to be unusual. Intfesin vitro maturation rate of oocytes is
low and the success of IVF and ICSI still limitddhe equine species is also characterised by

a relatively high rate of anovulatory cycles.

Consequently, although the physiological mechaniimas regulate folliculogenesis
and oogenesis do not appear to be fundamentafigreiit from the mechanisms observed in
the other domestic mammal species, these obsamgataken together suggest that some
unique types of regulation may be involved in thare. A better understanding of the
mechanisms and factors involved in final maturatiothis species is therefore a prerequisite

for obtaining quality oocytes.
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Figure legends:

Figure 1 : Schématic representation of molecular events tragljby the LH surge that may
intervene during preovulatory differenciation andulation in the mare. Based on data
colllected in the mare as well as other mammaliserature. Differenciation of the
preovulatory follicle is a consequence of LH birglito receptors localized in the plasma
membrane of follicular cell&®), activation of signaling pathways induces regatabf gene
expression within follicular cells#), as well as maturation of the cumulus-oocyte dew®
(©), that finaly leads to the follicular ruptur@®j, that liberates a fertilizable oocyte and

forms a corpus luteum that both allow pregnancy.
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616 Figurel:
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620 Tables:
621 Table 1: Interval between LH preovulatory peak andlation in different mammals. Of note
622 is the fact that there is not LH peak in the mareabgradual LH increase starting before

623 ovulation to reach a maximum level 24 to 48 hotiter @vulation.

Period of time between hCG injection or
Species endogenous LH peak and ovulation (hours)
Mouse 12
Rat 14
Ewe 25
Cow 28
Sow 40
Mare 35-40
woman 36
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