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Abstract: 16 

Terminal follicular differentiation and ovulation are essential steps of reproduction. 17 

They are induced by the increase in circulating LH, and lead to the expulsion from the ovary 18 

of oocytes ready to be fertilized. This review summarizes our current understanding of 19 

cellular and molecular pathways that control ovulation using a broad mammalian literature, 20 

with a specific focus to the mare, which is unique in some aspects of ovarian function in some 21 

cases. Essential steps and key factors are approached. The first part of this review concerns 22 

LH, receptors and signaling, addressing the description of the equine gonadotropin and 23 

cloning, signaling pathways that are activated following the binding of LH to its receptors, 24 

and implication of transcription factors which better known are CCAAT-enhancer-binding 25 

proteins (CEBP) and cAMP response element-binding protein (CREB). The second and major 26 

part is devoted to the cellular and molecular actors within follicular cells during preovulatory 27 

maturation. We relate to 1) molecules involved in vascular permeability and vasoconstriction, 28 

2) involvement of neuropeptides, such as kisspeptin, neurotrophins and neuronal growth 29 

factor, neuropeptide Y (NPY), 3) the modification of steroidogenesis, steroids intrafollicular 30 

levels and enzymes activity, 4) the local inflammation, with the increase in prostaglandins 31 

synthesis, and implication of leukotrienes, cytokines and glucocorticoids, 5) extracellular 32 

matrix remodeling with involvement of proteases, antiproteases and inhibitors, as well as 33 

relaxin, and finaly 6) the implication of oxytocine, osteopontin, growth factors and reactive 34 

oxygen species. The third part describes our current knowledge on molecular aspect of in vivo 35 

cumulus-oocyte-complexe maturation, with a specific focus on signaling pathways, paracrine 36 

factors, and intracellular regulations that occur in cumulus cells during expansion, and in the 37 

oocyte during nuclear and cytoplasmic meiosis resumption. Our aim was to give an overall 38 

and comprehensive map of the regulatory mechanisms that intervene within the preovulatory 39 

follicle during differentiation and ovulation40 
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Introduction:  41 

In mammals, while the basal concentrations of FSH and LH are sufficient for the 42 

proliferation of follicle cells, preovulatory maturation occurs under the influence of an 43 

increase in circulating LH levels. LH and FSH levels are highly dependent on GnRH secretion 44 

from hypothalamic neurons. The hypothalamic-pituitary-gonadal axis has been recently 45 

revisited by using knockouts animals, leading to hypothesis related to mammalian evolution 46 

[1]. It is well known that kisspeptin stimulates GnRH neurons leading to GnRH release in 47 

both in vitro and in vivo studies [2]. Two other neuropeptides (neurokinin B (NKB) and 48 

dynorphin (DYN)) interact with kisspeptin as key hypothalamic regulators of reproductive 49 

function, and are thought to be co-secreted with kisspeptin to regulate GnRH secretion [3-5]. 50 

The kisspeptin neural system play therefore a major role in the control of reproduction, and 51 

may be highly valuable for the development of novel strategies for the management of fertility 52 

in mammals [6]. Nevertheless kisspeptin seems not to be an universal ovulation-inducing 53 

agent since it failed to have an effect in the mare [7, 8]. 54 

The increase in circulating LH level causes a series of morphological and functional 55 

changes in the follicle destined to ovulate that results in: 1/ the differentiation of follicle cells, 56 

granulosa and thecal, in preparation for follicular rupture, referred to as ovulation, 2/ the 57 

differentiation of follicle cells, granulosa and thecal, for the formation of a functional corpus 58 

luteum, referred to as luteinisation, 3/ the expansion of cumulus cells surrounding the oocyte 59 

and, lastly, 4/ oocyte maturation. All these events must be coordinated in order to result in the 60 

production of mature and fertilisable oocytes and of corpus luteum capable of supporting the 61 

beginning of pregnancy. The delay between LH peak and ovulation vary according to species 62 

(Table 1), being the longest in sows and mares. 63 
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The conditions under which preovulatory maturation occurs are unusual in the equine 64 

species compared to other mammals. The circulating LH level does not exhibit a short-term 65 

high-amplitude peak before ovulation but rather a gradual increase over several days reaching 66 

a maximum 1-3 days after ovulation [9, 10]. In addition, the concomitant increase in FSH 67 

observed before ovulation in cows and in women does not take place in the mare [11].  68 

Under breeding conditions, preovulatory maturation and ovulation can be induced by 69 

hormone injection. Human Chorionic Gonadotropin (hCG), has been used to induce ovulation 70 

in mare since 1960’s. Chorulon® (lyophilised hCG) is largely used in horse breeding. 71 

However, repeated administration of hCG results in immunological reaction and antibody 72 

formation in most mares [12, 13]. In order to avoid this deleterious effect, equine pituitary 73 

gland extracts can also be used [13]. These extracts typically induce ovulation in 34 hours 74 

when administrated to mares in estrus with a follicle larger than 35 mm. Nevertheless, equine 75 

pituitary gland extracts are not commercially available, and were only experimentally used. 76 

The efficiency of GnRH agonists in hastening ovulation over consecutive cycles has also been 77 

reported. Deslorelin acetate (Ovuplant®) is the most widely used in Australia, North America 78 

and in Europe. Repeated injections of buserelin (Receptal®), another GnRH agonist proved as 79 

effective as hCG [14, 15]. Few years ago, the 14kDa “ovulation inducing factor” from the 80 

seminal plasma of camelids has been identified as nerve growth factor beta (NGF) [16, 17]. 81 

To date, it is able to induce ovulation in alpacas and llamas but no data are available 82 

concerning the capability of neurotrophins and/or neuronal growth factors to induce ovulation 83 

in the mare. Last year, the absence of NGF in equine ejaculates has been demonstrated [18]. 84 

Nevertheless, the use of recombinant equine gonadotropins proved efficiency (see below). 85 

  86 

1 - LH, receptor and signal transmission 87 
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LH is a glycoprotein made up of two subunits, Α and Β, bound together non-88 

covalently. In each species, subunit Α is responsible for binding the hormone to its receptor, 89 

and is common to all glycoprotein hormones (LH, FSH, TSH and CG), whereas subunit 90 

Β confers biological specificity [19].  In horse, subunit A is made up of 96 amino acids and 91 

subunit B is made up of 149 amino acids. Glycosidic bonds are joined to the asparagine 92 

residues of subunit A and to serine residues of subunit B. The protein structure of eLH is 93 

identical to that of eCG, since these two hormones come from the same gene, expressed in the 94 

pituitary gland and placenta respectively. However, eLH and eCG differ at least in terms of 95 

their glycosidic bonds. In human, LH and CG show differences in their expression pattern, 96 

biopotency and regulation [20]. It is interesting to note also that eLH (and therefore eCG) 97 

exhibits dual heterologous LH/FSH activity [21, 22]. The cDNAs coding for the Α and 98 

Β subunits of eLH/CG have been cloned [23, 24] and used for co-transfecting COS-7 cells 99 

[25]. Since then, several works described the development and efficiency of genetically 100 

cloned recombinant equine gonadotropins to induce ovulation in the mare [26-29]. Three 101 

years ago, molecular characterization, modelling and in silico analysis of eLH/CG A has been 102 

realized [30]. This enable the use of recombinant eLH to induce ovulation in mare. 103 

For preovulatory follicle maturation occurence, LH receptors (LHR) must be 104 

expressed at the follicular cell surface and the signal generated must be transmitted. As a 105 

general rule, LHR are present on thecal cells in growing follicles and are also present on 106 

granulosa cells in the preovulatory follicle. The expression of LHR by granulosa cells depends 107 

on FSH, or even on prolactin [31, 32]. In mare, LHR are present in the granulosa cells once 108 

follicles have reached 5mm in diameter [33]. Similarly, we have shown during this work that, 109 

at the end of the follicle phase, the number of LHR in the mural granulosa cells increases in 110 
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relation to the follicle diameter. This study confirms that conducted by Fay & Douglas [34] in 111 

the mare, and is consistent with several studies carried out in other species. 112 

LHR are members of the family of G protein-coupled receptors that interact with 113 

adenylate cyclase via the Gs subunit. They catalyse the formation of cAMP which activates 114 

protein kinase A (PKA). LH binding to its receptor also increases the intracellular levels of 115 

inositol phosphate [35] and activates the pathway of PKC [36]. It also acts via tyrosine 116 

kinases [36, 37]. The activation pathway taken by PKA is nonetheless the best known. It has 117 

been shown that in the rat, the differentiation of granulosa cells at the preovulatory stage does 118 

not occurs together with an increase in the intracellular concentration of the catalytic subunit 119 

of PKA, but rather with a change in its cellular location [38]. On the other hand, the 120 

expression of its regulatory RIIΒ subunit is induced in the preovulatory follicle cells, which 121 

would make it possible to specifically modulate the activity of PKA and therefore the effects 122 

of LH [39, 40]. In mare, it has been demonstrated few year ago that LHR expression on the 123 

ovarian epithelium surface is linked with expression of metalloproteinases (MMP), implicated 124 

in tissue remodelling [41]. The same year, a study reported the up-regulation and regulatory 125 

control of Regulator of G-protein Signaling protein-2 (RGS2) in equine preovulatory follicles 126 

[42], a protein known to control signalling through G-protein coupled receptors. 127 

The involvement of the two transcription factors of the family of CCAAT-enhancer-128 

binding proteins CEBPA and CEBPB, in preovulatory follicle maturation was reported [43].  129 

In rats, the intrafollicular levels of CEBPA mRNA and protein increase during follicle growth, 130 

suggesting that they are dependent on oestrogen and/or FSH expression. Their decrease after 131 

ovulation have been induced using hCG [44].  A few years later, the same authors clearly 132 

showed the key role played by CEBPA in the capacity of the dominant follicle to respond to 133 

preovulatory stimulation [45]. On the other hand, the expression of the CEBPB gene (also 134 

referred to as LAP) is induced in the granulosa cells of the dominant follicle following 135 



 

 

 

7

stimulation by LH or hCG. In other systems (3T3 cell line, adipocytes), CEBPA and CEBPB 136 

are believed to contribute to cell growth and cell differentiation and to intervene in regulating 137 

the expression of numerous metabolic enzymes; their expression is regulated mainly by the 138 

cytokines IL-6 and TNF [46, 47]. By analogy, it is convenient to imagine that these factors are 139 

involved in regulating certain ovarian functions. CREB, a transcription factor of the bZIP 140 

family, is regulated by gonadotropic hormones. In the ovary, CREB regulates the transcription 141 

of the Cyp19 gene, coding for P450 aromatase, via the modulation of cAMP levels [40, 48, 142 

49] and also regulates the gene coding for the Α sub-unit of inhibin InhA [50]. CREB also 143 

regulates Hspa1a gene (Computational analysis) [51].  It has been shown that the CREB 144 

transcript and CREB protein levels do not vary during the rat oestrous cycle, but that activity 145 

concerning the regulation of the transcription of this factor, which depends on its 146 

phosphorylation state, increases under the influence of gonadotropic hormones [52]. In the 147 

mouse, CREB activity (i.e. phorphorylation) is required for LH-induced expression of EGF-148 

like factors in granulosa cells [53]. The miRNA miR-132, known to be regulated by CREB, 149 

has been shown to decrease in equine preovulatory follicle [54]. 150 

Other transcription factors such as SF1, SP1, PBX1, NGFIB, MYC [55], as well as 151 

histone acetylation- or methylation-related genes [56] are also involved in the hormonal 152 

regulation of the expression of certain genes in the ovary. To our knowledge, the transcription 153 

factors involved during preovulatory differentiation have not been studied yet in domestic 154 

mammals such as the bovine, ovine, caprine and equine species. 155 

All these studies clearly show the complexity of the mechanisms involved in 156 

regulating preovulatory follicle maturation.  157 

 158 

2 – Cellular aspects of the follicle maturation 159 
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Ovulation, luteinisation and maturation of the oocyte-cumulus complex depend on the 160 

presence of numerous factors within the preovulatory follicle. Most of these factors are 161 

produced by the follicle cells in response to LH stimulation, which induces cell differentiation 162 

towards the luteal phenotype and the resumption of oocyte meiosis. In the rat, it has been 163 

shown that follicle cells are entirely reprogrammed approximately 7 h after LH injection [57, 164 

58]. Major steps are summarized in Figure 1. 165 

Increase in vascular permeability: Shortly after the endogenous gonadotropin surge 166 

or injection of LH/hCG, observations of the follicle destined to ovulate indicate that 167 

considerable changes occur in the capillaries of the internal theca which becomes oedematous. 168 

The blood flow increases, associated with hyperaemia of the preovulatory follicle [59-61]. 169 

Gonadotropins modulate capillary permeability of the ovarian blood-follicle barrier, mainly 170 

through increased numbers of large pores, similar to a classical inflammatory response [62]. 171 

The local production of bradykinin and histamine is associated with these 172 

modifications in the vascularisation of the preovulatory follicle [63, 64]. Moreover, it has 173 

been shown that the intrafollicular concentration of certain vasoactive molecules such as 174 

platelet-activating factor (PAF) increases after the LH peak [65, 66].  On the other hand, work 175 

by Pellicer [67], and then by Daud et al [68] and Naftolin et al. [69, 70], have shown that 176 

molecules of the Renin-Angiotensin System, known to affect blood pressure and 177 

vasoconstriction, are involved in ovulation and luteinisation. The precise mechanism of action 178 

of these various molecules remains to be determined but has been discussed in cattle [71, 72]. 179 

Their ovarian expression in mares is unknown, with the exception of histamine, the 180 

concentration of which remains stable after ovulation has been induced [73]. 181 

Cell proliferation arrest: At preovulatory maturation, the size of the follicle destined 182 

to ovulate increases only little or not at all due to the arrest of cell multiplication.  In the rat, 183 

hCG via the cAMP/PKA pathway, is known to rapidly induces (about 4 h) the arrest of the 184 
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transcription of cyclin D2 (CCND2) which, when associated with CDK4 or CDK6, enables 185 

the granulosa cells to progress to phase 1 [74, 75]. The inhibition of cyclin E (CCNE) -which 186 

when associated with CDK2 enables the cells to advance onto phase S- occurs less rapidly, 187 

and is visible 24 h after the injection of hCG [74].  At the same time, the induction of the 188 

transcription of P27KIP1, a protein that inhibits the activity of CDK2, 4, 6 and CDC2, is 189 

initiated. This blocks the phosphorylation cascades at various points, and confirms the 190 

hypothesis that granulosa cells withdraw from the proliferation process. However, numerous 191 

studies also suggest that P27KIP1 is involved in luteinisation and the formation of the 192 

functional corpus luteum [76-78]. More recent data [79] suggest that cumulus granulosa cells 193 

continue to proliferate for up to 10 h after an ovulatory stimulus, possibly via CCNE/CDK2. 194 

A very recent study performed also in rodent demonstrated that at least two factors known to 195 

regulate differentiation and cell division (ERRFI1 and IFRD1) may be essential for follicular 196 

cell differentiation and cumulus expansion [80]. 197 

 198 

Neuropeptide expression: 199 

Kisspeptin: Kisspeptin is a family of neuropeptides well known to be released from 200 

the neurons of hypothalamus and to stimulate GnRH release via the GPR54 receptor [81]. 201 

Moreover, GPR54 is present on granulosa and cumulus cells [82-84]. Immunohistochemical 202 

studies have shown that kisspeptin is distributed in theca, granulosa, luteal, and interstitial 203 

cells of human, marmoset, hamster, and rat ovaries [83, 85, 86]. It has been shown in rodents 204 

that kisspeptin mRNA synthesis, that increases in the ovary during proestrous, is stimulated 205 

by hCG [86], and that estrogens regulate kisspeptin expression in granulosa cells [87]. More 206 

recent data confirm and extend this study and demonstrated the relevance of kisspeptin to the 207 

differentiation of granulosa cells into luteal cells [88], suggesting an important role in 208 

ovulation. 209 
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NGF, ADCYAP and VIP 210 

A recent review describes the importance of neurotrophins and neuronal growth factors in the 211 

ovary [89]. The neurotrophin family consists of NGF, the neurotrophins 3 and 4 (NTF3 and 212 

NTF4), and brain-derived neurotrophic factor (BDNF), and the neuronal growth factors are 213 

glial derived neuroptrophic factor (GDNF) and vasointestinal peptide (VIP). The two 214 

neuropeptides, VIP and ADCYAP (previously named PACAP for Pituitary Adenylate 215 

Cyclase Activating Polypeptide), have been identified in the rat ovary [90], in granulosa and 216 

cumulus cells of mouse [91] and in women [92]. The work of Julio-Pieper et al. [93] suggests 217 

a role of neurotrophins in the maintenance of follicular and luteal vasculature. The addition of 218 

VIP to secondary mouse follicles cultured in vitro induced follicular growth and oestradiol 219 

production [94]. NGF that was identified in antral follicles of rats, goats, sheep and humans 220 

[95-98], promotes ovarian secretion of steroid hormones and prostaglandins [99-101]. The 221 

work by Salas et al. [101] shows that NGF also induces an increase in FSH receptor 222 

expression and exhibits an increase in FSH sensitivity in human granulosa cells [101]. The 223 

high affinity NGF receptor NTRK1 (formely named Trka), has been identified in granulosa 224 

cells and oocytes of mouse and rat [95, 102]. Moreover, NTRK1 has been implicated in 225 

ovulation [103]. ADCYAP and VIP have two major groups of receptors sites. ADCYAP and 226 

its type 1 receptor ADCYP1R1 are expressed by granulosa cells after the LH stimulation of 227 

the preovulatory follicle [104], under the regulation of other genes [105]. It requires in 228 

particular the prior synthesis of the progesterone receptor [106]. ADCYAP and VIP are 229 

activators of cAMP production and thus stimulate the preovulatory production of progesterone 230 

[107, 108]. Moreover, ADCYAP has a role in oocyte maturation [109], and displays an 231 

apoptosis-inhibiting role [105] . The localisation and functional activity of ADCYAP, VIP 232 

and their receptors has been described in mouse ovary [110].  233 

 234 
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Neuropeptide Y 235 

 Few studies have been carried out on the presence and role of neuropeptide Y (NPY) 236 

in the ovary.  The studies conducted in vitro by Barreca et al. [111], show that NPY is 237 

involved in regulating the production of oestradiol at the beginning of luteinisation. 238 

Otherwise, oestradiol modifies the number of NPY immunoreactive neurones and regulates 239 

NPY release in the hippocampal dentate gyrus in the female rat [112]. Moreover, it has been 240 

suggested that NPY directly inhibits ovarian cell proliferation and promotes apoptosis via 241 

transcription factor p53 [113]. 242 

Nevertheless, the expression of neurotransmitters in the preovulatory follicle in the 243 

equine species remains unknown. 244 

 245 

Modification of steroidogenesis: Ovarian steroidogenesis is entirely modified after 246 

LH surge since, in many domestic mammals, the production of androgens and oestrogens 247 

decreases, whereas the production of progesterone increases [114].  This change in 248 

steroidogenesis occurs together with modulations in the expression and activity of the 249 

enzymes involved. In mare, steroid evolution during final dominant follicle maturation is 250 

similar, with a decrease in oestradiol level and an increase in progesterone level in the 251 

follicular fluid [33, 115-118], whereas a transient increase in oestradiol disrupts periovulatory 252 

LH surge in mare [119]. The decrease in oestradiol level is related to the decrease in the 253 

intracellular amount of aromatase [33, 117]. In the rat adrenomedullin2 has been proposed, to 254 

regulate estradiol synthesis and to support ovulation [120]. Moreover, it has been shown that 255 

the granulosa cell concentration of mRNA for the StAR protein (Steroidogenic Acute 256 

Regulatory protein), involved in transporting cholesterol from the external membrane to the 257 

internal membrane of mitochondria, increases after the LH surge in mares [121]. Our study on 258 

the expression of the protein itself in the lysates of equine granulosa cells did not confirm this 259 
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observation [117].  Slough and collaborators [122] showed that StAR mRNA decreases after 260 

day 12 in the mare. This decline is time-related to a decrease in circulating progesterone level. 261 

These results correspond to data from other species, indicating that StAR plays a rate-limiting 262 

role in steroidogenesis [123], but are not in agreement with the results obtained in the mare 263 

[121]. 264 

  265 

Progesterone is well known for its endocrine action.  It also exhibits local action since 266 

receptors are present in the follicle. It has been shown in the rat that the expression of 267 

progesterone receptors (PGR) by granulosa cells of the preovulatory follicle after LH 268 

stimulation occurs rapidly but transiently [124-126]; it is amplified by progesterone. Mutant 269 

mice deficient for PGR do not ovulate even after the injection of an ovulating dose of hCG 270 

[127]. PGR are transcription factors and so they intervene in inducing the expression of 271 

several genes involved in preovulatory maturation. PGR activity requires interactions with 272 

many transcriptional coregulators, which can be coactivators or corepressors, as SRC, FRG2, 273 

NCOA3 and MSANTD1 (formely named SRC1, SRC2, SRC3 and NCO1, respectively) 274 

which interact with the ligand binding domain of PGR. The absence of NCOA3 in mice 275 

decreases the ovulation rate [128]. Nowadays, steroid receptors modulators could be 276 

considered as therapeutic targets in case of ovulation deficiency [129].  277 

It appears that progesterone, in many species, is crucial to ovulation and luteinisation 278 

[40, 130]. In fact, it was shown several years ago that LH-induced ovulation can be blocked 279 

by HSD3B-inhibitors (rat: [131]; primate: [132]), by anti-progesterone antibodies (rat: [133]) 280 

and by RU486 (mouse: [134, 135]). 281 

 282 

Local inflammation: The ovarian synthesis of prostaglandins (PGF2, PGE2, PGI2) is 283 

increased after LH stimulation, particularly in the preovulatory follicle [136-140]. At the basal 284 
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level, they are synthetized via the transformation of arachidonic acid by PTGS1 that displays 285 

cyclooxygenase and peroxidase functions and is expressed in the theca.  Following LH 286 

stimulation, the PTGS2 isoform is induced in granulosa cells and therefore increases 287 

prostaglandin production in the ovary (rat: [141-143]; cow: [144, 145]). The transcription of 288 

the PTGS2 gene is induced by the activation of the PKA, PKC and tyrosine kinase pathways 289 

[36] and involves the transcription factor CEBPΒ [146]. Moreover, transcription factors from 290 

the RUNX family would be involved in the LH-induced PTGS2 gene expression [147]. The 291 

involvement of prostaglandins in follicular rupture has been shown by the use of anti 292 

PGF2alpha antibodies [148] or indomethacin, a nonsteroidal anti-inflammatory and PTGS-293 

inhibitor [149-152]. The specific PTGS2 inhibitor NS398 also decreases prostaglandin 294 

production and ovulation rate in rats, in a dose-dependent manner [153]. PTGS2 deficient 295 

mice are infertile, due to the absence of ovulation [154]. However, the luteinisation 296 

phenomenon (functional corpus luteum) and oocyte nuclear maturation are not disrupted by 297 

the inhibition of PTGS [155]. As recently reviewed, PTGS2 inhibitor may be suitable for use 298 

as an emergency (but not monthly) contraceptive [156]. In mare, intrafollicular PGF 299 

concentration has been measured firstly by Watson & Sertich [115], who observed no 300 

variation after injection of an ovulating dose of hCG. Then, Watson & Sertich [73] and Sirois 301 

& Dore [157] observed a late increase (>30h) in PGE2 and PGF in the preovulatory follicular 302 

fluid in mare after injection of an ovulating dose of hCG. This increase is due to the induced 303 

expression of PTGS2 by equine granulosa cells of the preovulatory follicle [121, 157]. The 304 

intrafollicular injection of indomethacin does not inhibit ovulation in mare, but increases the 305 

induction-ovulation interval [73]. Again in the mare, the intrafollicular injection of PGE2 and 306 

PGF restores ovulation of luteinized unruptured follicles [158] and induction of luteolysis 307 

with PGF2alpha alters the level of follicular fluid factors (IGF1 and PGE2) [159]. 308 
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Leukotrienes, other derivatives of arachidonic acid, also appear to be involved in final 309 

follicle maturation [160-163].  In mares the intrafollicular levels of leukotrienes B4 and C4 310 

have been measured and, as opposed to observations in rats [164, 165], they do not increase 311 

after induction of ovulation [73].  This same result was observed in goats [166]. The current 312 

hypothesis is that eicosanoids (prostaglandins and leukotrienes) stimulate the synthesis and 313 

activity of collagenases involved in matrix degradation at follicular rupture (rat: [167]).  This 314 

has not been confirmed for all the species studied so far.  315 

On the other hand, the presence of several inflammatory cytokines has been shown in 316 

the ovary during the preovulatory period and seems involved in ovulation.  In fact, ovulation 317 

in the broad sense of the term is often compared to an inflammatory-type reaction [130, 168, 318 

169]. Inflammation that is induced by gonadotropin stimulation has a physiologic role, 319 

creating a weakening in the follicle wall and eventual rupture [130, 168]. Several studies show 320 

that these cytokines potentiate the LH effect [170]. The mechanism of action of cytokines 321 

during preovulatory maturation is probably similar to that observed during inflammation; in 322 

particular, TNF and IL-1 activate proteolytic enzyme activity and the production of 323 

prostaglandins and nitric oxide [171]. Moreover, they modulate steroidogenesis [171] and 324 

stimulate the maturation of the oocyte-cumulus complex (rabbit : [172]). A recent study 325 

showed that specific inflammatory mediators are altered in PRKO mice ovaries, leading to the 326 

hypothesis that progesterone regulates features of inflammation at ovulation [173]. 327 

The interleukin-1 system, composed of IL-1A, IL-1B, the natural antagonist IL1RA 328 

and IL1 receptors, is the best known.  IL1B, IL1RN and the type 1 receptor IL1R1 are 329 

expressed in the human ovary [170].  IL1A and IL1B come from two different genes, but act 330 

on the same receptors. They must undergo proteolytic cleavage to become biologically active. 331 

The antagonist IL1RA has a local role as a regulator of IL1 activity. Biologically active IL1 332 

has been measured in the follicular fluid of women [174, 175] and sows [176]. In the rat, 333 
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IL1B is expressed by thecal cells, mainly after the injection of a dose of hCG [177], as well as 334 

by the oocyte [178], whereas in women granulosa cells are the source of ovarian IL1 [179-335 

182]. We demonstrated the presence of IL1B in equine follicular fluid and the presence of 336 

IL1B and IL1RA mRNA in equine granulosa cells [183, 184]. Importantly, the expression of 337 

IL1B gene in granulosa cells, as well as IL1B follicular fluid content seem to be influenced by 338 

equine gonadotropin in mare [183]. Moreover, it has been demonstrated that IL1B promotes 339 

the ovulation process in the rat [185], the rabbit [172] and the mare [186]. In mare, 340 

intrafollicular injection of IL1B induces synchronized ovulations [187].  These results are in 341 

agreement with those obtained by Martoriati et al. showing that the intrafollicular injection of 342 

IL1RA reduces the ovulation rate or delays the ovulation time [186]. The effects of IL1B on 343 

the oocyte could be mediated by cumulus cells. IL1B increases in vitro the germinal vesicle 344 

breakdown of oocytes in the rabbit model [172], as well as in vivo in the mare [186], 345 

demonstrating its beneficial role in oocyte nuclear maturation. For review see Gerard and 346 

collaborators [188]. 347 

Only the type 1 receptor IL1R1 appears to be expressed in human ovary [180], 348 

whereas in rats, IL1R2 has also been identified [106]. Other cytokines such IL6, the 349 

granulocyte macrophage colony stimulating factor (CSF), and TNF have also been measured 350 

in the follicular fluid of the preovulatory follicle (rat: [189]; human: [170, 190, 191]). IL6 may 351 

intervene in the IL1 role in rat ovary [192]. In human, exogenous IL8 induces a similar 352 

increase in follicular growth to that produced by the LH surge, suggesting that IL8 is an 353 

important actor of the ovulatory process [193]. However, no study has been conducted in the 354 

mare on the role of IL8 in the ovary. The potential role of other interleukins (IL2, IL4, IL7, 355 

IL11, IL12, IL13, IL15, IL18, IL23) on folliculogenesis, oocyte maturation and ovulation is 356 

treated in details in the revue by Smolikova et al. [194]. A very recent study performed in the 357 

rat preovulatory follicle showed that IL11 is stimulated during ovulation, and increases 358 
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progesterone production [195]. Moreover, it has been shown that chemokine receptor 4 359 

(CXCR4) was induced by hCG in both granulosa and theca equine cells [196]. 360 

A preovulatory increase in cortisol, anti-inflammatory glucocorticoid, has also been 361 

reported in several studies (human: [197, 198]). According to the studies of S. Hillier, 362 

conducted mainly in humans, this increase is due to the synthesis of the isoform 1 of the 363 

hydroxysteroid dehydrogenase 11B (HSD11B1) by granulosa cells stimulated by LH. This 364 

enzyme reduces cortisone to cortisol [199]. HSD11B2 is expressed by follicles at the earlier 365 

stages. 366 

In the human ovarian follicle, glucocorticoid metabolism is a scale between HSD11B2 367 

dehydrogenase activity (with high cortisol-binding affinity) and HSD11B1 dehydrogenase and 368 

reductase activities (with low cortisol-binding affinity) [200-203]. Responsiveness of 369 

granulosa cell HSD11B to gonadotropins favors metabolism of cortisol to cortisone in 370 

immature follicles, and the converse is true in periovulatory follicles [202, 204], with 371 

increased cortisol production by luteinized granulosa cells positively associated with oocyte 372 

maturation [205].  Its level decreases after LH stimulation [199], explaining why the 373 

cortisol/cortisone ratio increases in follicular fluid at ovulation [197].  The role of the 374 

preovulatory increase in cortisol is not clearly understood. Cortisol may intervene in cell 375 

differentiation in relation to ovulation and/or the formation of the corpus luteum; a local role 376 

of glucocorticoids in oocyte maturation has also been suggested [205, 206]. In the mare, 377 

involvement of glucocorticoids in follicular and oocyte maturation has recently been shown 378 

[207]. 379 

Degradation of the extracellular matrix (ECM): In order the tissue to be reorganised, 380 

which takes place during follicular rupture and the formation of the corpus luteum, the 381 

extracellular matrix has to be remodelled. The involvement of proteases in ovulation was 382 

initially suggested in 1916 by Schochet [208].  In the ovulatory follicle after LH stimulation, 383 
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the degradation of the basal lamina is initiated following an increase in the local production of 384 

plasminogen activator (PLA) (mainly tissue type PLAT), plasmin activator and 385 

metalloproteinase/collagenase activator (see reviews [64, 209, 210]). PLA transforms 386 

plasminogen into plasmin, which in turn activates certain collagenases [211]. At the same 387 

time, the inhibiting activity of SERPINE1 (formely PAI1) increases at the intrafollicular level 388 

after ovulation has been induced (human: [212]; rat: [213]; pig: [214]). The preovulatory 389 

increase in collagenase activity within a follicle destined to ovulate was demonstrated in 1985 390 

by Reich et al. [215]. Then, the zymography technique showed that this collagenase activity is 391 

mainly due to MMP1 and MMP-2 [216].  On the other hand, collagenase inhibitors TIMP1 392 

and TIMP2 are present in the preovulatory follicle after ovulation has been induced (rat: [167, 393 

217, 218]; ewe: [219, 220]; cow: [221] women: [222]).  The expression of MMP and TIMP is 394 

regulated by steroids (increase in progesterone and/or decrease in oestradiol) and by 395 

prostaglandins [167, 223, 224]. In the equine ovary, changes in MMP2 and MMP9 activities 396 

occur in follicular cells, and may be essential to the tissue organization necessary for 397 

ovulation [225, 226]. Alpha 2 macroglobulin which exhibits collagenase inhibiting activity, is 398 

also present in the follicular fluid in the murine species [227], in humans [228, 229], and in 399 

the mare [230]. Its expression by granulosa cells increases following injection of hCG [227]. 400 

The concomitant expression of proteases and antiproteases in the preovulatory follicle 401 

probably makes it possible to modulate both the site and degree of degradation of the follicle 402 

wall at rupture. Collagenase alpha 2 has recently been described in the equine preovulatory 403 

follicle from young and old animals [231]. 404 

Relaxin participates to extracellular matrix remodelling by regulating proteolytic 405 

enzymes activity in the ovary. Relaxin is a member of the insulin family; it has been studied 406 

in particular for its role in parturition and lactation. In the ovary, relaxin has been found in the 407 

follicular fluid (women [232]), and its level significantly increases with follicle size in the sow 408 
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[233]. Its production by granulosa cells is stimulated in vitro by LH [234, 235]. Relaxin 409 

appears to be a paracrine factor of preovulatory follicle maturation [236], probably by 410 

modulating the activity of certain collagenases. In sows, it appears that exogenous relaxin 411 

influences its own receptors expression, improves oocyte nuclear maturation [237]. Equine 412 

relaxin was purified and characterised by Stewart & Papkoff in 1986 [238], and its expression 413 

in the mare ovary has been studied [239]. These authors confirmed that relaxin is present in 414 

equine follicular fluid, but its concentration does not increase during follicle growth or 415 

maturation. Moreover, it has not been possible to detect any mRNA transcript in the follicle 416 

cells. Indirect evidence indicates that, similarly to the rat, relaxin might contribute to the 417 

ovulatory process in the mare. Actually, Song et al. [240] studied the role of relaxin in stromal 418 

tissue remodeling by evaluating its regulating activity of gelatinase and TIMP, PLA and 419 

SERPINE1 produced by ovarian equine stromal cells in culture. MMP and PLA systems are 420 

coordinated during ECM proteolysis. Equine relaxin modulates both the MMP and PLA 421 

systems in culture, which suggests that it potentially participates in ECM degradation in the 422 

ovary by simultaneously regulating proteolytic enzymes and their inhibitors, providing 423 

additional evidence that this hormone plays significant roles in tissue remodeling associated 424 

with follicle growth and ovulation in equine ovaries [240], for recent review see Klein [241]. 425 

 426 

Other molecules: 427 

Oxytocin like progesterone is a luteinisation marker.  In fact in the ovary, oxytocin is 428 

produced mainly by the corpus luteum.  However, it has been shown in monkey and cow that 429 

the granulosa cells of antral follicles already produce oxytocin [242, 243] and that this 430 

production is stimulated by the preovulatory increase in LH. In women, the presence of 431 

oxytocin and its receptor have been demonstrated in cumulus cells at the preovulatory stage 432 

[244]. However, the studies conducted in mare did not confirm these observations [245, 246].  433 
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As in other species, the release of equine endometrial PGF2 is stimulated by oxytocin. During 434 

late dioestrus, initial oxytocin secretion comes from the pituitary. In contrast to other species, 435 

no significant luteal oxytocin synthesis exists in the mare. Of note is the fact that equine is the 436 

only domestic species in which oxytocin has been localized in the endometrium where 437 

specific secretory cells containing oxytocin have been described [247]. These data suggest 438 

that, in this species, oxytocin is not involved in regulating the preovulatory maturation or the 439 

luteal differentiation. 440 

Osteopontin (SPP1) is a 41.5kDa secreted glycoprotein whose mRNA was described 441 

for the first time in mice ovary in 1991 [248] and in human ovary in 1992 [249]. Expression 442 

of this protein, implicated in angiogenesis and tissue remodelling, was then studied in bovine 443 

ovarian follicles and in corpus luteum. SPP1 mRNA was detected in bovine granulosa, theca 444 

and luteal cells, but the authors showed no effect of gonadotrophic hormones mRNA 445 

expression of ovarian cells culture [250]. More recently, upregulation of SPP1 has been 446 

shown in mouse granulosa cells in response to a gonadotropin surge through epidermal 447 

growth factor receptor (EGFR) signaling [251], which seems the main mediators of LH surge 448 

in the ovulatory follicle [252]. Thus, SPP1 expression is involved in corpus luteum formation 449 

and function during the early-luteal phase, and enhances progesterone synthesis but also 450 

promotes the expression of VEGF, which encodes a prominent factor in the early luteinizing 451 

period [251]. To date no data is available to our knowledge concerning SPP1 and follicle 452 

maturation or ovulation in the mare.  453 

Growth factors are important actors of the preovulatory maturation and ovulation. 454 

Intense expression of VEGF, receptors and angiopoietins have been detected in periovulatory 455 

equine ovaries [253]. A contradictory work described a decrease in preovulatory 456 

intrafollicular VEGF [254].The concentration of few other growth factors has been shown to 457 

change in the preovulatory follicle, without any direct effect on ovulation. In the mare, 458 
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modulation of intrafollicular levels of insulin-like growth factor 1 (IGF1), IGFBPs, inhA, and 459 

activin A have been observed [116, 254]. Moreover, epiregulin and amphiregulin (members of 460 

the EGF family) mRNA significantly increase in follicular cells from equine preovulatory 461 

follicles [255, 256]. Interestingly, a recent study performed in the mare, indicated that 462 

TGF/BMP signaling pathway in granulosa cells is regulated by exosomes present in the 463 

preovulatory follicular fluid, that thus may intervene in follicle maturation [257]. Very 464 

recently, a protein array analysis performed in mouse granulosa cells highly suggest that 465 

signaling parthways of IGF1R, FGFR2 and EPHB1, are activated by the preovulatory LH 466 

surge [258]. 467 

Reactive oxygen species (ROS) and antioxidant are highly important in overall health, 468 

and have significant roles in the ovary to ensure ovulation of a well-matured oocyte [259]. 469 

Ovarian levels of superoxide dismutase 1-2 and catalase vary in relation to steroids, and are 470 

regulated by gonadotropins. Few years ago, the observation of stimulation of sulfiredoxin and 471 

hyperoxidization of peroxiredoxin during the periovulatory period led to suggest the presence 472 

of an antioxidant system within the ovary at the time of ovulation [260]. 473 

Only few other global analysis i.e. proteomic, transcriptomic and metabolomics 474 

studies describe follicular factors which synthesis is regulated by the LH surge in the mare, 475 

and may intervene in the terminal differentiation of the follicle before ovulation in this species 476 

[116, 261-264]. These approaches are of great interest to point out key actors of this process, 477 

but are highly dependent to availability and performance of biochemical and bioinformatics 478 

tools and strategies. 479 

 480 

3 - Maturation of the oocyte-cumulus complex 481 
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In several mammalian species, including horses [265], oocytes that have finished 482 

growing are able to mature when isolated from their follicles and are cultured in vitro. This 483 

observation suggests that follicle inhibition exists. Maturation of the oocyte-cumulus complex 484 

takes place in vivo in the ovulatory follicle following the LH surge. It consists of expansion of 485 

the cumulus oophorus (population of granulosa cells surrounding the oocyte), of nuclear 486 

maturation of the oocyte with resumption of meiosis and cytoplasmic maturation, i.e. 487 

organelle reorganization and molecular changes. Cumulus cells play an important role during 488 

oocyte maturation, acting by gap juntional communications and soluble factors [266, 267]. 489 

Recent studies focused on the second messenger cyclic adenosine monophosphate (cAMP) 490 

and oocyte secreted factors (OSFs) which possibly play a key role in the regulation of oocyte 491 

maturation [268]. cAMP is produced by cumulus cells and transported through gap junctions 492 

into the oocyte. In the mare, phosphodiesterase 4D increases in cumulus cells after LH 493 

induction of ovulation, as well as activation of both oocyte specific G-protein-coupled 494 

receptor 3 and phosphodiesterase 3A [256]. Oocyte regulates cumulus cell differentiation via 495 

the secretion of soluble paracrine growth factors, known as the OSFs regulation of 496 

folliculogenesis [269]. OSFs regulate cumulus cells, which in turn modulate oocyte 497 

development. This microenvironment is crucial for oocyte development and maturation [270]. 498 

The role of cumulus cell’s macrophage colony-stimulating factor (M-CSF) in the process of 499 

LH-induced resumption of meiosis has recently been demonstrated in the mouse to act via the 500 

vital inhibition of natriuretic peptide receptor2 (NRP2) [271]. Growth differentiation factor 9 501 

(GDF9) [272] and bone morphogenetic protein 15 (BMP15) [273], from the transforming 502 

growth factor beta superfamily (TGFB), are the most important OSFs in this context. The 503 

preovulatory LH surge upregulates BMP15 secreted by the oocyte, and may be used to 504 

interact with somatic follicular cells [256, 274]. Moreover, it has been recently hypothesized 505 

that alteration of oocyte-specific galactosyl- and acetylglucosaminyltransferases may affect 506 
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BMP15 activity and hyaluronan production, a vital matrix constituent of the cumulus-oocyte 507 

complexe [275]. Recently in the mare, immunization against BMP15 and GDF9 demonstrated 508 

a lower ovulation rate, and has been proposed as a contraceptive [276]. In addition to gap 509 

junctional communications and paracrine signalling between the oocyte and surrounding 510 

cumulus cells, is a less well characterized way of signalling including exosomal transfer 511 

which allow the transfer of various molecules, as very recently reviewed [277]. All these 512 

communication pathways regulate signalling events around ovulation that lead to oocyte 513 

maturation and competence for fertilization and embryo development.  514 

 The morphological studies conducted on the equine cumulus oophorus [278, 515 

279], show it similar to that in other domestic species: the 3 or 4 regular layers of cells close 516 

to the oocyte make up the corona radiata. It is itself surrounded by a large number of less 517 

organised cells making up the cumulus [280]. However, the equine cumulus is more strongly 518 

attached to the follicle wall than the bovine cumulus [281]. As studied in mouse and pig, the 519 

cumulus expansion is characterized by the synthesis of hyaluronan which associates to 520 

proteins and proteoglycans (mainly the inter alpha trypsin inhibitor family) to constitute an 521 

expanded hyaluronan-rich extracellular matrix [282]. In parallel to the cumulus expansion, 522 

meiotic oocyte resumption and organelle and cytosqueletal reorganization are orchestrated for 523 

successful oocyte maturation. These are under the control of molecular changes, such as 524 

proteins degradation or de novo synthesis. Thus, maturing oocytes depend on post-525 

transcriptional regulation of stored transcripts. Reyes & Ross recently published a review that 526 

encompass the key importance of cytoplasmic polyadenylation mechanism and associated 527 

factors during oocyte maturation in mammals, based on studies performed mainly in Xenopus 528 

[283]. These authors describe the expression of polyadenylation and translational regulator 529 

associated factors in human, mouse and cattle metaphase 2 oocytes, and address the 530 

complexity of the molecular mechanisms associated to oocyte maturation. Factors affecting 531 
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meiotic and developmental competence of the equine oocyte have been reviewed [284]. At 532 

least, the oocyte of the dominant follicle resumes meiosis when it has reached 80% of its 533 

definitive size, i.e. just a few hours before ovulation [285]. In mare, no clear relationship has 534 

been established between the size of an oocyte and its capacity to resume meiosis [286]. As is 535 

the case for other domestic mammals, the oocyte nuclear maturation stages in the equine 536 

species include nuclear envelope breakdown, completion of the first meiotic division, with 537 

polar body extrusion and arrest in metaphase II [287].  Equine oocytes are ovulated at the 538 

metaphase II stage [288, 289] [290], as in most mammals.  Meiosis is completed at 539 

fertilisation.  A chronology of in vivo oocyte maturation in the equine species after induced 540 

ovulation showed that the metaphase I and metaphase II stages were reached respectively 24 541 

and 35 h after the injection of exogenous gonadotropins [291].Two important phenomena 542 

occur during nuclear maturation: chromatin condensation, and the disappearance of the 543 

nuclear membrane.  It has been shown that the M phase Promoting Factor (MPF) is involved 544 

in both these phenomena. The expression of mitogen-activated protein kinases (MAPK) and 545 

of MPF components CDK1 (formely CDC2) and cyclin B in mare oocytes during both  in 546 

vivo and in vitro maturation was studied in our team several years ago [292, 293]. It has been 547 

shown that MAPK activity in equine oocyte is regulated by calcium homeostasis [294]. 548 

Nuclear configuration, spindle morphology, histone acetylation and 549 

microtubules/microfilaments content were recently described during meiosis resumption in 550 

equine [295-297]. At cytoplasmic scale, few studies describe the ultrastructure of the equine 551 

oocyte and the organisation of cytoplasmic organelles. It was reported  the absence of granular 552 

endoplasmic reticulum and Golgi apparatus in mare oocytes [298], as well as a particular 553 

abundance of lipid droplets. During in vivo maturation of the equine oocyte, Bézard et al. 554 

[290] and Gröndahl et al. [287] in 1995 observed the disruption of the junctions between 555 

cumulus cells and the oocyte, the migration of cortical granules towards the periphery of the 556 
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cytoplasm and the migration of mitochondria towards the centre of the cytoplasm. Since few 557 

years, research has focused on mitochondrial DNA in oocytes. In the mare, the reduced 558 

fertility observed with maternal aging is related to mitochondrial damage and loss [256, 299, 559 

300]. If several cytoplasmic changes were reported during maturation of equine oocytes [286, 560 

287, 301], migration of cortical granules has been assessed as an indicator of cytoplasmic 561 

maturation, the final sign being the ability of the oocyte to undergo fertilization [302, 303].  562 

Concerning intra-oocyte lipids, mainly stored in lipid droplets, Prates et al. [304] 563 

recently reviewed their implication during oocyte-cumulus complex maturation and oocyte 564 

competence for fertilization. Lipid droplets distribution is related to cumulus expension and 565 

oocyte maturation in the mare [305]. Moreover, ovarian leptin has been studied in the horse 566 

[306], leading these authors to proposed that oocyte leptin and leptin receptors contents, its 567 

maturation competence, and adiposity are related. Metabolic changes and in particular the 568 

increase in the intra-oocyte level of glutathione, seem to have considerable consequences for 569 

fertilisation. Some glutathion comes from the cumulus cells, which would explain the 570 

involvement of these cells in the quality of maturation [307]. Few year later, we studied the 571 

glutathione content and glutathione peroxidase expression in equine oocytes and cumulus 572 

cells before and after maturation [308]. The growth hormone (GH) receptor was detected in 573 

the oocyte and in cumulus and granulosa cells, and in vitro addition of eGH to maturation 574 

medium increased the rate of cytoplasmic maturation of equine oocytes [309-311]. Recently, 575 

hemoglobin has been described in mouse oocytes, and has been hypothesized to intervene 576 

during cumulus oocyte complex maturation [277]. It may be transferred from the cumulus 577 

cells to the oocyte and may act as O2/NO gas binding protein. Nevertheless, strong evidences 578 

about the regulation, function and mechanism of action of hemoglobin in the cumulus oocyte 579 

complex during the ovulatory period, as well its role during oocyte maturation have yet to be 580 

established. 581 
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Conclusion: 582 

As described here, a large number of regulatory factors have been shown within 583 

ovarian follicles and are potentially involved in controlling the development and maturation of 584 

the follicle and/or of the oocyte that it contains.  Some of them originate from local synthesis 585 

and others from the passage from the circulatory compartment to the follicular fluid, and 586 

sometimes the two simultaneously. However, few have been conducted on mares in 587 

comparison to other species. 588 

However in the equine species, requirements in the field of reproduction often 589 

resemble those in human medicine; it is often preferable to obtain descendants from 590 

individuals capable of conceiving in vivo or of carrying a pregnancy to term. On the other 591 

hand, compared to other mammals, the horse exhibits certain particularities that make it an 592 

interesting model for studying follicle development and maturation. Some of these 593 

particularities are quoted in this report, such as ovary morphology, the length of the oestrus 594 

phase, and the absence of any real preovulatory LH peak.  Moreover, the follicle and oocyte 595 

maturation mechanisms appear to be unusual. In fact, the in vitro maturation rate of oocytes is 596 

low and the success of IVF and ICSI still limited. The equine species is also characterised by 597 

a relatively high rate of anovulatory cycles. 598 

Consequently, although the physiological mechanisms that regulate folliculogenesis 599 

and oogenesis do not appear to be fundamentally different from the mechanisms observed in 600 

the other domestic mammal species, these observations taken together suggest that some 601 

unique types of regulation may be  involved in the mare. A better understanding of the 602 

mechanisms and factors involved in final maturation in this species is therefore a prerequisite 603 

for obtaining quality oocytes. 604 

  605 
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Figure legends: 606 

Figure 1 : Schématic representation of molecular events triggered by the LH surge that  may 607 

intervene during preovulatory differenciation and ovulation in the mare. Based on data 608 

colllected in the mare as well as other mammalian literature. Differenciation of the 609 

preovulatory follicle is a consequence of LH binding to receptors localized in the plasma 610 

membrane of follicular cells (�), activation of signaling pathways induces regulation of gene 611 

expression within follicular cells (�), as well as maturation of the cumulus-oocyte complexe 612 

(�), that finaly leads to the follicular rupture (�), that liberates a fertilizable oocyte and 613 

forms a corpus luteum that both allow pregnancy. 614 

  615 
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Figure1 : 616 
 617 

 618 
  619 
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Tables: 620 

Table 1: Interval between LH preovulatory peak and ovulation in different mammals. Of note 621 

is the fact that there is not LH peak in the mare but a gradual LH increase starting before 622 

ovulation to reach a maximum level 24 to 48 hours after ovulation. 623 

 

Species 

Period of time between hCG injection or 

endogenous LH peak and ovulation (hours) 

Mouse 

Rat 

Ewe 

Cow 

Sow 

Mare 

woman 

12 

14 

25 

28 

40 

35-40 

36 

  624 
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