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 23 

ABSTRACT 24 

There has been recently a renewed interest for variety mixtures due to their potential capacity 25 

to stabilize production through buffering abiotic and biotic stresses. Part of this results from 26 

complementarity and/or compensation between varieties which can be assessed under 27 

mixed stands only. Mixing ability of varieties can be partitioned into General and Specific 28 

Mixing Abilities (GMA and SMA) that have been estimated so far through the evaluation of 29 

binary mixtures in complete diallel designs. However, the number of mixtures increases 30 

exponentially with the number of studied varieties, and the only feasible devices are 31 

incomplete designs. Despite the long history of statistical analysis of variety mixtures, such 32 

incomplete design analysis have rarely been addressed so far. To fill the gap, we proposed a 33 

generalized statistical framework to assess mixing abilities based on mixed models and 34 

BLUP method, with an original modeling of plant-plant interactions. The approach has been 35 

applied to a panel of 25 winter wheat genotypes observed in two contrasted experimental 36 

designs: (i) an incomplete diallel of 75 binary mixtures, and (ii) a trial including higher order 37 

mixtures (four and eight components). The use of mixing ability models improved prediction 38 

accuracy (of modeled values for observed traits) in comparison to predictions from the mean 39 

of the pure stand components, especially in the first experiment. Genetic variability was 40 

detected for the GMA of yield and its components, whereas variability for SMA was lower. 41 

GMA predictions based on the diallel trial were highly correlated with the GMA of the second 42 

trial providing accurate inter-trial predictions. A new model has been proposed to jointly 43 

account for inter and intra-genotypic interactions for specific mixing ability, thus contributing 44 

to a better understanding of mixture functioning. This framework constitutes a step forward to 45 

the screening for mixing ability, and could be further integrated into breeding programs for the 46 

development of intra- or inter-specific crop mixtures. 47 

 48 

Key-words: intra-specific mixtures, plant-plant interactions, diallel, Triticum aestivum, BLUP 49 
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 50 

1. INTRODUCTION 51 

Crop genetic diversity is a major lever that can be mobilized to face current challenges in 52 

agriculture such as the increasing climatic stochasticity and the necessity to reduce the use 53 

of synthetic inputs (Newton et al. 2009). Among diversifying strategies, cereal variety 54 

mixtures have attracted increasing interest in recent decades (Kiær et al. 2009, 2012, Borg et 55 

al. 2018, Reiss and Drinkwater 2018). In particular, mixtures of susceptible and resistant 56 

cereal varieties have been shown to provide a larger reduction in the development of foliar 57 

diseases than expected from the sum of their components when complementary resistances 58 

are combined (Wolfe 1985; Finckh and Mundt 1992; Zhu et al. 2000; de Vallavieille-Pope 59 

2004). Using variety mixtures may also allow buffering abiotic and other biotic stresses, 60 

therefore leading to a stabilization of production (Østergård et al. 2005; Kaut et al. 2009; 61 

Creissen et al. 2016), through complementarity and compensation mechanisms that might 62 

occur between plants of different varieties, as shown in species mixtures (Tilman et al. 1997). 63 

Despite these potential advantages of mixtures, very little literature provides practical 64 

guidelines for designing mixtures, and consequently mixtures used in agriculture are often 65 

composed of the varieties showing the best performances in pure stand (Borg et al. 2018). 66 

However, it has been shown that mixtures performances are not necessarily correlated with 67 

the means of their pure stand components: interaction between plants with different 68 

genotypes (Finckh and Mundt 1992) can make it difficult to predict the behavior of mixtures. 69 

Therefore, it is important to accurately estimate and predict the performances of varieties in 70 

mixtures. Screening a set of lines for their mixing ability nevertheless presents many 71 

methodological challenges, in particular in the case of a high number of genotypes and an 72 

exponentially higher number of binary or higher order mixtures, and calls for adapted 73 

statistical methods (Dawson and Goldringer 2012; Barot et al. 2017) that could be used to 74 

detect the best varieties for mixing conditions, and to develop specific breeding schemes for 75 

intra-specific mixture design. 76 
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Mixing ability relies on an analogy with the concept of combining ability developed for hybrid 77 

breeding (Sprague and Tatum 1942). By assessing a set of p genotypes in all possible hybrid 78 

combinations, the combining ability can be estimated and partitioned between the general 79 

combining ability of the genotypes and the specific ability of each particular combination 80 

(Griffing 1956). The analogy has first been proposed for the study of plant interactions 81 

between rows of genotypes (Jensen and Federer 1965) and has then been broadly applied to 82 

the study of binary mixtures for estimating mixing ability, both when the performance of each 83 

component is accessible in the mixture (McGilchrist 1965; Chalbi 1967; Gallais 1970; Federer 84 

1979; Federer et al. 1982), or when only the mixture performance is surveyed (Federer 1979; 85 

Federer et al. 1982; Gizlice et al. 1989; Knott and Mundt 1990; Gallandt et al. 2001). The 86 

work developed hereafter deals with this second case, where only the global performance of 87 

each mixture is available. The general mixing ability (GMA) refers to the average 88 

performance of a variety in mixture (additive term) and the specific mixing ability (SMA) 89 

relates to the interaction between the two components of a particular combination of 90 

varieties. According to Griffing’s decomposition of combining ability in hybrids (1956), the 91 

performance of binary mixtures can be modeled as: 92 

 1
2( )ijbr b i j ij ijbrY µ GMA GMA SMAa e= + + + + + , 93 

where ijbrY  is the performance of the mixture of varieties i  and j  for block b (and possibly 94 

replicate r  in block b), µ is the intercept, b
a  is the effect of block b, i

GMA  is the general 95 

mixing ability of variety i , ijSMA  is the specific mixing ability of varieties i  and j  grown 96 

together, and ijbre  is the error term of the observation. The 1
2  coefficient is applied on the 97 

GMA term since each variety accounts for only half of the plants grown in the plot (in case of 98 

equal proportions at sowing). 99 

However, due to the need to grow all the possible binary mixtures (that is to use a complete 100 

design) among a set of varieties to estimate GMA and SMA, the field evaluation can be 101 
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cumbersome regarding the cost and management of experimental trials. For this reason, 102 

authors have usually applied this method to a limited number of varieties (e.g. six or eight in 103 

Gallandt et al. 2001; Gizlice et al. 1989 respectively). A key constraint for experimental 104 

efforts, this curse of dimensionality has also been encountered when studying hybrids’ 105 

combining ability, and solved by the use of incomplete designs (Jensen 1959). By reducing 106 

the number of mixtures to grow for each variety, such designs allow a wider range of varieties 107 

to be evaluated. Nonetheless, due to the reduced number of observed mixtures using the 108 

Griffing’s model (1956), the use of incomplete design raises the question of the definition of 109 

GMA and SMA. If GMA and SMA are defined assuming a complete design setting, then 110 

some GMA and SMA cannot be estimated in practice if the actual design is incomplete. 111 

Otherwise, if GMA and SMA are defined conditionally to the set of observed mixtures only, 112 

then the definition of GMA and SMA is specific to this set of mixtures. 113 

Alternatively, hybrid’s geneticists suggested the use of mixed linear models for the analysis of 114 

crossing designs, in which the estimates of GCA and SCA are provided by Best Linear 115 

Unbiased Predictors (BLUP, Möhring, Melchinger and Piepho 2011). In this framework, both 116 

the parameters of the models (namely the intercept and the variance of the random effects) 117 

and the (random) effects to be predicted have the same definition whatever the design (see 118 

Appendix A for a theoretical comparison of the two approaches). Interestingly, despite the 119 

known similarity between binary mixtures and hybrids, the methods developed for hybrids’ 120 

unbalanced designs have not been adapted so far to mixtures. 121 

Moreover, there is also a need for suitable approaches to handle higher order mixtures (i.e. 122 

mixtures including more than two components) as they have been found useful in different 123 

studies (Lopez and Mundt 2000; Mille et al. 2006), and are closer to the three to five-way 124 

mixtures commonly grown by farmers. Indeed, higher order mixtures present strong 125 

agronomical interest, such as their ability to reduce disease development (Newton et al. 126 

1997, Borg et al. 2018), and can provide multiple agroecosystem services (i.e. weed 127 

suppression, yield and grain quality when considered altogether, Lazzaro, Costanzo, and 128 

Bàrberi 2018). Here the mixtures reveal their fundamental divergence with hybrids: if hybrids 129 
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are constrained to binary and balanced combinations (1:1 of the two parental genomes, 130 

except when considering polyploids), mixtures allow all degrees of freedom, considering any 131 

number of components, in any possible proportion. 132 

 133 

The aim of this article is to provide a methodological framework for the analysis of mixing 134 

ability in incomplete designs for binary and higher order mixtures based on dedicated 135 

statistical methods using mixed models. For a given panel of genotypes, this allows (i) the 136 

assessment of the relative importance of the additive part of the mixing ability vs the part that 137 

results from specific interactions due to the combinations of genotypes (using two modeling 138 

of the inter and intra-genotypic interactions thus providing a better understanding of mixture 139 

functioning), (ii) the identification of the best performers in mixtures, and (iii) the prediction of 140 

mixture performances using mixing ability modeling. The approach was applied to two 141 

contrasted cases: (i) a trial of wheat binary mixtures and their pure stands, and (ii) a trial 142 

including higher order mixtures. 143 

 144 

 145 

2. MATERIAL AND METHODS 146 

2.1 Modeling of mixing ability: 147 

2.1.1 Griffing’s model with fixed GMA and SMA effects 148 

Mixing ability can be modeled using the same formalism as proposed by Griffing for 149 

combining ability (1956). In this setting, the GMA and SMA are defined as fixed effects and 150 

the residual term as random. This model is associated to the particular context of complete 151 

diallel experiment design i.e. (i) all the possible mixtures are assessed and (ii) only binary 152 

mixtures are considered, in 1:1 proportions. The use of this model in a broader context raises 153 

some statistical issues: in case of incomplete design the condition (i) is not fulfilled, so the 154 

definition of the terms becomes unclear, the estimability of the GMA and SMA is not 155 

warranted and the estimators initially proposed by Griffing are no longer valid; if requirement 156 
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(ii) is not met, a model for SMA in higher order mixture should be proposed. To address the 157 

problem of the definition of GMA and SMA resulting from assumption (i) we propose to treat 158 

the genetic effects as random effects in a mixed model (as proposed, but not developed, by 159 

Griffing 1956, and further developed by Möhring et al. 2011 for the prediction of combining 160 

ability in hybrids). 161 

 162 

2.1.2 Models with random GMA and SMA effects 163 

In order to analyze the diverse experimental designs allowed by mixtures, we have adapted 164 

the previous model to binary and higher order mixtures (but considering in a first step equal 165 

proportions for each component). First, the model can be defined to estimate a block effect 166 

and to predict GMA effects: 167 

( )

( )
( ) 1

1

( )

K n

nbr b k n nbr

k n

Y µ GMA e
K n

a
=

= + + +å  (Model 1) 168 

where nbr
Y  stands for the performance of the r

-th replicate of mixture (or genotype) n  in block 169 

b, m is the mean of the experiment, b
a  is the effect of block b, ( )K n  is the number of 170 

components of mixture n  and ( )k n  stands for the k-th genotype within mixture n  (or ( ) 1K n =  171 

and ( ) 1k n =  if n  is a pure stand), ( )k nGMA  is the general mixing ability of the genotype, and 172 

nbr
e  is the residual term. 173 

In a second model, we included the SMA effects corresponding to first order interactions 174 

between genotypes (i.e. at the level of pairs of genotypes), supposing that higher order 175 

interactions are negligible (their estimation would require an even larger experimental effort). 176 

The model is defined as follows: 177 

( ) ( ) 1 ( )

( ) ( ) '( )( )
( ) 1 ( ) 1 ( ) ' ( ) 12

1 1

( )

K n K n K n

nbr b k n k n k n nbrK n
k n k n k n k n

Y µ GMA SMA e
K n

a
-

= = = +

= + + + +
( )å å å  (Model 2) 178 
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where b
a  is the effect of block b, 

( )
2
K n( )  is the number of all possible pairs of different 179 

genotypes in mixture n  of ( )K n  components when ( ) 1K n > , and ( ) '( )k n k nSMA  stands for 180 

inter-genotypic interaction between components ( )k n  and '( )k n  of the mixture. 181 

It should be noticed that n  can be either a mixture (m) or a pure stand (p). The pure stands 182 

are thus included in the estimation of the GMA as an intra-genotypic mixture (in contrast with 183 

Gallais 1970), with the originality to consider the SMA of pure stands (SMAii). This intra-184 

genotypic interaction SMAii indicates how a given genotype performs in pure stand compared 185 

to the mean of mixtures comprising this genotype. In the case of pure stands (when 186 

( ) 1K n =  and only variety ( )l n  is grown) the model writes: 187 

( ) ( ) ( )nbr b l n l n l n nbrY µ GMA SMA ea= + + + + , 188 

where ( ) ( )l n l nSMA  stands for intra-genotypic interaction within the grown genotype in pure 189 

stand. The importance of intra-genotypic competition has been raised before, but only in the 190 

context of experiments where the performance of each component in a mixture is accessible 191 

(Gallais 1970). The access to intra-genotypic SMA through the integration of pure stands 192 

directly in the analysis therefore provides an original description of the effect of competition in 193 

a pure stand. 194 

In addition to the residual term, the GMA and SMA terms are also defined as random effects 195 

which ensures estimability even for incomplete designs. The precise distribution of the 196 

random effects will be detailed in the following section (2.2). 197 

Higher order mixtures might be interesting to characterize mixing ability of genotypes, since 198 

for a given number of plots, they allow to observe each genotype interacting with a higher 199 

number of partners compared to a design of binary mixtures only, though with a lower 200 

contribution of the genotype to each mixture performance. 201 

 202 
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2.1.3 Intra-genotypic interactions in mixture 203 

In a mixture, a plant is exposed to inter-genotypic interactions but also to intra-genotypic 204 

interactions, so we modified the model to better describe the biological reality for specific 205 

effects, according to the components proportions in mixture: 206 

( ) ( ) ( )

( ) ( ) '( )
( ) 1 ( ) 1 ( ) ' 1

1 1

( ) ( ( ))²

K n K n K n

nbr b k n k n k n nbr

k n k n k n

Y µ GMA SMA e
K n K n

a
= = =

= + + + +å å å  (Model 3) 207 

where b
a  is the effect of block b. In this model, intra-genotypic interaction ( ( ) ' ( )k n k n= ) is 208 

therefore always part of the mixture performance, for any mixture order ( ( ) 1K n ³ ). For 209 

instance, for a given binary mixture n  of genotypes i  and j , the interaction term between the 210 

components can be written as: 1 1 1
4 2 4ii ij jjSMA SMA SMA+ +  since ji ijSMA SMA= . 211 

Observe that for ( ) 1K n = , Model 2 and Model 3 coincide. The coefficients 1
( ( ))²K n

 represent 212 

the expected weight of each kind of neighborhood in the plant community, assuming a 213 

random distribution of genotypes in the plant community. It should be noticed that due to the 214 

differences in SMA effects weighting, the SMA variance and SMA BLUPs are expected to be 215 

higher with Model 3 than with Model 2. Nevertheless, the integration of neighboring 216 

probabilities in the modeling of mixing ability (especially through the introduction of intra-217 

genotypic interactions within mixture) constitutes a novel advance in mixture analysis. 218 

 219 

 220 

Figure 1: Schematic representation of plant interactions modeled by Model 2 and Model 3 221 

 222 
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The motivation for considering both models is that Model 2 only accounts inter-genotypic 223 

interactions within mixtures, while Model 3 also accounts for intra-genotypic interactions in 224 

mixtures (Figure 1). For convenience we adopted notations for all models similar to the 225 

Griffing’s notations for combining ability. We emphasize that the interpretation of the different 226 

terms is quite different between Model 2 and Model 3. To illustrate these differences, we 227 

consider the expected performance over all possible equally weighted mixtures of order K 228 

that include a given genotype k. This amounts to work conditionally on all random effects that 229 

depend on k only, so we denote this quantity by ( | , )E Y k K . 230 

One has 231 

( | , ) k
GMA

E Y k K µ
K

= +     if K>1  in Model 2 232 

( | , )
k kk

E Y k K µ GMA SMA= + +    if K=1  in Model 2 233 

( | , )
²

k kk
GMA SMA

E Y k K µ
K K

= + +      in Model 3 234 

As a consequence, kk
SMA  can be interpreted as the expected difference in performance 235 

between pure stand and mixture in Model 2, but not in Model 3 where it also includes intra-236 

genotypic interaction within mixture. Although the interpretation of kk
SMA  is different from the 237 

one of 'kk
SMA  in Model 2, we assumed a common distribution for these two terms in the 238 

following to reduce the number of variance parameters to be inferred. 239 

 240 

2.2 Statistical analysis: 241 

Inference method 242 

The mixed model framework has already been widely applied to plant breeding (Bernardo 243 

1996; Falconer et al. 1996; Lynch and Walsh 1998; Piepho and Möhring 2007), but to our 244 
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knowledge not to crop mixing ability analysis. This framework allows studying mixtures of any 245 

order in incomplete designs, ensuring model estimability (as discussed above). 246 

Models 2 and 3 can be expressed in a matrix form as 247 

1 2y X Z g Z s eb= + + +  , 248 

where y is the vector of performances, b is the vector of fixed effects, g is the vector of the 249 

GMA random effects, and s  is the vector of SMA random effects. X , 1Z  and 2Z  are the 250 

corresponding design matrices. 251 

The random effects are assumed to be normally distributed according to the following 252 

distributions 
2

1~ (0, )GMAg N As , 
2

2~ (0, )SMAs N As  and 
2~ (0, )ee N Is . The variance of the 253 

observed values can be decomposed as: 254 

2 2 2
1 1 1 2 2 2( ) t t

GMA SMA eVar y Z AZ Z A Z Is s s= + + . 255 

In the present work, we used identity matrices for 1A  and 2A  matrices. Note that one can 256 

account for a priori similarities between genotypes by specifying more sophisticated variance 257 

covariance structures, e.g. accounting for genetic similarities between genotypes through 258 

relatedness matrices (Bernardo 1995). 259 

As for the estimation of the variance parameters, we used the Restricted Maximum 260 

Likelihood (REML). We used the Best Linear Unbiased Predictors (BLUP) to predict the GMA 261 

and SMA effects. 262 

 263 

2.3 Experimental designs: 264 

The analysis has been carried on two data sets produced by two experiments assessing 265 

mixing ability of a panel of 25 genotypes of winter wheat. This panel was designed to be 266 

representative of the phenotypic diversity of a larger set of 58 genotypes, evaluated in pure 267 
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stand in a previous study for root and shoot architecture as well as other functional traits 268 

(Cantarel et al. in prep., Dubs et al. 2018). This 25 genotypes panel is composed of nine elite 269 

varieties cultivated for their high yielding performance in the Parisian Basin (Altigo, Apache, 270 

Arezzo, Boregar, Grapeli, Renan, Sogood, Soissons, Trémie), four landraces (Blé autrichien, 271 

Rouge de Bordeaux, Rouge du Roc, Saint Priest), six varieties bred for organic agriculture 272 

(Alauda, Hermes, Maxi, Midas, Ritter, Skerzzo), and six lines from a MAGIC population (A22, 273 

A208, A243, A398, F236, F426, Thépot et al. 2015) (Table B.1). The way mixtures of two, 274 

four and eight genotypes of the panel were designed in the two following experiments has 275 

been inspired from the ecology literature, and more specifically the Jena diversity experiment 276 

(Weisser et al. 2017), exploring extensively the gradient of intraspecific functional diversity 277 

(Dubs et al. 2018). 278 

In the first experiment, the 25 genotypes were grown in a field trial both in pure stands and in 279 

75 binary mixtures during the season 2014-2015 in the Le Moulon (LM) experimental station 280 

(48°42'37.2"N, 2°09'37.6"E) in France, according to an incomplete diallel design (75 of the 281 

300 binary combinations: Figure 2.A). Each entry was sown in a 7,5m² plot at a density of 282 

160 grains.m-² (with 20 cm row width). All pure stand genotypes and binary mixtures were 283 

replicated twice in two randomized complete blocks. The mixtures were prepared for sowing 284 

using the thousand kernel weight in order to get equal proportion of seeds of each genotype. 285 
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Figure 2: Mixture designs of the Le Moulon and Clermont-286 

Ferrand trials 287 

A. Le Moulon trial: The 25 genotypes of the panel are presented 288 

in rows and columns. The light squares are the mixtures of two 289 

genotypes, and the dark squares on the diagonal represent the 290 

pure stands. 291 

B. Clermont-Ferrand trial: Each row shows a particular mixture 292 

composition with the presence of each of the 16 genotypes 293 

indicated by the colored squares in the corresponding genotype 294 

columns. Intensity of the color indicates the proportion of the 295 

components in the mixtures. 296 

 297 

 298 

 299 

 300 

 301 
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In the second experiment (Dubs et al., 2018), a subset of 16 genotypes of the panel (Altigo, 302 

Arezzo, Boregar, Grapeli, Renan, Soissons, Trémie, Blé autrichien, Alauda, Hermes, Maxi, 303 

Midas, Ritter, Skerzzo, A22, F426) has been assessed in the INRA experimental station of 304 

Clermont-Ferrand (CF) (45°46'04.2"N, 3°08'52.2"E) in 2014-2015, in pure stand and in 24 305 

mixtures of two genotypes (also observed in the Le Moulon trial), 28 mixtures of four 306 

genotypes and 20 mixtures of eight genotypes (Figure 2.B), where the components of each 307 

mixture were also in equal proportions of seeds. They were sown in 7,5m² plots, for a target 308 

density of 250 plants.m-² and replicated in two randomized complete blocks. 309 

In both experiments, three fungicide treatments were applied in order to study mixtures 310 

without disease development since it has already been shown that mixtures can lead to 311 

important disease reduction on wheat, and we aimed at focusing on compensation effects 312 

(Stützel and Aufhammer 1990). Herbicides were applied to avoid weed competition to 313 

interfere with wheat competition, and a nitrogen fertilization was applied (60 kg N/ha and then 314 

40 kg N/ha of nitrogen fertilizer in the LM trial, and 60 kg N/ha in the CF trial) according to the 315 

leftovers from the previous crops on each trial to reach the common objective of 150 kg N/ha. 316 

 317 

Phenotypic data 318 

Yield and its components (number of spikes.m-², number of grains/spike, thousand kernel 319 

weight (TKW)) were recorded on each plot in the LM experiment, while only yield and protein 320 

content were recorded in the CF experiment. 321 

Yield was calculated as the weight of grain harvested on the plot surface, and after 322 

measuring the humidity of a sample, it was standardized into q.ha-1 at 15% humidity (1quintal 323 

/ hectare = 100kg / 10.000m² = 10-2 kg.m-2). The number of spikes has been counted after 324 

flowering date, on one meter length for two adjacent rows in each plot, and converted into a 325 

number of spikes.m-² taking into account the distance between rows (20 cm). TKW was 326 

measured after harvest and threshing, and the number of grains/spike was calculated based 327 
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on the yield components (= (yield/ TKW)/ number of spikes.m-²). Protein content was 328 

estimated on grain samples using near-infrared spectroscopy (NIRS). 329 

 330 

2.4 Data analysis: 331 

2.4.1 Application of the models to the datasets of each location 332 

For each location, the correlation between the observed mixtures and the mean of their pure 333 

stand components was calculated. The main analyses (model comparison, analysis of the 334 

variance components and the BLUPs) were then performed with the three models on all the 335 

observations (mixtures and pure stands) of each location separately, and the predicted 336 

values are the modeled values fitted, on the already observed data. The correlation between 337 

all the observed values and the predictions from (i) the means of the genotypic effects of the 338 

corresponding pure stand components (according to Federer et al. 1982 and Gizlice et al. 339 

1989), or (ii) a subset of observations of the same location (mixtures only using Model 3) has 340 

been performed for each site. Finally, the CF observed values for different mixture orders 341 

were compared with predictions obtained from CF or LM trials analyzed with Model 1. The 342 

analysis was performed using an adaptation of the lme4 R package (Bates et al. 2015; see 343 

File S.1). 344 

 345 

2.4.2 Model comparison 346 

In order to compare the relative importance of GMA, SMA and intra-genotypic vs inter-347 

genotypic interaction, we compared the following models: 348 

- Model 1 which includes only the block effect and the GMA, 349 

- Model 2 which includes the GMA and the SMA, with inter-genotypic interactions in 350 

mixture, and intra-genotypic interactions for pure stands only, 351 
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- Model 3 which includes the GMA and the SMA, with inter-genotypic interactions and 352 

intra-genotypic interactions in mixture in addition to intra-genotypic interactions in 353 

pure stand. 354 

The models were compared based on the AIC, BIC and on Likelihood Ratio Tests (LRT, 355 

using Maximum Likelihood procedure (ML)) which were further performed for nested models 356 

(Model 2 vs Model 1, and Model 3 vs Model 1). We also computed the second-order AIC and 357 

the conditional AIC using MuMIn and cAIC4 R packages respectively, but no difference with 358 

the AIC values was observed. In addition, the R² and the RMSE were reported for the 359 

different models. While open to criticism (Alday 2016), the calculation of a R² for mixed 360 

models is a convenient tool for assessing the model quality using a common dimensionless 361 

metric for the different response variables. The R² were calculated following Xu (2003) to 362 

assess the proportion of the total variance which is explained by the model (conditional 363 

variance, for both fixed and random effects), as one minus the ratio of the residual variance 364 

of the full mixed model, over the residual variance of a null model (the fixed intercept-only 365 

model). 366 

 367 

2.4.3 Within-location comparison of observed values with predictions from BLUP based on 368 

subsets of observations 369 

We investigated the possible impact of including pure stands in the BLUP of mixture in the 370 

same location. For that, the observed values (mixtures and pure stands) were correlated to (i) 371 

the BLUP values predicted from mixture data only (i.e. without pure stands) and (ii) the BLUP 372 

from the complete data set. In both cases, BLUP were performed using Model 1 and 373 

alternatively using the best model for each response variable. 374 

 375 

2.4.4 Inter-trial predictions 376 
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Finally, the observed values of the CF trial for different mixture orders were compared with 377 

predictions based on the GMA predicted using Model 1 on all the observations of the LM 378 

experiment. 379 

The observed values were also compared to the predictions based on (i) the GMA in LM 380 

predicted with Model 1 fitted on the mixture observations only, or on (ii) the mean of the 381 

genotypic effects assessed on the LM pure stands only instead of GMA. Model 1 was 382 

preferred for predictions because (i) regarding breeding strategy, it is preferable to being able 383 

to predict mixture performances based on GMA than based on GMA and SMA, since using 384 

SMA requires having observed the corresponding pairs of genotypes (for using Models 2 or 385 

3), and (ii) for practical considerations, in this study no higher order mixture had all its SMA 386 

predicted in the LM trial in order to predict their performances, so SMA are diluted in higher 387 

order mixtures. Nevertheless, as all the binary mixtures observed in the CF experiment were 388 

also observed in the LM trial (so they were all predictable from LM BLUPs), we assessed how 389 

including SMA (using Models 2 and 3) affects prediction of the yields of binary mixtures in the 390 

CF trial. 391 

 392 

2.5 Data and program availability: 393 

The data and the program are available on an online public repository 394 

(https://github.com/cambroise/lme4-adapt-for-variety-mixture). The program is described in 395 

File S.1. 396 

 397 

 398 

3. RESULTS 399 

3.1 Correlation between mixtures and pure stands 400 
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The Pearson’s correlation between the observed binary mixtures performances and the 401 

means of their pure stand components was high for TKW (0.91) but moderate for yield (0.51, 402 

Figure 3), for the number of spikes.m-² (0.51), and for the number of grains per spike (0.42) in 403 

the Le Moulon (LM) experiment, showing the need for modeling of mixing ability. The 404 

correlation in Clermont-Ferrand (CF) reached 0.75 for yield and 0.63 for the protein content 405 

(respectively 0.81 and 0.73 when considering only binary mixtures). 406 

 407 

Figure 3: Observed yield for binary mixtures and the means of their pure stand components for the Le 408 

Moulon experiment 409 

The dotted line is the regression line (y= 34.395 + 0.515 x, with standard errors of 5.395 and 0.073 410 

respectively, and DF= 146). The black solid line is the y=x line. 411 

 412 

3.2 Model comparison 413 
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Based on LRT (Likelihood Ratio Test) using ML procedure for model comparison, both 414 

models including SMA have been found significantly better than Model 1 for TKW (p-values 415 

of 0.026 and 0.030 respectively, Table 1). Models 2 and 3 had low but non-significant p-416 

values (0.060 and 0.182) for spike density, while for yield and other response variables in LM 417 

and CF trials the p-values were non-significant. 418 

Response 

variable 

Model AIC BIC p-value 

Yield Model 1 1393.3 1406.5 NA 

Model 2 1395.1 1411.6 0.664 

Model 3 1394.6 1411.0 0.385 

Spike density Model 1 2075.5 2088.7 NA 

Model 2 2074.0 2090.4 0.060 (.) 

Model 3 2075.7 2092.2 0.182 

Grain number per 

spike 

Model 1 1188.4 1201.6 NA 

Model 2 1190.4 1206.9 1 

Model 3 1190.4 1206.9 1 

Thousand kernel 

weight 

Model 1 672.5 685.7 NA 

Model 2 669.6 686.0 0.026 (*) 

Model 3 669.8 686.3 0.030 (*) 

TABLE 1: Comparison of Models 2 and 3 to Model 1 in LM trial using the maximum likelihood 419 

procedure 420 

The p-values are based on LRT (likelihood ratio test) comparisons. “.” indicates significance < 0.1 and 421 

“*” significance < 0.05. 422 

 423 

Model 1, the most parsimonious as only based on GMA effects, was as efficient as Models 2 424 

and 3 for the number of grains per spike in LM (Figure 4.C) or for the yield and the protein 425 

content in CF (Figures 5). 426 
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427 

428 

Figure 4: Observed and predicted values for each response variable in LM trial 429 

A. Yield, B. Spike density, C. Grain number per spike, D. Thousand kernel weight. Model 1 is the 430 

model comprising fixed effects and GMA, Model 2 additionally includes SMA effects (inter-genotypic 431 

effects within pairs of genotypes within mixtures, and intra-genotypic effects for pure stands), Model 3 432 

further includes intra-genotypic effects within mixtures. The black diagonal is the y=x line. 433 

 434 
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 435 

Figure 5: Observed and predicted values for each response variables in CF trial 436 

A. Yield, B. Protein content. The black and red dots are hidden by the blue dots due to equal values for 437 

the three models. The black diagonal is the y=x line. 438 

 439 

However, considering the yield in the LM experiment (Figure 4.A), Model 3 including SMA 440 

effects showed a higher R² and a lower RMSE (Table 2), although the likelihood of Model 3 441 

was not significantly different from the one of Model 1 with ML procedure. For the spike 442 

density and TKW (Figures 4.B and D), Models 2 and 3 had higher R² and lower RMSE than 443 

Model 1, Model 2 appearing slightly better than Model 3 for spike density. These models 444 

including the SMA effects seemed to partly reduce the shrinkage effect observed in Figure 4. 445 

 446 

Response variable Model R² RMSE 

Yield (LM) Model 1 0.563 6.690 

Model 2 0.593 6.454 

Model 3 0.613 6.294 

Spike density Model 1 0.508 36.908 

Model 2 0.650 31.125 

Model 3 0.613 32.702 

Grain number per spike Model 1 0.456 4.023 

Model 2 0.456 4.023 
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Model 3 0.456 4.023 

TKW Model 1 0.911 0.923 

Model 2 0.941 0.754 

Model 3 0.940 0.758 

Yield (CF) Model 1 0.728 4.174 

Model 2 0.728 4.174 

Model 3 0.728 4.174 

Protein content Model 1 0.642 0.502 

Model 2 0.642 0.502 

Model 3 0.642 0.502 

TABLE 2: Criteria for characterization of the model fits in Le Moulon and Clermont-Ferrand trials 447 

 448 

3.3 Comparison with predictions based on the pure stands 449 

When using mixing ability models fitted on all the observations instead of the pure stand 450 

genetic effects, the R², the RMSE, the Pearson’s correlation coefficient (on the values of the 451 

mixtures and the pure stands) and the Kendall’s correlation coefficient (on their ranking) 452 

between observed and predicted values were improved for most of response variables in LM 453 

experiment, but this was marginal on the CF trial, as shown in Table B.4. For instance, for the 454 

yield in LM trial, the Pearson’s correlation coefficient increased from 0.687 with predictions 455 

based on the means of the pure stands (p), to 0.790 with predictions based on BLUP 456 

predicted with Model 3 (m+p) showing a higher ability to predict mixture performances. In the 457 

CF experiment, the correlation between observed and predicted values was as high with 458 

predictions based on the mean of the genotypic effects of the pure stand components (0.840, 459 

Table B.4) as with BLUP predicted from mixtures and pure stand observations (0.854, with 460 

Model 1). 461 

 462 

3.4 Variances of GMA and SMA 463 

The variance components estimated with each model for yield and for the number of 464 

spikes.m-² are detailed below for the LM and CF experiments (Table 3). The other responses 465 
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are given in supplementary material (Table B.2). It should be noticed that Models 2 and 3 466 

differ in the weighting of the SMA effects, and it is expected for estimated SMA variance to be 467 

higher with Model 3 than with Model 2 (as well as SMA BLUPs). 468 

Response variable Model σGMA² σSMA² σe² σSMA²/ 

σGMA² 

Yield Le Moulon trial Model 1 63.57 NA 50.48 NA 

Model 2 63.10 2.11 48.66 0.03 

Model 3 54.69 14.67 47.40 0.27 

Yield Clermont-Ferrand trial Model 1 95.18 NA 19.20 NA 

Model 2 95.18 0 19.20 0 

Model 3 95.18 0 19.20 0 

Number of spikes.m-² Le Moulon trial Model 1 1621.82 NA 1531.06 NA 

Model 2 1536.02 303.75 1267.18 0.19 

Model 3 1357.87 822.18 1338.40 0.61 

TABLE 3: Variance components and ratio of variances in Le Moulon and Clermont-Ferrand trials 469 

 470 

In all experiments and with all considered mixed models, the GMA variance was always 471 

higher than the residual variance and was more than 10 times higher in the case of the TKW 472 

in LM experiment (Table B.2). The amount of the SMA variance compared to the GMA 473 

variance ranged from 0 to 0.19 with Model 2 and from 0 to 0.61 with Model 3. The highest 474 

rates were obtained for spike density, while the number of grains per spike and the CF 475 

response variables did not show any specific effects. Consequently, the three models were 476 

equivalent for variance partitioning in the CF experiment. 477 

 478 

3.5 GMA and SMA predictions 479 

The predicted values of GMA and SMA with Model 3 for yield in LM trial are shown in Figure 480 

6 (in Figure B.1 for spike density and TKW with Model 2 in LM trial) and the GMA values for 481 

each response variable with the best model are given in Table B.3. 482 
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483 

Figure 6: Predicted values for GMA and SMA per genotype for yield in LM trial with Model 3 484 

Values in quintal per hectare (10-2 kg.m-2). The red dots represent the intra-genotypic SMA, and the 485 

blue dots the inter-genotypic SMA. 486 

The GMA for yield at LM ranged from -18.67q.ha-1 to 7.41 q.ha-1 (with Model 3), while the 487 

SMA showed lower ranges (from -2.34 q.ha-1 to 5.38 q.ha-1). The range of SMA values per 488 

genotype with Model 3 varied among genotypes, with varieties such as Renan and Midas 489 

obtaining similar SMA with most genotypes (Figure 6). Overall, intra-genotypic SMA effects 490 

displayed both high and low values, while inter-genotypic SMA were somehow more 491 

intermediate (Figure 6). The intra-genotypic SMA obtained with Model 2 were less extreme 492 

for spike density and TKW than for yield (Figures B.1 A and B). The intra-genotypic SMA with 493 

Model 3 was overall positively correlated with the GMA for yield (0.679). This was also the 494 

case for spike density (0.659) but the correlation was lower for TKW (0.235). 495 

The elite variety Trémie had the highest GMA and displayed the highest SMA when grown in 496 

pure stand (Figure 6). Interestingly, two genotypes with relatively low GMA (A22 and Rouge 497 
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de Bordeaux, Figure 6) showed a rather high SMA value when grown together in a mixture 498 

(Figure 7). More extreme values were obtained with Model 3, due to higher SMA variance (as 499 

expected). This was also the case for spike density and TKW in LM trial although to a lesser 500 

extent (Figure B.2). The inter-genotypic SMA for Model 2 and Model 3 were very highly 501 

correlated for the yield, spike density and TKW (0.9993, 0.9996 and 0.9998 respectively). 502 

 503 

504 

Figure 7: SMA predicted values for yield with Models 2 and 3 in LM trial 505 

The SMA obtained with Model 2 and Model 3 are plotted respectively above and below the diagonal 506 

(black line). The intra-genotypic SMA are not represented on the plot. 507 

 508 

The GMA was highly correlated with the pure stand genotypic effect in the CF trial (0.98 for 509 

the yield with Model 1, Table B.5), and to a lesser extent in the LM experiment (0.88). The 510 

correlation between the GMA obtained in both experiments for yield using Model 1 was also 511 
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quite high (0.903). The CF trial displayed higher variance for the GMA values than did the LM 512 

trial (Figure 8). 513 

 514 

 515 

Figure 8: GMA values predicted with Model 1 for yield in the two experiments (LM and CF) 516 

The dotted line is the regression line between the GMA of the two experiments (y= -1.174 + 1.347 x, 517 

with standard errors of 1.066 and 0.171 respectively, and DF= 14). 518 

The elite varieties obtained the highest GMA in both experiments, while most organic 519 

varieties and the landrace had the lowest, although some organic varieties also obtained high 520 

GMA. Organic varieties performed better in LM trial than in CF trial. The best varieties were 521 

more spread in CF trial than in LM trial. 522 

 523 
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3.6 Predictions based on subsets of observations 524 

In the LM experiment, when the analysis was performed on mixture observations only (m) 525 

instead of all observations (m+p), the variance of SMA for yield (estimated with both Models 526 

2 and 3) became null. The correlation between the observed and predicted mixtures with 527 

Model 3 was 0.786 for yield when using GMAm, not different from the one obtained with m+p 528 

observations (0.790), and the RMSE was reduced from 6.3q.ha-1 to 5.8q.ha-1 (Table B.4). 529 

This result suggests that mixing ability analysis might be performed without requiring pure 530 

stands in the dataset. The GMA for yield were modified (Figure B.3) although the correlation 531 

between GMAm and GMAm+p with Model 3 was 0.91 (Table B.5). In the CF experiment, the 532 

correlation between GMAm and GMAm+p (with Model 1) was even higher (0.96, Table B.5), 533 

and the correlation between observed and predicted values was equal when excluding the 534 

pure stands for GMA predictions (0.834) to the one when pure stands were included (0.854, 535 

Table B.4). 536 

 537 

3.7 Predictions of CF high order mixtures based on CF BLUP 538 

Both Pearson’s and Kendall’s correlations between the observed values for pure stands and 539 

mixtures in the CF trial and the predicted values based on the CF mean of the genotypic 540 

effects in pure stands decreased with the order of the mixtures (Table 4), indicating that the 541 

four-way and eight-way mixtures had the largest level of deviation from additivity in the CF 542 

experiment. 543 

 544 

 Pearson’s correlation Kendall’s correlation 

Mixture 

order 

CF 

GEp 

CF 

GMAm+p 

CF 

GMAm 

LM 

GEp 

LM 

GMAm+p 

LM 

GMAm 

CF 

GEp 

CF 

GMAm+p 

CF 

GMAm 

LM 

GEp 

LM 

GMAm+p 

LM 

GMAm 

All 

orders 

0.840 0.854 0.834 0.653 0.785 0.741 0.651 0.669 0.664 0.498 0.598 0.573 

1 0.973 0.955 0.876 0.718 0.876 0.770 0.871 0.831 0.734 0.548 0.706 0.621 



28 

 

2 0.836 0.862 0.786 0.662 0.805 0.751 0.649 0.677 0.700 0.505 0.667 0.613 

4 0.742 0.777 0.789 0.599 0.695 0.727 0.516 0.554 0.582 0.405 0.481 0.541 

8 0.700 0.713 0.719 0.574 0.649 0.680 0.544 0.569 0.569 0.438 0.500 0.538 

TABLE 4: Correlation between observed and predicted values or ranking for the yield in the Clermont-545 

Ferrand (CF) trial based on the CF or the Le Moulon (LM) mean of the genotypic effects in pure stands 546 

(GE) or GMA predicted with Model 1 on different sets of observations in the CF and LM trials 547 

The order of the mixture indicates the number of components: one for pure stand, two for binary 548 

mixture, four for four-way mixture and eight for eight-way mixture. The capital letters indicate the trial 549 

for observations for genotypic effects in pure stand or GMA predictions using Model 1. The lower case 550 

letter specifies if pure stands observations were used (p) or mixture observations (m) or both (m+p) in 551 

each trial for GMA predictions. 552 

 553 

3.8 Inter-trial predictions 554 

In order to assess the ability of the BLUP values obtained in a design based on binary 555 

mixtures to predict the observed values for higher order mixtures, we computed the predicted 556 

values for the CF observations based on the LM GMA using Model 1 (Figure 9). The 557 

Pearson’s correlation between the observed values in CF and predictions based on LM was 558 

0.785 (and 0.598 for Kendall’s correlation, Table 4). The correlation was slightly lower when 559 

excluding the pure stand observations in LM of the analysis (0.741). However, the correlation 560 

was always much higher than when using the mean of the corresponding genotypic effects of 561 

pure stand components (correlation of 0.653). When including SMA in addition to GMA 562 

predicted on all observations in the LM trial (using Models 2 and 3) for predicting yields of 563 

binary mixtures in the CF trial, the correlation between observed and predicted yields was not 564 

clearly improved (0.814 with Model 2 and 0.817 with Model 3, vs 0.805 with Model 1). 565 
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 566 

 567 

Figure 9: Predicted yields for the Clermont-Ferrand experiment based on GMA predicted from all 568 

observations in the Le Moulon trial with Model 1 and the corresponding observed yields 569 

The black diagonal is the y=x line. 570 

 571 

As for predictions based on CF BLUP, when using LM BLUP, the Kendall’s correlation 572 

coefficient between the predicted values and the observed values decreased with the 573 

mixtures complexity (Table 4). Interestingly, when removing the pure stands in LM 574 

observations for fitting Model 1, the observed vs. predicted correlations were lower for pure 575 

stands and binary mixtures than when including pure stands in LM, while they were rather 576 

similar for four-way and eight-way mixtures. 577 

 578 
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 579 

4. DISCUSSION 580 

Mixed models are pivotal statistical tools for the prediction of breeding values in modern 581 

breeding programs, and are commonly used to analyze diallel designs of hybrid crosses. This 582 

formalism has surprisingly never been applied to cultivar mixtures analysis, despite the 583 

similarity between Combining Ability and Mixing Ability. Herein we adapted mixed models for 584 

the study of mixing ability in diallel-like designs, unlocking the analysis of incomplete designs. 585 

We combined the Griffing formalism for combining ability (Griffing 1956) and mixing ability 586 

modeling with the recent developments in mixed models (Bates et al. 2015) adapted to fit 587 

specialized linear mixed models. The approach is highly flexible as it can be applied to binary 588 

and any order mixtures, including pure stands. 589 

 590 

4.1 General Mixing Ability predominates in two experiments on wheat mixtures 591 

This approach has been applied to two experimental designs of bread wheat mixtures: one 592 

based on pure stands and binary mixtures, and the other including higher order mixtures too. 593 

In the first experiment (Le Moulon, LM), the correlation between the observed mixture 594 

performances and their predicted performances based on their pure stand means was 595 

moderate (0.51, 0.51 and 0.42 respectively for yield, for the number of spike.m-² and for the 596 

number of grain/spike), except for TKW (0.91), underpinning the importance of estimating 597 

mixing ability of the genotypes. Using mixing ability modeling allowed to improve the 598 

correlation between observed values and predictions to 0.79 for the yield in Le Moulon (LM) 599 

experiment for instance (with Model 3). 600 

The part of variance explained by GMA and SMA effects was relatively high, given that the 601 

proportion of observed mixtures on the total number of possible mixtures was rather low 602 

(75/300=0.25). This suggests that using a random sample of 25% of the total number of all 603 

possible mixtures, in addition to the pure stands, seems efficient to assess GMA and SMA of 604 
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the genotypes used as components, and this is in accordance with previous findings for 605 

combining ability in wheat (Zhao et al. 2015). This result calls for the possibility to screen a 606 

large number of genotypes from a diversified panel for their GMA using incomplete designs 607 

instead of growing all pairwise mixtures within a limited set of genotypes. In the second 608 

experiment, the correlation between the mixture performances and the means of the pure 609 

stands components was rather high for yield (0.75) and for protein content (0.63) so the 610 

predictions of all the observations based on the pure stand performances were efficient and 611 

were only marginally improved when using mixing ability modeling. This is explained by a 612 

very high correlation between the GMA and the genotypic effects of the pure stands for yield 613 

in this trial (0.98), for reasons discussed hereafter (section 4.3). 614 

 615 

4.2 An original modeling of specific mixing ability 616 

Specific Mixing Ability was modeled using two different approaches that could better reflect 617 

the underlying plant-plant interactions:  618 

- in addition to inter-genotypic interactions within mixtures, we introduced intra-genotypic 619 

interactions within pure stands (Model 2). Note that in the literature, pure stands are not 620 

always considered as particular cases of mixtures and therefore are usually not included as 621 

such in the analysis; 622 

- we further refined the SMA estimates, by accounting for intra-genotypic interactions not only 623 

within pure stands but also within mixtures. For that, SMA effects were weighted by the 624 

probabilities of neighborhood of varieties in a mixture (Model 3). 625 

These two models resulted in differences in variance components and in ratio of variance 626 

between SMA and GMA, with a higher SMA variance observed with Model 3, as expected. 627 

The intra-genotypic SMA of yield had noticeably more extreme values in the SMA distribution 628 

when using Model 3 compared to Model 2, suggesting that the intra-genotypic interactions in 629 

mixtures significantly accounted for SMA variance in Model 3 for this trait. The interpretation 630 
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of the intra-genotypic SMA should be different depending on the model used. Model 3 might 631 

be more realistic regarding the biological mechanisms occurring within mixtures. For instance 632 

it is expected that the intra-genotypic interactions should be lower in higher order mixtures. 633 

Intra-genotypic interactions SMAii are by nature quite different from the one of inter-genotypic 634 

interactions SMAij. Consequently one should estimate separately one variance component for 635 

SMAii and one for SMAij (with i ≠ j) for both Models 2 and 3. However this would require the 636 

inference of more variance parameters - each with less available information - which in turn 637 

would require the evaluation of more mixtures per genotype than available in this study. 638 

If the independence between the performance of pure lines and their hybrids (e.g. design 4 in 639 

Griffing 1956) can be explained by genetic interactions (i.e. dominance), it is biologically 640 

difficult to neglect intra-genotypic interactions in mixtures. However, if the focus is to detect 641 

genotypes that are particularly good partners for complex mixtures, it might be more relevant 642 

to remove pure stands. Running the analysis without the pure stands gave lower GMA 643 

predictions for the high yielding elite varieties (e.g. Trémie, Boregar ... Figure B.3) while 644 

different varieties such as Soissons showed higher GMA, therefore appearing as particular 645 

good mixing partners. In that case, no SMA effect was detected for yield, while it was still 646 

present for spike density (p=0.06) and TKW (p=0.009) (data not shown). Another approach 647 

has been proposed in the literature to account for the inter- and intra-genotypic interactions 648 

within mixtures. It is based on the partitioning of the GMA into a GPA (General Performing 649 

Ability) reflecting the genotypic effect in pure stand, and a TGMA (True General Mixing 650 

Ability) being the part of the GMA truly due to the mixing conditions obtained when analyzing 651 

the over-yielding (OY, i.e. the difference between the yield of the mixture and the mean of its 652 

components in pure stands) as a response variable (Federer et al. 1982; Gizlice et al. 1989; 653 

Knott and Mundt 1990; Lopez and Mundt 2000). In these studies, both GPA and TGMA have 654 

been found important for mixing ability. Here, we chose to include the pure stands in the 655 

observations for modeling mixing ability, since SMA of the pure stands (SMAii) in Model 2 656 

provides sufficient information on how each genotype performs in pure stands in comparison 657 

with its GMA in the experiment. Both approaches are strongly divergent in their philosophy: in 658 
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the GPA/TGMA approach, pure stands and mixtures performances are used independently 659 

to estimate GPA and GMA, and the pure stand performances are considered as a reference 660 

to compute the TGMA. In the present model, pure stands and mixtures are jointly used to 661 

estimate GMA and SMA, and the intra-genotypic interaction (SMAii) has the same status as 662 

the inter-genotypic interaction (SMAij), which seems biologically sound. 663 

 664 

4.3 Variance components vary between the two studied locations 665 

For all response variables in the binary mixtures trial (LM), the variance of GMA was higher 666 

than the one of SMA, in accordance with Knott and Mundt (1990) in similar trials, while no 667 

SMA effect at all was found in the experiment involving higher order mixtures, as in Lopez 668 

and Mundt (2000). However, only GMA/SMA estimates for yield can be compared among the 669 

two experiments since the other response variables differed among LM and CF. The absence 670 

of SMA in the CF experiment might be due to three possible factors which are confounded in 671 

this experimental design, and might contribute to limit the inter-genotypic interactions in CF. 672 

Firstly, the CF trial was conducted under more favorable conditions (higher yield objective 673 

and nitrogen inputs) that might have led to less stresses for the plants and therefore less 674 

opportunity for complementarity or synergy mechanisms to express among mixtures’ 675 

components. Secondly, the panel used in the CF experiment was a subset of the panel used 676 

for the Le Moulon experiment, the genotypes were less contrasted than in the LM trial (only 677 

one landrace included in the panel, lower diversity in functional traits) resulting in lower 678 

competition/synergies. Thirdly, the CF experiment involved higher order mixtures in which 679 

SMA within each pair of genotypes might have been too low to be detected (increasing the 680 

number of binary interactions results in a dilution of their effects), or the possible occurrence 681 

of higher order interactions might have masked the binary ones. Thus, this could lead to 682 

reducing the possibility to observe SMA effects in the CF trial compared to the LM trial. 683 

For yield in the LM trial, the share of the genetic variance due to SMA effect was larger with 684 

Model 3 than with Model 2, indicating that the SMA variance might also be due to intra-685 
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genotypic interactions within mixtures. However, both models including SMA did not provide 686 

a significantly better fit than the model with GMA only (and the differences in AIC values for 687 

the three models were very small for all response variables (Table 1)), as already found by 688 

Gizlice et al. (1989). In contrast, Gallandt et al. (2001) in wheat or Federer et al. (1982) in 689 

bean found significant SMA. Spike density displayed a SMA variance ratio of 0.61 with Model 690 

3, indicating strong interactions between plants for this response variable. This is consistent 691 

with the fact that the number of tillers and therefore the number of spikes are known to be the 692 

most plastic traits when changing plant density (Darwinkel 1978) and/or the phenotypes of 693 

neighboring plants in mixtures (Jackson and Wennig 1997; Cowger and Weisz 2008, 694 

Lecarpentier 2017, Lecarpentier et al. in press). This is also in line with the clear-cut 695 

difference observed in the range of spike density in the LM trial when comparing pure stands 696 

and binary mixtures (respectively 217.5 to 490 for pure stands and 262.5 to 555 for mixtures). 697 

These specific effects observed on mixtures occurred in the experiment characterized by a 698 

low density leading to plasticity for tillering, and selection effects between genotypes due to 699 

differences in potential productivity. As this leads to differences in genotype frequencies in 700 

the harvested grain, it might be interesting to measure the proportion of grains (or spikes) of 701 

each genotype in mixtures to further investigate the specific effects and better predict the 702 

mixture performances based on individual contributions of the components. The estimation of 703 

selection effects may help to better understand the changes in proportions of the genotypes 704 

over time (Finckh and Mundt 1992; Loreau and Hector 2001; Barot et al. 2017) but this 705 

requires particular designs or systems for separating the mixture components. 706 

 707 

4.4 BLUP 708 

In the LM experiment, the Trémie genotype showed the highest BLUP value for both GMA 709 

and SMAii due to its high productivity in particular in pure stand. However, the binary mixtures 710 

involving this genotype had among the lowest SMAs and all had lower yields than expected 711 

based on the pure stands components (i.e. negative OY), therefore indicating that Trémie, as 712 
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an elite variety selected for performing well in pure stand conditions, might not be the best 713 

“mixing partner” to combine. On the contrary, the genotype Soissons had intermediate GMA 714 

(in both trials) and a low SMA in pure stand, while its SMAs in mixtures were high and the 715 

mixtures displayed high yields (Soissons also had the highest GMA when considering 716 

mixtures only). This could be due to a favorable mixture design for this genotype, but the OY 717 

was always positive for this genotype (except when mixed with Trémie) with a mean of 718 

+7.7q.ha-1 showing its potential for mixing conditions. The important mixing ability for yield of 719 

this genotype might be explained by a high mixing ability for spike density. These results 720 

show the importance of taking both GMA and SMA into account for selecting candidates for 721 

mixtures. 722 

 723 

4.5 Prediction of mixtures and pure stands performances based on BLUP values 724 

Prediction of extreme observations was less accurate for response variables for which the 725 

correlation between mixtures and corresponding means of the pure stand means was lower. 726 

This might be because the GMA is an average effect leading to a shrinkage of the predicted 727 

values towards the mean of the observed mixtures performances involving the given 728 

genotype (which is partly corrected when including SMA in the models). It should also be 729 

noted that the GMA of the genotypes are relative to the assessed panel. This is particularly 730 

important since the GMA are computed using a common measure for all the components of a 731 

given mixture. In this regard, Federer et al. (1982) proposed an alternate model to analyze 732 

mixtures when individual component performances are available. Using this alternate model 733 

should lead to a reduction of the shrinkage effect since the GMA of a genotype is not 734 

dependent on the performances of its associated genotypes. Finally, the mixture 735 

performances are predicted assuming that the proportions of the components are the same 736 

as those used for sowing. 737 

 738 
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4.6 Predictions of higher order mixtures from binary mixtures evaluated in another 739 

experiment 740 

The GMA and SMA have been found quite variable over environments in other studies (Knott 741 

and Mundt 1990; Gallandt et al. 2001) but interestingly the GMAs predicted for yield by the 742 

experiments at Le Moulon and Clermont-Ferrand proved to be highly correlated (0.903) 743 

although one site had higher order mixtures, and the Clermont-Ferrand panel was only a 744 

subset of the Le Moulon panel. We assessed the ability of the pure stands and the binary 745 

mixtures of the LM experiment to predict the CF experiment mixtures and especially the 746 

higher order mixtures. The correlation between predicted and observed values was found 747 

decreasing with increasing orders mixtures (but for binary mixtures, it should be borne in 748 

mind that all binary mixtures observed in the CF trial were also observed in the LM trial). 749 

However, predictions based on binary mixtures were better than based on pure stands, as 750 

previously observed in literature (Lopez and Mundt 2000; Mille et al. 2006). The Kendall’s 751 

correlation coefficient was also calculated since the concordance in the ranking of mixture 752 

performances is desirable for breeding perspectives. This correlation was at least equal when 753 

the four-way and the eight-way mixtures were predicted from the LM observations without the 754 

pure stands (m) than when they were included (m+p), suggesting that the exclusion of pure 755 

stands from the GMA predictions does not degrade the predictions of high order mixtures. A 756 

higher correlation between observed and predicted values was expected when using all 757 

observations (m+p) than when using mixtures only (m), but the aim was to assess the impact 758 

of the pure stand information on the correlation. 759 

 760 

4.7 Improving screening and breeding strategies 761 

The two mixture designs used in this study were performed empirically, as in all agronomical 762 

and ecological experiments we have reviewed. This raises the question of how to optimize 763 

the experimental designs used to better estimate GMA/SMA. As far as we know, this 764 

question has been poorly addressed in the literature. For example Federer (2002) and 765 
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Raghavarao and Federer (2003) have proposed balanced incomplete designs to achieve 766 

estimability of the GMA and SMA for a specific number of varieties and three-way mixtures, 767 

without giving rules on the way varieties should be mixed. The experimental design 768 

optimization remains to be studied. The BLUP framework proposed here will allow such 769 

optimization, exploring various GMA/SMA ratios, according to panel/species biological 770 

characteristics. 771 

Different designs should be chosen for the estimation of mixing ability, depending on the 772 

objective of the experiment (i.e. assessment of GMA-SMA for a panel, improvement of mixing 773 

ability in breeding scheme) and the structuration of GMA and SMA effects. Once a design 774 

has been chosen for estimating mixing ability, it can be optimized using power tests to 775 

maximize the accuracy of the GMA and SMA predictions, whether or not using higher order 776 

mixtures instead or in addition to binary mixtures, whether or not including the pure stands, 777 

varying the proportion of possible mixtures to be observed, the number of observations per 778 

genotype, the number of replicates per mixture, the mixture composition, … and taking into 779 

account the gain in accuracy regarding the costs and efforts invested in the experimental 780 

design. The comparison of the power of different types of incomplete designs (nested design, 781 

balanced incomplete factorial design, topcross design, random design as used by Zhao et al. 782 

(2015) for combining ability analysis) may allow to identify the most adapted and powerful 783 

type of design regarding a particular situation, and to tailor it into an optimized design for 784 

mixing ability estimation. Since mixing ability might vary across environments and might be 785 

subject to interactions with environment, the decision to replicate the experimental design in 786 

different environments would depend on the objectives, resources and potential GxE 787 

interactions. 788 

Parameters to consider for assessing mixing ability are the correlation between the 789 

performances of mixtures and predictions from their pure stand components, and the 790 

importance of the GMA vs SMA effects. Therefore, in a breeding scheme, a preliminary 791 

experiment must be carried out in order to characterize the panel first and thus guide the 792 
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breeding strategy and objectives. This study exemplifies the kind of preliminary study that 793 

can be developed to assess variance components. Three cases are expected: i) high 794 

correlation between the mixture performances and the mean of their pure stand components, 795 

ii) important GMA versus SMA, iii) important SMA. 796 

In the case of a strong correlation between mixtures and the mean of their pure stand 797 

components, information on the performances of pure stands can be used since it requires 798 

less observation. In contrast, if the GMA is moderately or weakly correlated to the genotypic 799 

effects in pure stands or if SMA effects are detected, it would be necessary to include 800 

mixtures in the design, and consider excluding the pure stands in order to limit the number of 801 

plots especially for the development of high order mixtures. In addition to this advantage, in 802 

the LM trial, the exclusion of pure stands for predicting GMA and SMA effects led to a slight 803 

improvement in correlations between observed and predicted values for yield, spike density 804 

and TKW, while the SMA was reduced to zero for the yield. 805 

When the GMA is the major source of variation, compared to the SMA, it could be wiser to 806 

focus on the components per se for mixing rather than on combinations of components. The 807 

experimental design should be based on genotype screening under conditions that allow 808 

interactions between different genotypes such as alternate rows (as proposed by Barot et al. 809 

2017) or mixtures with a tester (that can be a genotype with high GMA or eventually a mixture 810 

itself to save space and if the further purpose is the development of higher order mixture) for 811 

instance. If the SMA is low but not negligible, it might be interesting to search for panel 812 

structure to optimize the experimental design. 813 

When SMA effects are important, the existence of complementarity groups for mixing ability 814 

should be investigated. As carried out for hybrid development, the use of clustering methods 815 

to search for heterotic-like pattern might allow to capture some of the specific effects in the 816 

GMA (increasing the accuracy of mixture performance predictions), and to further improve 817 

the complementarity between components within mixtures structuring the panel into groups 818 

(Zhao et al. 2015). For the development of higher order mixtures, the presence of higher 819 
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order specific effects might be investigated (Federer 1999) to decide if the assessment of 820 

binary mixture is sufficient or if higher order mixtures should be included in the design. If each 821 

genotype is observed in several mixtures, the stability of the SMA effects involving the 822 

genotype might be assessed, allowing to identify the most stable genotypes for specific 823 

effects; and stability of SMA over environments might be investigated. 824 

The mixing ability structuration between GMA and SMA has consequences on the conception 825 

of the breeding strategy. When the mixture performances are highly predictable based on 826 

pure stands (first case), any particular adaptation of the breeding scheme is required for 827 

selecting the best performing genotypes, other than assuring that the final mixtures are 828 

agronomically coherent. When the selection focuses on GMA (second case), genotypes 829 

should be assessed and selected in interaction with each other or with testers. Interaction 830 

traits (e.g. the number of spikes per plant) and the potential plasticity for these traits can be 831 

integrated into the screening or used as selection criteria. When SMA effects are important 832 

(third case), it is required to assess combinations of genotypes, but it is also desired to 833 

reduce the number of mixtures to evaluate. Prediction of mixture performances may then rely 834 

on both genotypic and phenotypic information (kinship, molecular markers, interaction traits). 835 

The inclusion of genetic relatedness matrices as covariance matrices for the GMA and the 836 

SMA random effects in the mixed models may improve the prediction of the mixing effects, 837 

while allowing for predicting unobserved mixtures or mixtures involving unobserved 838 

genotypes (as for combining ability analysis and predictions of performances of hybrids, 839 

Bernardo 1995; Falconer et al. 1996; Lynch and Walsh 1998). Phenotypic similarities 840 

assessed on pure stand performances and traits involved in plant-plant interactions could 841 

also be used as covariance matrices. On a more general level, the identification of traits 842 

associated to mixing ability could be relevant for integrating new selection criteria in breeding 843 

for mixtures, but should also help to better understand the functioning of the mixtures (also 844 

regarding traits complementarity between genotypes or species) and to improve the design of 845 

the mixtures (Barot et al. 2017). 846 
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Note that this methodological framework can be easily further adapted to mixtures with 847 

varying proportions of the different components (by adjusting the weighting coefficients of 848 

GMA and SMA ( 1

( )K n
, 

( )
2

1
K n( )

 and 1

( ( ))²K n
, in Models 1, 2 and 3) based on their proportion 849 

of sowed seeds and neighboring probabilities), and notably to inter-specific mixtures 850 

analysis. 851 
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