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The model xeno-estrogen bisphenol A (BPA) has been extensively studied over the

past two decades, contributing to major advances in the field of endocrine disrupting

chemicals research. Besides its well documented adverse effects on reproduction and

development observed in rodents, latest studies strongly suggest that BPA disrupts

several endogenous metabolic pathways, with suspected steatogenic and obesogenic

effects. BPA’s adverse effects on reproduction are attributed to its ability to activate

estrogen receptors (ERs), but its effects on metabolism and its mechanism(s) of action at

low doses are so far only marginally understood. Metabolomics based approaches are

increasingly used in toxicology to investigate the biological changes induced by model

toxicants and chemical mixtures, to identify markers of toxicity and biological effects. In

this study, we used proton nuclear magnetic resonance (1H-NMR) based untargeted

metabolite profiling, followed by multivariate statistics and computational analysis of

metabolic networks to examine the metabolic modulation induced in human hepatic

cells (HepG2) by an exposure to low and very low doses of BPA (10−6M, 10−9M,

and 10−12M), vs. the female reference hormone 17β-estradiol (E2, 10−9M, 10−12M,

and 10−15M). Metabolomic analysis combined to metabolic network reconstruction

highlighted different mechanisms at lower doses of exposure. At the highest dose,

our results evidence that BPA shares with E2 the capability to modulate several major

metabolic routes that ensure cellular functions and detoxification processes, although the

effects of the model xeno-estrogen and of the natural hormone can still be distinguished.

Keywords: HepG2, metabolomics, BPA, 17β-estradiol, endocrine disruption, metabolic network, multivariate
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https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2018.00571
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2018.00571&domain=pdf&date_stamp=2018-09-25
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:nicolas.cabaton@inra.fr
https://doi.org/10.3389/fendo.2018.00571
https://www.frontiersin.org/articles/10.3389/fendo.2018.00571/full
http://loop.frontiersin.org/people/581274/overview
http://loop.frontiersin.org/people/289614/overview
http://loop.frontiersin.org/people/537429/overview
http://loop.frontiersin.org/people/133175/overview


Cabaton et al. BPA Effects on Liver Metabolome

INTRODUCTION

In the field of endocrine disrupting chemicals (EDCs), bisphenol
A (BPA) is among the xeno-estrogens that have been the subject
of the most extensive studies over the past two decades. In
addition to its adverse effects on reproduction and development
observed in rodents, BPA was found to disturb several metabolic
pathways, resulting in steatogenic and obesogenic effects (1).
Effects of BPA on metabolism and obesity have been assessed
in several European reports. Studies carried out in rodents
pre- and postnatally exposed to BPA have demonstrated
significant changes in metabolic functions, evidenced by effects
on lipogenesis, glucose, or insulin regulation, and body weight
gain (2). Although these endpoints were not taken so far into
account in the final risk characterization of BPA exposure, they
have been clearly mentioned in the EFSA opinion on the risks
to public health related to the presence of BPA in foodstuffs.
The metabolic endpoint was not taken forward for assessing the
toxicological reference point, but was taken into account in the
evaluation of uncertainty for hazard and risk characterizations
(2). EFSA recommended further research on the potential
adverse effects of BPA for which there are uncertainties, in
particular metabolic endpoints (2). In its opinion on BPA, the
European Chemicals Agency (ECHA) considered it prudent
to take the metabolic effects into account in hazard and risk
assessment and in health impact assessment (3). In 2017, the
French agency for food, environmental and occupational health
and safety (ANSES) submitted a proposal to ECHA to classify
BPA as a substance of very high concern within the framework
of the European REACh regulation, based on its endocrine
disrupting properties, including metabolic effects, which may
cause serious effects to human health (4). This proposal has been
adopted by ECHA’s member state committee.

Although part of BPA adverse effects are attributed to its
ability to activate estrogen receptors (ERs), its mechanism(s)
of action at low doses remain(s) incompletely known (5). In
particular, the effects of BPA on metabolism have been found
to be connected with glycaemia and insulin regulation as well
as lipogenesis, but little is known on the impact of BPA
on biochemical mechanisms underlying observed changes in
metabolic profiles, which likely involve other metabolic pathways
as well (6–8).

Metabolomics based approaches are increasingly used in
toxicology to investigate the biological changes induced by
single toxicants or chemical mixtures, to identify markers of
toxicity, and achieve a better understanding of the adverse
outcome pathways (AOP) of selected chemicals (9). We
previously demonstrated in CD1 mice and Sprague Dawley
rats, that the metabolome is modulated in these animals
following perinatal exposure to low doses of BPA (10–12). In
the context of the implementation of the REACh regulation,
and given the need to reduce animal experiments, in vitro
studies become a priority in toxicity testing. High throughput
assays that use cells or cell lines, preferably of human origin,
are required to assess relevant disruptions in key toxicity
pathways (13, 14). The development of metabolomics, and,
in parallel, of bio-informatics modeling based on omics data,

opens new possibilities to assess cell response to external stimuli.
Combined with appropriate multivariate statistical approaches,
metabolomics allows discriminating between sub-populations
(of individuals or cells) according to their exposure conditions
and evidencing endogenous metabolites which have significantly
different levels between these groups, and therefore constitute
a metabolic fingerprint of the metabolic modulations induced
by the exposure. Several studies reported biomarkers discovery
using such approach (15, 16).

In the present study, we used proton nuclear magnetic
resonance (1H-NMR) based untargeted metabolite profiling
followed by multivariate statistics and computational analysis
of metabolic networks to examine the metabolic modulation
produced in human hepatic cells (HepG2) by an exposure
to low and very low doses of BPA, vs. the female reference
hormone 17β-estradiol (E2). The HepG2 cell line is derived
from a human hepatoblastoma. This cell line expresses
biotransformation capacities for numerous xenobiotics, notably
BPA (17). Expression of the estrogen receptor (ER) isoform
α was established in different publications (18, 19). Specific
biological effects of E2, a ligand of the estrogen receptor, were
demonstrated in this cell line as well (18–21). The HepG2 cell
line was selected as a cell line model broadly used in toxicology as
well as metabolomic studies (16, 22, 23).

The objective of this work was to identify and compare
the metabolic consequences of an exposure to low doses of
the xeno-estrogen BPA and the reference hormone E2 using
proton NMR metabolomics approach combined with in silico
network reconstruction, to identify the cellular pathways most
significantlymodulated by these twomolecules, and seek for their
commonalities and differences.

MATERIALS AND METHODS

Chemicals
Bisphenol A (4,4’-isopropylidenediphenol, BPA), 17β-estradiol
(E2) and dimethyl sulfoxide (DMSO) (with chemical purity
> 99%) were obtained from Sigma-Aldrich (Saint Quentin
Fallavier, France). Penicillin, streptomycin, trypsin, and PBS were
also purchased from Sigma-Aldrich. The concentration of the
stock solutions was 50mM in DMSO.

Cell-Line
HepG2 human hepatoblastoma cells (ATCC N◦ HB-8065) were
cultured in monolayer culture in phenol red-free αMEM (Fisher
Scientific, France) supplemented with 10% fetal calf serum v/v
(PAN biotech), penicillin (100U mL−1), and streptomycin (100
µg mL−1) (Fisher Scientific), in a humidified atmosphere of
5% CO2 at 37◦C. Continuous cultures were maintained by sub-
culturing flasks every 3–5 days.

Cells Treatments and Sample Preparation
for 1H NMR Spectroscopy
HepG2 cells, 1 × 106 cells per well, were grown in six well-
plates containing 4mLmedium per well. Only one concentration
was assessed per plate. Each experiment was repeated at least
three times to get a final number of 18 samples per treatment.
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After 24 h, cells were washed in PBS and medium was replaced
by serum-free and phenol red-free medium. Cells were exposed
to 0.25% (v/v) DMSO in the culture medium (controls) and
supplemented with BPA (10−6M, 10−9M, or 10−12M) or E2
(10−9M, 10−12M, or 10−15M) or DMSO (0.25%, control). At the
end of the 24-h treatment period, cells were washed in ice cold
PBS and were recovered by scraping each well twice with 1mL ice
cold water/acetonitrile (90/10, v/v). After each water/acetonitrile
addition, cells were agitated with a vortex for 1min. Samples were
then centrifuged at 7000 g for 15min at 4◦C. The supernatant was
then evaporated to dryness. The lyophilisates were reconstituted
in 600 µL of D2O containing 0.25mM TMSP (as a chemical shift
reference at 0 ppm). The reconstituted solutions were transferred
to NMR tubes.

1H Nuclear Magnetic Resonance (NMR)
Analyses
All 1H-NMR spectra were obtained on a Bruker DRX-600-
Avance NMR spectrometer operating at 600.13 MHz for 1H
resonance frequency using an inverse detection 5mm 1H-13C-
15N cryoprobe attached to a CryoPlatform (the preamplifier
cooling unit).

The 1H-NMR spectra were acquired at 300K using the Carr-
Purcell-Meiboom-Gill (CPMG) spin-echo pulse sequence with
pre-saturation, with a total spin-echo delay (2nτ ) of 320ms to
attenuate broad signals from proteins and lipoproteins. A total of
128 transients were collected into 32 k data points using a spectral
width of 12 ppm, a relaxation delay of 2.5 s and an acquisition
time of 2.28 s. Prior to Fourier Transformation, an exponential
line broadening function of 0.3Hz was applied to the FID.

To confirm the chemical structure of metabolites of
interest, 2D 1H-1H COSY (Correlation Spectroscopy) and
2D 1H-13C-HSQC (Heteronuclear Single Quantum Coherence
Spectroscopy) NMR experiments were performed on selected
samples.

Data Reduction and Multivariate Statistical
Analyses to Create Metabolic Fingerprints
Multidimensional statistical analyses of NMR data were
performed using Simca-P12 software (Umetrics, Umeå,
Sweden). Principal Component Analysis (PCA) was first used
to detect intrinsic clusters and eventual outliers. Then Partial
Least Squares—Discriminant Analysis (PLS–DA) was used to
study the effect of the treatment on the cell metabolome (BPA or
E2). This supervised method maximizes the separation between
treatment groups. The number of components in the PLS models
was chosen by cross validation (7-fold). The R² parameter
represents the explained variance. The predictive performance
of the model was evaluated using the Q² parameter (predictive
capacity), calculated by cross-validation. Typically a robust
model is characterized by a R2

>50% and a Q2
>0.4 (24).

To remove confounding variation (experimental or
instrumental) not linked to the studied factor (treatment),
OSC filtering was applied to the data, as such variations may
overshadow the variability due to the factor under study (25).

The treatment was used as a corrective factor. Filtered data were
mean-centered and/or Pareto scaled.

In addition, the statistical significance and validity of
the PLS-DA models were assessed using a permutation
test (200 permutations). This test determines whether the
specific classification of individuals in the designated groups is
significantly better than any other random classification in two
arbitrary groups (26).

VIP (Variable Importance in the Projection) was used to
determine the most important NMR variables for the separation
observed between experimental groups. VIP is a global measure
of the influence of each variable on the PLS components. An
arbitrary threshold of VIP>1.5 was chosen to select the variables.
The Kruskal–Wallis test, a non-parametric version of Analysis
of Variance, was then used to determine variables that differed
significantly between groups (e.g., “discriminant” metabolites),
with 0.05 being chosen as the level of significance. The set of
discriminant metabolites identified from the comparison of a
given treatment condition (for instance BPA 10−6M) vs. control
conditions is considered as a “metabolic fingerprint” of the
impact of this treatment exposure.

Extraction of Modulated Metabolic
Network
Genome Scale Metabolic Networks (GSMN) aim at gathering
in a single formalism all metabolic reactions which can
occur in an organism (27). Each reaction is described by its
substrates and products (metabolites), its stoichiometry, the
enzyme(s) catalyzing it and the genes encoding the enzyme.
We used the Recon2 human GSMN (28) which contains 7,440
reactions and 5,063 metabolites. In this network, metabolites are
assigned to cellular compartments (mitochondria, cytoplasm. . . ).
Nevertheless, current global and untargeted metabolomics
approaches do not provide information on cellular localization
of metabolites. Hence, we created a modified version of Recon2
network by considering any metabolite belonging to several
compartments as a single metabolite. The final modified “one-
compartment” version of Recon2 that we used in our analyses
contains 4,210 reactions and 2,592 metabolites.

We performed metabolic sub-network extraction from the
discriminant metabolites identified from the statistical analyses.
Metabolic sub-network extraction consists in computationally
identifying among the 4,210 reactions, the ones that are more
likely to be related to the metabolic fingerprint of each exposure.
The algorithm computes the lightest path between each pair of
metabolites in the fingerprint. The lightest path is a sequence
of reactions and metabolites connecting two metabolites and
minimizing a topological criterion in the network (29). For one
metabolic fingerprint, the related sub-network is thus the union
of all the lightest paths between metabolites in the fingerprint.
Metabolic sub-networks were generated from the metabolic
fingerprints obtained under exposure to the different doses of
BPA (e.g., for instance, “BPA 10−6M metabolic subnetwork” for
the higher dose of BPA) and E2 (for instance, the “E2 10−9M
metabolic subnetwork”).
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In order to compare the specificity of the metabolic sub-
networks obtained under various exposure conditions, we
compared the set of reactions and metabolites belonging to the
different sub-networks. In particular, we created a sub-network
specific to the effects of a BPA 10−6 exposure by subtracting,
from the BPA 10−6Mmetabolic subnetwork, the metabolites and
reactions belonging to the E2 10−9M metabolic sub-network.
All computational and visualization tasks were performed within
MetExplore web server based on the modified Recon2 metabolic
network (biosource id 3223) (30, 31).

RESULTS

BPA Effects
A two-component PLS-DA model was constructed based on
all BPA-exposed groups data (4 groups: DMSO, BPA 10−6M,
BPA 10−9M, and BPA 10−12M). This model explained 62.2%
of the variability (R2) with a predictive ability (Q2

= 0.561)
validating the robustness of this model (24). The score plot is
presented in Figure 1, showing a clear separation between the
control (DMSO) group and all BPA exposed cells along axis
1 (X axis, 1st latent variable among 2). The highest BPA dose
(10−6M) group was discriminated from the BPA 10−9Mand BPA
10−12M groups, respectively, along the 2nd axis (Y axis, 2nd
latent variable). However, no significant discrimination between
these two lowest BPA exposure groups (10−9M and 10−12M)
was evidenced in this 4-group comparison. Twenty metabolites
were found to be responsible for the separation between BPA
exposed groups and the control group (Table 1). This PLS-DA
model was validated by the Permutation test, confirming a robust
model (32). Main metabolites involved in observed differences
were amino acids, with a significant modulation of arginine,
isoleucine, leucine, lysine, proline, and valine. Interestingly,
specific metabolites such as glycerol, glycerophosphocholine,
succinate and serine were significantly discriminant for the BPA
10−6M group only. Reduced glutathione was modulated in the
lowest BPA dose group only, as well as AMP.

17β-Estradiol (E2) Effects
Using an identical approach, a two-component model was
constructed for E2-exposed cells, based on the whole set of
data. This model explained 81.6% of the variability (R2) and
demonstrated a high predictive ability (Q2

= 0.635). The score
plot showed a clear separation between the DMSO and E2
doses groups (E2 10−12M and E2 10−15M) and the E2 10−9M
group along axis 1 (Figure 2). The “lowest” doses of E2 groups,
namely E2 10−12M and E2 10−15M were discriminated from the
DMSO group along the 2nd axis. No discrimination between
the E2 10−12M and E2 10−15M groups was found in this four-
group comparison. The PLS-DA models were validated by the
permutation test (32).

Twenty-four metabolites were significantly increased or
decreased and were found to be responsible for the separation
between groups (Table 2). Some amino acids, namely alanine,
glycine, lysine, proline, tyrosine, and valine, were identified as
discriminant only for the highest dose of E2, whereas other
metabolites (including acetate, formate, and isopropanol) were

FIGURE 1 | Two-dimensional PLS-DA score plot of HepG2 cell

extracts integrated 1H-NMR spectra for BPA exposure. Each star represents

an observation projected onto the first (horizontal axis) and the second (vertical

axis) PLS-DA latent variables. BPA doses are shown in different colors: DMSO

(green; N = 17), BPA 10−6 (light orange; N = 12), BPA 10−9 (dark orange; N

= 12), BPA 10−12 (dark red; N = 12) (R2Y= 62.2% and Q2
= 0.561).

modulated only for the 2 lowest doses. Reduced glutathione was
also modulated for the highest tested dose of E2, contrary to BPA.
Choline and ethanolamine were significantly modulated at the 3
tested doses.

Comparison of BPA and E2 Effects
The 7-group comparison generated a 4-component PLS-DA
model, explaining 59.5% of the treatment variability and having a
Q² value of 0.508 (robust model). Figure 3 displays the projection
of the 2 first latent variables (out of 4), demonstrating a marked
separation between the effects of “low” estrogenic doses (BPA
10−9M, BPA 10−12M, E2 10−12M, and E2 10−15M) and that
of higher doses (BPA 10−6M and E2 10−9M), along axis 1. In
addition, a marked discrimination between the effects of the
xeno-estrogenic model compound BPA and that of the natural
hormone E2 was observed along axis 2. All these groups were
clearly separated from the DMSO (control) group. This 7-group
comparison model was further validated by the permutation
test step. As detailed in Table 3, 19 metabolites were found
to be discriminant between the 6 exposed groups and the
control group (DSMO), respectively. Some of these discriminant
metabolites, for instance arginine and glutamine, were found to
be similar for all BPA and E2 exposed groups, whatever the dose.
Conversely, the modulation of metabolites such as creatinine,
citrate and leucine (BPA, all doses) and ethanolamine (E2, all
doses) appeared to be molecule specific.

Finally, we proceeded to network analysis based on 1H-
NMR data, to further investigate the effects shared by the two
molecules.

Network of BPA and E2 Effects
Multivariate analysis revealed that BPA 10−6M and E2 10−9M
appear to share some metabolic effects (axis 2) but also have
specific effects (axis 1), suggesting both common and molecule-
specific mechanisms of action. In order to further distinguish
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TABLE 1 | Endogenous metabolite variations induced by BPA exposure (BPA samples compared to DMSO samples) in HepG2 cells.

Metabolites 1H NMR chemical shifts (ppm) BPA 10−6 M BPA 10−9 M BPA 10−12 M

Alanine 1.48 (d,7.2); 3.79(q,7.2) x

AMP 4.03(m); 4.38(m); 4.51(m);6.14(d,5.9);8.27(s); 8.61(s) x

Arginine 1.66(m); 1.74(m); 1.93(m); 3.25(t, 6.9) x x x

Asparagine 2.85(dd, 16.8 and 7.4); 2.95(dd, 16.8 and 4.3); 4.01(dd, 7.4 and 4.3) x

Citrate 2.66(d,18.1); 2.81(d,18.1) x x

Creatine 3.04(s); 3.93(s) x x x

Dimethylglycine 2.93(s) x

Glutamine 2.14(m); 2.46(m); 3.78(t,6.2) x x x

Reduced glutathione 2.17(m); 2.56(m); 2.96(m); 3.78(m); 4.58(m) x

Glycerol 3.57(m); 3.66(m); 3.79(m) x

Glycerophosphocholine 3.23(s); 3.62(m); 3.68(m);3.89(m); 3.94(m); 4.33(m) x

Isoleucine 0.94(t,7.4); 1.01(d,7), 1.27(m); 1.47(m); 1.98(m); 3.68(d,4) x x x

Isopropanol 1.16(d,6.11); 4.01(m) x

Lactate 1.33(d,6.9); 4.12(q,6.9) x x

Leucine 0.96(t,6.3); 1.71(m); 3.74(m) x x x

Lysine 1.45(m); 1.52(m); 1.73(m); 1.91(m); 3.02(t, 7.5) x x x

Proline 2.01(m); 2.08(m); 2.35(m); 3.35(m); 3.42(m); 4.14(dd, 6.7 and 8.7) x x

Serine 3.84(m); 3.94(dd,12.4 and 5.8); 3.98(dd, 12.4 and 3.7) x

Succinate 2.41(s) x

Valine 0.995(d,7); 1,045(d,7); 2.28(m);3,62(d,4.4) x x x

Chemical shifts (ppm) are relative to TMSP (1H, δ, 0 ppm). Multiplicity of signals is indicated within brackets: s, singlet; d, doublet; dd, doublet of doublet; t, triplet; q, quadruplet and m,

multiplet. Values into brackets are 1H–1H splittings (Hz) in cases where these are clearly resolved. “x” represents significantly modultated concentration compared to DMSO samples.

FIGURE 2 | Two-dimensional PLS-DA scores plot of HepG2 cell extracts

integrated 1H-NMR spectra for E2 exposure. Each dot or star represents an

observation projected onto the first (horizontal axis) and the second (vertical

axis) PLS-DA latent variables. E2 doses are shown in different colors: DMSO

(green; N = 17), E2 10−9 M (light orange; N = 12), E2 10−12 M (dark orange;

N = 12), E2 10−15 M (dark red; N = 12) (R2Y= 81.6% and Q2
= 0.635).

between shared mechanisms (which likely reflect an estrogenic
effect) from the effects specific to BPA 10−6M, we performed
a network analysis. Two networks were reconstructed based
on metabolic fingerprints obtained in the 7-group analysis
(see Supplemental Figures 1, 2, Supplemental Tables 1, 2, and
the Material and Methods section for sub-network extraction).
We extracted the common part for these two subnetworks,

resulting in a common BPA-E2 sub-network (Figure 4). This
sub-network strongly suggests that the common target between
BPA and E2, as regards metabolome modulation, relies on the
modulation of metabolic pathways involving specific amino
acids, namely valine, proline, lysine, and glutamine and,
notably, the pathways involving the production/degradation of
apolipoprotein C3 (ApoC3) and apolipoprotein C1 (ApoC1).
Other key biochemical pathways likely modulated both by BPA
and E2 high exposure doses were identified following network
reconstruction, including metabolites and reactions involved
in the urea cycle (citrulline, arginine, argino-succinate, and
ornithine) and in the Krebs cycle (isocitrate, citrate, oxaloacetate,
pyruvate).

Finally, with the aim to explore the specific effects of BPA,
we subtracted from the BPA network the part shared with E2. In
accordance with the metabolomic data that evidenced isoleucine
and leucine as specifically discriminant in BPA-exposed groups
(but not in E2 exposed groups), these two amino acids were
highlighted as major endogenous metabolites modulated by BPA
in the BPA-specific subnetwork. Network reconstruction also
identified some intermediates in the metabolism of leucine and
isoleucine, namely isovaleryl CoA and methylbutanoyl-CoA,
that are therefore likely to be specifically modulated by BPA
exposure.

DISCUSSION

In this study, we used a proton NMR global metabolomics
approach, with no a priori, to compare the effects of a
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TABLE 2 | Endogenous metabolite variations induced by E2 exposure (E2 samples compared to DMSO samples) in HepG2 cells.

Metabolites 1H NMR chemical shifts (ppm) E2 10−9 M E2 10−12 M E2 10−15 M

Acetate 1.91(s) x x

Alanine 1.48 (d,7.2); 3.79(q,7.2) x

Asparagine 2.85(dd, 16.8 and 7.4); 2.95(dd, 16.8 and 4.3); 4.01(dd, 7.4 and 4.3) x x

Choline 3.20(s); 3.52(m);4.07(m) x x x

Citrate 2.66(d,18.1); 2.81(d,18.1) x

Ethanolamine 3.14(m); 3.82(m) x x x

Formate 8.45(s) x x

Glucose 3.25(dd,7.3 and 7.9); 3.42(m); 3.47(m); 3.51(m); 3.54(m); 3.72(m); 3.73(m);

3.77(m); 3.84(m); 3.90(m); 4.65(d,8); 5.24(d,3.8)

x

Glutamine 2.14(m); 2.46(m); 3.78(t,6.2) x x

Glutamate 2.06(m); 2.13(m); 2.35(m); 3.77(dd,7.5 and 4.9) x x

Reduced glutathione 2.17(m); 2.56(m); 2.96(m); 3.78(m); 4.58(m) x

Glycerol 3.57(m); 3.66(m); 3.79(m) x

Glycerophosphocholine 3.23(s); 3.62(m); 3.68(m);3.89(m); 3.94(m); 4.33(m) x x

Glycine 3.55(s) x

Isoleucine 0.94(t,7.4); 1.01(d,7), 1.27(m); 1.47(m); 1.98(m); 3.68(d,4) x x

Isopropanol 1.16(d,6.11); 4.01(m) x x

Lactate 1.33(d,6.9); 4.12(q,6.9) x x

Lysine 1.45(m); 1.52(m); 1.73(m); 1.91(m); 3.02(t, 7.5) x

Phosphocholine 3.22(s); 3.58(m); 4.17(m) x x

Proline 2.01(m); 2.08(m); 2.35(m); 3.35(m); 3.42(m); 4.14(dd, 6.7 and 8.7) x

Serine 3.84(m); 3.94(dd,12.4 and 5.8); 3.98(dd, 12.4 and 3.7) x

Succinate 2.41(s) x

Tyrosine 3.09(dd,14.5 and 7.5); 3.21(dd,14.5 and 5,1); 3.95(dd,7.5 and 5.1);

6.9(d,8.5); 7.20(d,8.5)

x

Valine 0.995(d,7); 1,045(d,7); 2.28(m);3,62(d,4.4) x

Chemical shifts (ppm) are relative to TMSP (1H, δ, 0 ppm). Multiplicity of signals is indicated within brackets: s, singlet; d, doublet; dd, doublet of doublet; t, triplet; q, quadruplet and m,

multiplet. Values into brackets are 1H–1H splittings (Hz) in cases where these are clearly resolved. “x” represents significantly modultated concentration compared to DMSO samples.

range of concentrations of E2 and BPA on a broadly used
human hepatic cell line (HepG2). Then, we used bioinformatics
(Metabolic Network modeling) methods to further investigate
the biological pathways modulated by these estrogens: E2 as
the reference hormone, and BPA as a model xeno-estrogen
with well-documented endocrine disrupting properties, but also
strongly suspected metabolic effects. Many EDCs with xeno-
estrogenic properties can act as metabolic modulators (1, 33,
34). We previously demonstrated metabolic changes in the liver
and brain of mice exposed during intra-utero development
and lactation, to low doses of BPA (10). However, assessing
the effects of EDCs using metabolomics approaches requires
substantial resources, especially in vivo. The number of chemicals
that need to be assessed as regards their potential to induce
metabolic changes, and the necessity to comply with the “Three
Rs” (3Rs) guiding principles for more ethical use of animals
in testing, require developing alternative in vitro bioassays,
preferably based on human models. The implementation of
metabolomics and bioinformatics on the bases of in vitro
bioassays first needs to be validated with model molecules.
It also opens the road for a better understanding of the
mechanisms of action of EDCs. These approaches should be
as sensitive and relevant as possible to further examine the

reliability of biomarkers of effects of EDCs. Experiments carried
out to seek for these biomarkers should also link to low,
environmentally relevant, exposure levels of EDCs in human
body, as mentioned for xeno-estrogens by Wang et al. regarding
BPA (35).

The HepG2 cell line, derived from a human hepatoblastoma,
was selected to perform this work as it is broadly used
in toxicology, including in studies combining in vitro cell
systems and metabolomics for the identification of the mode
of action (MoA) (16, 22). Although this cell line is of limited
metabolic capacity compared to human hepatocytes, it has been
demonstrated to be efficient in the biotransformation of BPA
and the metabolic pathways were found to be similar to those
observed in humans (17, 36, 37). Expression of the estrogen
receptor (ER) isoform α was established in different publications
(18, 38). Likewise, specific biological effects of 17β-Estradiol (E2),
a ligand of the estrogen receptors, were demonstrated in this
cell line (18–21, 38). These cells were exposed to environmental
relevant concentrations of BPA and E2. The selected doses
(10−6M, 10−9M, and 10−12M for BPA, and 10−9M, 10−12M,
and 10−15M for E2) were in accordance with the bibliography
regarding their respective estrogenic potency, as it is estimated
that the estrogenic potency of E2 is approximately 1 000 to
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FIGURE 3 | Two-dimensional PLS-DA scores plot (Axis 1 and 2) of HepG2 cell

extracts integrated 1H-NMR spectra for BPA and E2 exposure. Each dot or

star represents an observation projected onto the first (horizontal axis) and the

second (vertical axis) PLS-DA latent variables. Different symbols are used for

BPA (4-point star) and E2 (circle) exposure. Doses are shown as follow:

DMSO: green (N = 17), BPA 10−6M: light orange (N = 11), BPA 10−9M: dark

orange; (N = 12), BPA 10−12M: dark red (N = 12), E2 10−9M: light orange (N

= 11), E2 10−12M: dark orange (N = 12), E2 10−15M: dark red (N = 12);

(R2Y = 59.5% and Q2
= 0.508).

10 000 time greater that BPA’ s estrogenic potency in vitro
(39, 40).

Although few papers already reported the effects of low
doses of BPA exposure on HepG2 cells, these studies mainly
used targeted approaches, providing results on hepatotoxic
endpoints, such as serum aspartate aminotransferase (AST)
and alanine transferase (ALT) measurements, or inflammatory
genes analyzed by RT-qPCR (41, 42). In our study, we applied
non targeted 1H-NMR metabolomics approach to HepG2 cells
extracts to evidence the impact of BPA on the whole metabolism,
in order to gain a more “global picture” and with no a priori
hypothesis regarding the effect of this endocrine disruptor. The
same methodology was applied to estradiol as the reference
estrogenic compound, to identify common and specificmetabolic
pathways modulated by both molecules, with the benefit of
bioinformatics and network reconstruction to help identifying
metabolites not detected directly during analyses, but yet
playing a role in the metabolic pathways modulated by BPA
and/or E2.

Several studies have reported that BPA and E2 are acting the
same way in vitro. For instance, BPA and E2 were both shown
to promote HepG2 cell proliferation by inhibition of apoptosis
and stimulation of telomerase activity via an estrogen receptor-
dependent pathway (43). In our study, metabolomics revealed
modulations of the HepG2 metabolome that are molecule
specific (discrimination between the BPA exposed groups and
the E2 exposed group). Although some metabolic pathways are
common to BPA and E2, it is interesting to note that parts of
the metabolic fingerprints are different between the 2 molecules
at the highest tested concentration (10−6M for BPA and 10−9M
for E2, respectively). This specific concentration of BPA was
reported to be estrogenic in vitro in several models such as

MCF-7 cells and ZELH-zfERs cell lines (44, 45). However, our
results suggest that BPA is able to induce a metabolic modulatory
effect, even at higher and estrogenic doses, which is different
from the metabolic modulation at the estrogenic dose of E2
(10−9M). According to Gould et al., BPA interacts with the ERα

in a distinct manner from estradiol. BPA is not merely a weak
estrogen mimic but exhibits a distinct mechanism of action at
the level of ERα. The distinct activity of BPA is most likely
due to an induction of a conformation of the activated ERα by
BPA that differs from these other known classes of ER ligands.
Generally, BPA is considered as a weak estrogenic compound
(46). Nevertheless, and despite its relatively low affinity for
ERα, an increasing number of studies have demonstrated that
BPA can promote estrogen-like activities that are similar (or
even stronger) than the ones elicited by 17β-estradiol (47).
These low-dose responses result in part from the activation of
rapid responses via non-classical ER pathways or by a different
BPA recruitment of co-activators or co-repressors (48, 49). For
instance, low doses of BPA only induce gene expression related
to lipid synthesis and trigger triglyceride accumulation in adult
mouse liver (8).

Metabolomics has already been applied to in vivo samples
from mice and rats. In both cases, we already revealed
modulations of energy metabolism (10, 12), which was also
observed in other organisms such as Daphnia magna, together
with a modulation of part of the same amino acids (such as
arginine, glutamine, lysine, valine), and lactate (50). In our case,
we also observed changes in many amino acids, as well as in
metabolites involved in energy metabolism. The modulation
of cholines suggest a modulation in the lipids composition in
the cell and in the membrane fluidity at the estrogenic dose
(10−6M BPA), which is not the case for the two other BPA doses
tested. Interestingly, reduced glutathione was modulated in the
lowest BPA dose group only, which may suggest a change in
the capacity of detoxification of the cells through this specific
biochemical pathway. More importantly, differences in reduced
glutathione levels also determine the expressed mode of cell
death, being either apoptosis or cell necrosis. Lower levels of
reduced glutathione may result in the systematic breakage of
the cell which may lead to cell death (51). The metabolic
network reconstruction highlighted paths of metabolic reactions
specifically modulated by BPA exposure but not by E2 exposure.
These paths include leucine and isoleucine, but also intermediary
metabolites of the metabolism of these 2 amino acids (isovaleryl-
coenzyme A and 2-methylbutanoyl-CoA), suggesting that the
metabolism of branched-chain amino acids might be modulated
by BPA with possible consequences in the promotion of protein
synthesis and turnover, signaling pathways, and the metabolism
of glucose (52). Isoleucine, like the other branched-chain amino
acids, is associated with insulin resistance: higher levels of
isoleucine are observed in the blood of diabetic mice, rats, and
humans (53). Also, oxidation of such amino acids may increase
fatty acid oxidation and play a role in obesity, which is consistent
with the fact that BPA is a candidate “obesogen” (54).

Regarding the specific identification of the commonly
modulated parts of the BPA and E2 metabolic networks,
it is interesting to note the presence of the urea cycle,
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TABLE 3 | Endogenous metabolite variations induced by BPA or E2 exposure (BPA or E2 samples compared to DMSO samples) in HepG2 cells.

Metabolites 1H NMR Chemical shifts δ

(ppm)

BPA

10−6M

BPA

10−9 M

BPA

10−12 M

E2

10−9 M

E2

10−12 M

E2

10−15 M

Arginine 1.66(m); 1.74(m); 1.93(m); 3.25(t, 6.9) x x x x x x

Asparagine 2.85(dd, 16.8 and 7.4); 2.95(dd, 16.8

and 4.3); 4.01(dd, 7.4 and 4.3)

x

Choline 3.20(s); 3.52(m);4.07(m) x

Citrate 2.66(d,18.1); 2.81(d,18.1) x x

Creatine 3.04(s); 3.93(s) x x x

Ethanolamine 3.14(m); 3.82(m) x x x

Glutamate 2.06(m); 2.13(m); 2.35(m);

3.77(dd,7.5 and 4.9)

x x

Glutamine 2.14(m); 2.46(m); 3.78(t,6.2) x x x x x x

Reduced glutathione 2.17(m); 2.56(m); 2.96(m); 3.78(m);

4.58(m)

x x

Glycero phosphocholine 3.23(s); 3.62(m); 3.68(m);3.89(m);

3.94(m); 4.33(m)

x x

glycine 3.55(s) x

Isoleucine 0.94(t,7.4); 1.01(d,7), 1.27(m);

1.47(m); 1.98(m); 3.68(d,4)

x x x x

Leucine 0.96(t,6.3); 1.71(m); 3.74(m) x x x

Lysine 1.45(m); 1.52(m); 1.73(m); 1.91(m);

3.02(t, 7.5)

x x x x x

Phosphocholine 3.22(s); 3.58(m); 4.17(m) x x

Proline 2.01(m); 2.08(m); 2.35(m); 3.35(m);

3.42(m); 4.14(dd, 6.7 and 8.7)

x x x

Succinate 2.41(s) x x

Tyrosine 3.09(dd,14.5 and 7.5); 3.21(dd,14.5

and 5,1); 3.95(dd,7.5 and 5.1);

6.9(d,8.5); 7.20(d,8.5)

x x

Valine 0.995(d,7); 1,045(d,7);

2.28(m);3,62(d,4.4)

x x x x

Chemical shifts (ppm) are relative to TMSP (1H, δ, 0 ppm). Multiplicity of signals is indicated within brackets: s, singlet; d, doublet; dd, doublet of doublet t, triplet; q, quadruplet and m,

multiplet. Values within brackets are 1H–1H splittings (Hz) in cases where these are clearly resolved. “x” represents significantly modulated concentration compared to DMSO samples.

including metabolites such as citrulline, ornithine and
argino-succinate, not evidenced by the metabolomic
analyses but highlighted by the metabolic network
comparison. This finding is in agreement with published
data on a subset of ToxCast chemicals including BPA
(55).

Another interesting outcome of the metabolic network
analysis is the presence of apolipoprotein C1 (ApoC1) and
apolipoprotein C3 (ApoC3) pathways in the shared mechanism
between E2 and BPA. These components of high density
lipoproteins (HDL) and very low density lipoproteins (VLDL)
respectively, are in charge of the uptake, transport and catabolism
of lipids. It has already been reported that ApoC3 was affected
by BPA exposure, as is the expression of the APOC3 gene,
which was found to be decreased in the liver of BPA-exposed
C57BL/6 mice (56, 57). It was also reported that BPA modulates
novel binding sites for SREBP-1 in genes directly or indirectly
involved in cholesterol metabolism, such as APOC3(57). BPA
exposure was also reported to be driving the upregulation of
SREBP-1 and SREBP-2 in vivo (C57/Bl6 mice) and in vitro
(HepG2 and Caco cells) (56, 58). In intestinal cells, SREBP-2 may

be involved in the BPA-induced cholesterol absorption, leading
consequently to hypercholesterolaemia (58). Some metabolites
(isocitrate, oxaloacetate, and pyruvate) and reactions (citrate
synthase, aconitase, and pyruvate carboxylase) involved in energy
metabolism, and more specifically in the first steps of the Krebs
cycle, were also pointed out as a potential common target for
BPA and E2 according to the network analysis. The Krebs cycle
was already identified in vivo after a perinatal exposure of CD1
mice, as well as for a longitudinal study in Sprague Dawley
rats exposed perinatally, all of them to low doses of BPA (10,
12, 35). Although it will be necessary to confirm these in silico
suggestions by more targeted biochemical assays, these results
once again reinforce the fact that BPA and E2 may be considered
as metabolic modulator chemicals that are interfering with the
energy metabolism.

Network analysis allows identifying reactions that are likely
to be modulated by the various exposure conditions. One
of the key challenge in metabolic network analysis is the
quality of the metabolic network reconstruction used. In fact,
since these networks are built based on genomic information
they may contain false positive reactions (reactions which
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FIGURE 4 | Metabolic pathways commonly modulated by BPA 10−6M and E2 10−9M exposure. Reactions and metabolites belonging to both the BPA 10−6M and

E2 10−9M metabolic sub-networks are represented. Reactions are represented by rectangles and metabolites by circles. Metabolites identified as discriminant in the

BPA 10−6M (resp. E2 10−9M) group compared to the control group according to the PLS-DA model are colored in green (resp. purple). Metabolites identified as

discriminant in the both BPA 10−6M and E2 10−9M groups are colored in orange. Reactions corresponding to biologically non-relevant paths between metabolites

were filtered out. For clarity, substrates and products of the reactions, not specifically belonging to the BPA 10−6M and E2 10−9M metabolic sub-networks, are not

represented. The whole list of reaction and metabolite names is presented in Supplemental Table 3.

should not be included) and false negatives (missing reactions).
Recon2 is a highly curated reconstruction for the human
metabolic network applied in many studies, but improved
versions are regularly released, such as Recon3D, which has
been recently introduced but has still not been used in the
field of metabolomics (59–62). The other challenge is the

algorithm choice to extract sub-networks. As discussed in Frainay
and Jourdan (2017), there are several options to extract paths
connecting metabolites and their efficiency largely depends on
the application: the lightest path option, chosen here, proved to
be specifically relevant and efficient to be used in metabolomics
(29).
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To go further with these findings, it would be interesting
to perform non-targeted lipidomics to identify which family of
lipids aremodulated by BPA and to complete these identifications
using targeted lipidomics for specific lipid families. To complete
our metabolomics set of data, and to improve the quality of the
metabolic networks, mass spectrometry metabolomics could be
performed in order to get access to a larger set of discriminant
metabolites in complement of the NMR generated list.

In summary, our study highlights that BPA, not only behaves
as a xeno-estrogen as regards its potential to impact fertility
and reproduction, but also shares with the natural hormone
E2, the capability to modulate major metabolic routes that
ensure cellular functioning and detoxification processes. We
also evidenced that BPA and E2 both exert distinct effects
at low and high concentrations in HepG2 cells and may act
through different mechanisms. This is consistent with many
reports about the non-monotonic dose effects of BPA and
with our current understanding of the functioning of natural
hormones, which can trigger different responses in the organism,
depending on their circulating level (34, 63). Moreover, the
results of this study, consistent with our previous in vivo results,
provide first proofs of evidence that metabolomics combined
with network reconstruction can be used in vitro (here on the
human HepG2 model) as relevant approaches to investigate
commonalities and differences in MoA. An even greater added
value of metabolic network will come with a metabolite list
as complete and specific as possible to identify the most
impacted pathways associated with BPA exposure. Connecting
these biochemical pathways with MoA will help to identify AOP
and to facilitate the hazard characterization of other compounds
(61).
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