Impact of UV-C radiation combined with biocontrol agents on the susceptibility of strawberry plants to Botrytis cinerea
Marine Forges, Florence Charles, Michel Pascal, Jawad Aarrouf, Marc Bardin

To cite this version:
Marine Forges, Florence Charles, Michel Pascal, Jawad Aarrouf, Marc Bardin. Impact of UV-C radiation combined with biocontrol agents on the susceptibility of strawberry plants to Botrytis cinerea. IOBC WPRS Bulletin, International Organisation for Biological Control - West Palaearctic Regional Section, 2018, 133, pp.86-90. hal-02618690

HAL Id: hal-02618690
https://hal.inrae.fr/hal-02618690
Submitted on 28 Feb 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License
Impact of UV-C radiation combined with biocontrol agents on the susceptibility of strawberry plants to Botrytis cinerea

Marine Forges¹,², Florence Charles², Michel Pascal¹, Jawad Aarrouf² and Marc Bardin¹
¹Plant Pathology Unit, INRA, 84140 Montfavet, France; ²UMR 95 Qualisud, Fruits and Vegetables Physiology Laboratory, Avignon University, 84916 Avignon, France
e-mail: marine.forges@inra.fr

Abstract: In order to enhance biocontrol efficacy against plant diseases, the combination of different control methods together with a given biocontrol agent can be achieved. In this study we have tested the effect of combining UV-C radiation with the application of biocontrol agents (Bacillus subtilis and Gliocladium catenulatum based products) against Botrytis cinerea on strawberry. We hypothesize that UV-C radiation applied on plants previously to biocontrol treatment, in addition to its induced resistance effect, will somehow disinfect leaves thus limiting the competition of inoculated biocontrol agents with the phyllosphere microorganisms and then promoting its development and its efficacy. We have shown that, despite the confirmed germicidal effect of UV-C radiation, this treatment applied on plants before treatment with biocontrol agent has no effect on the level of efficacy of the biocontrol agents or even it tends to lower their efficacy. Work is in progress to understand mechanisms involved and to evaluate the effect of this combination of treatments on other plant species.

Key words: Strawberry, Botrytis cinerea, UV-C, Bacillus subtilis, Gliocladium catenulatum

Introduction

Several microorganism-based products are now registered worldwide to control Botrytis cinerea on various crops, including strawberry (Nicot et al., 2016). However, the efficacy of biocontrol agents is generally considered as insufficient or inconsistent in field conditions thus promoting their use as components of an integrated disease management scheme. Increased biocontrol efficacy may then be achieved by combining various methods of protection.

Pre- or post-harvest treatment of plants or fruits with UV-C radiation has proven to be a promising tool for controlling plant pathogens. Results suggested for instance that UV-C treatment induced disease resistance against B. cinerea in lettuce (Vasquez et al., 2017), in pepper (Mercier et al., 2001) or in strawberry fruit (Jin et al., 2017). Combination of UV-C treatment with biocontrol agents has so far been successfully tested for the treatment of post-harvest diseases (Huang et al., 2015; Janisiewicz & Conway, 2010).

In this study, the objective was to evaluate the protective effect of the combination of UV-C radiation and biocontrol agents (Bacillus subtilis and Gliocladium catenulatum based products), both delivered on whole strawberry plants, against the development of B. cinerea on leaves. We hypothesize that UV-C radiation applied on the plants, in addition to its induced resistance effect, reduces the amount of microorganisms naturally existing on leaves, thus limiting the competition of the inoculated biocontrol agents with the phyllosphere microorganisms and then promoting its development and its efficacy.
Material and methods

UV-C treatments
The device used for the plant treatments with UV-C is a closed box having a ceiling light with 9 UV-C lamps (DSP tube UV-C, OSRAM HNL, 24 W) of 254 nm. Strawberry plants are placed in the box at 40 cm from UV-C lamps. UV-C dose calculation is done through measurements of light intensity at a given time, performed with a radiometer positioned at 40 cm from the ceiling light. The duration of UV-C radiation is 1 min and 44 sec to obtain 0.85 kJ/m² and 3 min and 28 sec to obtain 1.70 kJ/m². Plants were treated with UV-C radiation four times every other day. The last UV-C treatment was realized 2 days before inoculation of B. cinerea. Strawberry plants without any UV-C treatments were used as control. Four plants are processed at the same time in the box. To avoid the restorative effect of white light (Mercier et al., 2001), plants are placed in the dark for 15 hours after each UV-C treatment.

Estimation of phyllosphere microbial population
In order to estimate the total number of microorganisms (fungi and bacteria) present on leaves, upper-leaflet imprints (three leaflets per modality and medium) were realized on PDA medium (Potato Dextrose Agar, 39 g/l, Sigma-Aldrich) and on TSA medium (Tryptic Soy Agar, 40 g/l, Sigma-Aldrich). Colonies were numbered on both nutritive media after three days of incubation at 21 °C (14 hours of photoperiod at 114 µmol/s/m²). UV-C treated plants were compared to the non-treated control plants.

Biocontrol agents
The biocontrol agents tested were the fungus Gliocladium catenulatum (Prestop®, Lallemand) registered in France on strawberry against B. cinerea (https://ephy.anses.fr/), and prepared at a concentration of 1% (m/V), and the bacterium Bacillus subtilis QST713 (Serenade®, Bayer CropScience) used at 8 g/l. This bacterium-based product has proved to be effective on strawberry leaves against B. cinerea (Nicot et al., 2013). Plants were sprayed once with a suspension of the commercialized product until run-off 2 days before inoculation. In the case of treatment combination, biocontrol agent was applied 4 hours after the last UV-C treatment.

Assessing susceptibility of strawberry leaves to B. cinerea
The strain Bc1 of B. cinerea was used throughout this study. It was grown 3 days on PDA medium in a growth chamber (21 °C, 14 hours of photoperiod at 114 µmol/s/m²) and mycelial plugs of 5 mm diameter taken from the growing margin of the culture were used as inoculum.

To evaluate the susceptibility of strawberry leaves, a test on detached-leaflets was realized. To this end, leaves were detached and leaflets were placed on moistened filter paper in transparent polystyrene boxes and inoculated with a mycelium plug in the center of the leaflet. Following inoculation with Bc1, leaflets were then placed in a growth chamber (21 °C, 14 hours of photoperiod at 114 µmol/s/m²). Leaflets were photographed every day between the third and the seventh days after inoculation and lesion areas were assessed with Image J software. The rate of lesion development (cm²/day) was calculated between the 3rd and the 6th day for each leaf. The area under the disease progress curve (AUDPC) was also calculated to determine the level of susceptibility of the strawberry plants. To compare the protection induced to the leaves by the different treatments realized, a protection index was computed as:

\[
\% \text{ Protection} = 100 \times \left(\text{AUDPC}_{\text{untreated}} - \text{AUDPC}_{\text{treated}} \right) / \text{AUDPC}_{\text{untreated}}
\]
Results and discussion

Impact of UV-C radiation on phyllosphere microflora

After successive UV-C radiations of the plants, a decrease in the total number of microbial colonies (bacteria and fungi) was observed on both nutritive media PDA and TSA in a dose-dependent manner (ANOVA, p < 0.05; Figure 1). This suggests that UV-C radiation has a direct germicidal effect on phyllosphere microorganisms, thus partially degrading a part of the indigenous microbial community present on strawberry leaves.

Figure 1. Number of microbial colonies recovered from leaf imprints on two nutritive media (PDA and TSA) after successive UV-C treatments of the whole strawberry plants. Plants were treated with UV-C radiation 4 times every two days at two different doses (0.85 and 1.70 kJ/m²) and untreated plants were used as control (T). Colonies were numbered 3 days after inoculation. The error bars show the standard error of the mean. Lower case letters indicate significant differences identified between different modalities tested on PDA medium and in upper case for modalities tested on TSA medium (Newman-Keuls, p < 0.05).

Impact of UV-C radiation combined with biocontrol agents on B. cinerea development

A significant treatment effect was observed on the rate of lesion development (ANOVA, p < 0.0001) or on AUDPC values (Figure 2, ANOVA, p < 0.0001). UV-C radiation on the whole plant provides a slight but non-significant protection of the leaves towards B. cinerea (11% and 16%, respectively for 1.70 and 0.85 kJ/m²). Protective efficacy against B. cinerea on strawberry leaves with Serenade and Prestop applied alone reaches 47% and 72%, respectively. The combination of both treatment (UV-C + biocontrol agent) provides a protective efficacy against B. cinerea of 19% and 29% with Serenade for 1.70 and 0.85 kJ/m² of UV-C radiation delivered on the plants, respectively. It provides a protective efficacy of 55% and 20% with Prestop, for 1.70 and 0.85 kJ/m² of UV-C radiation delivered,
respectively. Therefore, UV-C treatments carried out before the biocontrol treatment did not increase the protection efficacy provided by the biocontrol agent. Rather, it systematically reduced the protective efficacy of the biocontrol agent used alone even if this effect was not always significant.

![Graph showing susceptibility of strawberry leaves to B. cinerea](image)

Figure 2. Susceptibility of strawberry leaves to *B. cinerea* after UV-C radiation at high dose (HD, 4 × 1.70 kJ/m²) and at low dose (LD, 4 × 0.85 kJ/m²), after biocontrol treatment (Serenade, Prestop), and after the combination of UV-C radiation and biocontrol treatments. The error bars show the standard error of the mean. Letters indicate significant differences identified between the different treatments (Newman-Keuls, p < 0.05).

Conclusions and perspectives

In the present study, we evaluated the impact of UV-C radiation combined with biological control agents on the susceptibility of strawberry plants to *B. cinerea*.

In most cases, UV-C radiation applied on the plants before the treatment with a biocontrol agent has no significant effect on its efficacy. In one case it significantly lowers the level of efficacy of the biocontrol agent. It suggests that UV-C treatment, despite its germicidal effect on the phyllosphere microflora, does not favor the installation and the efficacy of the biocontrol agent. Different hypothesis may explain these results. Firstly, UV-C radiations applied on the plants induce the synthesis of antimicrobial defense metabolisms such as phytoalexins (Marti *et al.*, 2014) that may have a direct effect on the installation of the biocontrol agents. Secondly the degradation of the superficial tissues of the plant due to UV-C treatment may prevent a proper installation of the biocontrol agents. Microscopic observations and metabolomics studies will be carried out to test these hypotheses.

To determine whether this phenomenon is universal, the combination of the two treatments will be tested on other plant species and against other plant pathogens.
Acknowledgements

A PhD scholarship was provided by the TERSYS Research Federation (University of Avignon, France) for Marine Forges. Research on plant biology depends heavily on the cultivation of plants under experimental conditions that are controlled, monitored and repeatable. For ensuring a perfect plant production, the contribution of the Plant Production and Environmental Management Service of the Plant Pathology Research Unit is greatly appreciated.

References

