

Soil enzyme activities recovery after organic treatments of degrated aeras within vineyards

Alessandra Lagomarsino, Alessandro Elio Agnelli, Emma Fulchin, Brice

Giffard

► To cite this version:

Alessandra Lagomarsino, Alessandro Elio Agnelli, Emma Fulchin, Brice Giffard. Soil enzyme activities recovery after organic treatments of degrated aeras within vineyards. EQA (Imola): environmental quality;qualité de l'Environnement;qualità ambientale, 2018, 31, pp.17-25. 10.6092/ISSN.2281-4485/7891. hal-02618830

HAL Id: hal-02618830 https://hal.inrae.fr/hal-02618830v1

Submitted on 25 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

SOIL ENZYME ACTIVITIES RECOVERY AFTER ORGANIC TREATMENTS OF DEGRADED AREAS WITHIN VINEYARDS

Alessandra Lagomarsino ⁽¹⁾, Alessandro Elio Agnelli ⁽¹⁾, Emma Fulchin ⁽²⁾, Brice Giffard ⁽³⁾

⁽¹⁾ Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA) Centro di Ricerca Agricoltura e Ambiente, Firenze, Italy
 ⁽²⁾ Université de Bordeaux, Vitinnov, ISVV, Gradignan, France
 ⁽³⁾ INRA, ISVV, Université de Bordeaux, Bordeaux Sciences Agro Villenave d'Ornon Cedex, France
 *Corresponding author Email: alessandra.lagomarsino@crea.gov.it

15

1

2 3

4 5 6

7 8

9

10

 $\frac{11}{12}$ 13

14

30

16 Abstract

17 Soil enzymes were used to assess the impact of different treatments applied in four 18 farms, each one with three vineyards as replicates, on soil functionality. 8 enzymes 19 related to C, N, S and P cycling were measured and functional diversity index was 20 estimated. Three treatments were compared: compost, green manure and dry 21 mulching with respect to degraded and non-degraded soil. The four vinevards showed different enzymatic patterns and response to treatments. Vineyards with 22 23 the largest difference between degraded and non-degraded soil have benefited more 24 largely from the treatments. Among treatments, dry mulching and compost seemed 25 to be effective to recover soil functionality in degraded vineyards. However, the effect might be limited in the short term. 39

Keywords: soil enzymes, functional diversity, substrates decomposition, vineyards
 degradation

31 <u>Introduction</u>

Soil enzyme activities are proximal driver of soil functioning, contributing to 33 34 biogeochemical cycling, organic matter transformations and nutrient availability 35 and are widely accepted as indicators of soil health, responding in a sensitive, quantitative and predictable manner to different land use and management (Aon et 36 37 al., 2001; Badiane et al., 2001; Vepsäläinen et al., 2001). Soil enzymatic activities are closely related to microbial activity or biomass as they catalyse biochemical 38 reactions and nutrient cycling in the soils. Furthermore, being synthesized by 39 microorganisms, roots and soil micro- and meso-fauna such as earthworms or 40 41 nematodes, enzymes can be a valid tool to present and manage complex 42 information in a simple and informative manner.

- 43 The most studied group of soil enzymes that have ecological importance in soil are
- 44 hydrolases, which are involved in the main biogeochemical cycling of elements
- 45 and release C compounds as well as N, P and S. These enzymes exist in soil either 46 intracellularly or extracellularly, free in soil solution or immobilized on the surface
- 47 of organic and inorganic soil components.
 DOI: 10.6092/issn 2281-4485/7891

48 Several soil enzyme assays have been developed to detect the total potential 49 activity against a specific substrate. Fluorometry has been proved to be more 50 sensitive than are the colorimetric methods (Marx et al., 2001; Moscatelli et al., 51 2011) and has become more common since the adoption of microplates that 52 facilitate the rapid measurement of a large number of enzymes and samples. In this context, measuring the activity of several soil enzymes could be useful to 53 54 understand the organic matter turnover and the availability of inorganic nutrients 55 and could give indications on the function and quality of an ecosystem and on the interaction among subsystems (Dick and Tabatabai, 1993). 56

57 Within this work, fluorimetric approach was used for the determination of 58 hydrolase activities related to the main biogeochemical cycling. In particular, 59 enzymes degrading cellulose (β -glucosidase, cellulose), hemicellulose (β -60 xylosidase), chitin (N-acetyl- β -D-glucosaminidase) phosphate (acid phosphatase) 61 and sulphate (arylsulphatase) esters have been assessed, together with two 62 unspecific endo-cellular enzymes (butyrate and acetate esterase).

63

64 <u>Materials and methods</u>

66 Soil sampling

68 Soil samples were collected in four farms, each one with three vineyards as 69 replicates, before (2015) and after (2016 and 2017) organic treatments application. 70 Two farms are located in France (Maison Blanche, Saint Émillion – MB and Pech 71 Redon, La Clape - PR) and two in Italy (Fontodi, Panzano in Chianti - FON and 72 San Disdagio, Civitella Marittima - SD). In each vineyard, an area characterized by 73 soil degradation was selected. Each degraded area was subdivided into 4 plots, 74 where different strategies of organic soil management were implemented: (COMP) 75 composted organic amendment; (GM) green manure with winter legumes and cereal; (DM) reseeded legumes, mown and leaved on the ground as dry mulching; 76 77 (CONTR) only tillage once per year. A reference plot, characterized by optimal 78 soil functionality (ND, non-degraded) was selected in each vineyard. For further 79 details on climate and pedological characteristics and for treatments type and 80 application see D'Avino et al. (this issue).

- Soils were sampled at 0-30 cm depth in French sites in 2015. In French sites in 2016 and 2017 and in Italian sites in the three years, they were sampled at 0-10 and 10.20 cm depths. Averaged activities at 0.20 cm depths are shown
- 83 10-30 cm depths. Averaged activities at 0-30 cm depths are shown.

85 Enzyme activities measurement

Enzyme activities were measured according to the methods of Marx et al. (2001)
and Vepsäläinen et al. (2001). N-acetyl-β-glucosaminidase (NAG), β-glucosidase
(βG), butyrate esterase (BUT), acid phosphatase (AP), arylsulphatase (ARYL), βxylosidase (XYL), cellulose (CELL) and acetate esterase (AC) activity were
measured using fluorogenic methylumbelliferyl (MUF) conjugated surrogate
substrates (Sigma, St Louis, MO, USA). Briefly, 2 g soil sample was weighed into
a sterile jar and incubated for 24 hours at 20% soil moisture. A homogenous

94 suspension was obtained by homogenizing samples with 50 mL deionized water 95 with UltraTurrax at 9600 rev / min for 3 min. Aliquots of 50 μ L were withdrawn 96 and dispensed into a 96 well microplate (3 analytical replicates/sample/substrate). 97 50 μ L of Na-acetate buffer pH 5.5 was added to each well. Finally, 100 μ L of 1 98 mM substrate solution were added giving a final substrate concentration of 500 99 μ M. Fluorescence (excitation 360 nm; emission 450 nm) was measured after 0, 30,

- 100 60, 120, 180 min of incubation at 30 °C with an automated fluorimetric plate-
- 101 reader (Fluoroskan Ascent).

103 Statistical analysis

- Analysis of variance was performed to assess the effect of treatments, years and their interactions on soil enzyme activities using Statistica package (StatSoft inc).
- The order of magnitude of the values obtained for the different enzymatic 106 107 responses varies considerably depending on the specific activity being determined. thus leading to some enzyme having more weight than others. To resolve this 108 109 problem, the sum of the percentage of the maximum value found for a specific 110 enzymatic response across all enzymes was used for the calculation of the sum of enzymes (SUM). From this percentage of maximum enzyme activities, the 111 Simpson-Yule index was calculated following the equation $E = 1/\Sigma pi^2$, as indicated 112 113 by Bending et al. (2004), where pi is calculated as the enzymatic response to a 114 substrate as a proportion of enzymatic responses summed across all substrates for a 115 soil. Discriminant function analysis (DFA) was performed using the percentage of 116 maximum value for each enzyme to show separation among the four sites. Squared Mahalanobis distances between group centroids were determined. Two significant 117 discriminatory roots were derived and the results of DFA were graphically 118 119 presented in two dimensions.
- 120

121 <u>Results and discussion</u>

Overall, the four sites were significantly different in terms of soil enzymatic pattern (Fig. 1), with the greatest enzyme activities observed on average in Pech Redon and Fontodi, followed by San Disdagio and Maison Blanche. Differences among sites can be ascribed to several abiotic (climate, pH, carbonates, etc.), and biotic factors (organic matter, microbial biomass and activity, fauna and roots, etc.).

- Greater enzyme activities were observed in ND soils with respect to CONTR in allsites along the three years of observations (Fig. 2 and Table 1).
- Indeed, this difference was larger in the first year, as also reported in a previous
 work on the same sites before treatments application (Costantini et al., in press). In
 the second and third years the increase was reduced and remained significant in
 Maison Blanche and San Disdagio until the end of measurements.
- 134
- 135
- 136

Table 1: *Mean activities of enzyme activities in the four sites in plots without treatments*

138 (CONTR), treated with compost (COMP), green manure (GM), mulching (DM) and non-

degraded (**ND**) *before* (2015) *and after* (2016 *and* 2017) *treatments.*

Site	Tractment	Vaar	nmol MUF g ⁻¹ h ⁻¹									
	Treatment	Year	CELL	AP	bG	NAG	XYL	BUT	AC	ARYI		
		2015	33	247	223	53	33	232	748	24		
	CONTR	2016	8	149	86	23	13	249	382	15		
		2017	20	198	187	43	27	411	588	27		
		2015	31	256	239	55	34	272	869	27		
	COMP	2016	11	134	103	21	14	287	453	17		
		2017	37	211	249	69	36	519	721	37		
		2015	19	224	179	56	16	228	749	24		
	GM	2016	11	159	99	24	14	267	482	18		
Mataan		2017	29	181	205	43	28	398	545	32		
Maison Blanche		2015	30	225	173	47	26	244	849	25		
Dianciie	DM	2016	16	195	119	33	18	281	516	20		
		2017	32	225	211	52	38	454	664	38		
		2015	36	249	378	76	39	331	1035	29		
	ND	2016	19	175	163	38	21	360	550	25		
		2017	45	171	337	55	39	511	602	42		
	ANOVA											
	Year		***	*	***	***	***	***	***	***		
	Treatment		**	n.s.	*	*	**	n.s.	n.s.	*		
	Y * T		n.s.	n.s.	n.s.	*	n.s.	n.s.	n.s.	n.s.		
		2015	9	123	141	57	17	472	1101	20		
	CONTR	2016	7	96	107	21	14	365	667	11		
		2017	33	84	173	49	35	563	1045	45		
	СОМР	2015	11	115	133	35	16	596	1048	14		
		2016	5	80	58	17	8	302	513	8		
		2017	32	80	171	46	32	505	1028	42		
	-	2015	20	133	215	46	23	685	1322	21		
	GM	2016	8	98	88	23	11	364	612	9		
		2017	35	71	203	48	32	518	971	45		
Pech		2015	12	111	110	41	13	536	991	12		
Redon	DM	2016	7	93	93	18	10	352	635	10		
		2017	33	68	214	53	36	580	1029	42		
		2015	17	123	198	39	31	690	1096	18		
	ND	2016	9	110	127	24	17	441	763	13		
		2017	31	72	186	44	34	521	895	44		
	ANOVA	,										
	Year		***	***	***	***	***	**	***	***		
	Treatment		n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.		
	Y * T		n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.		

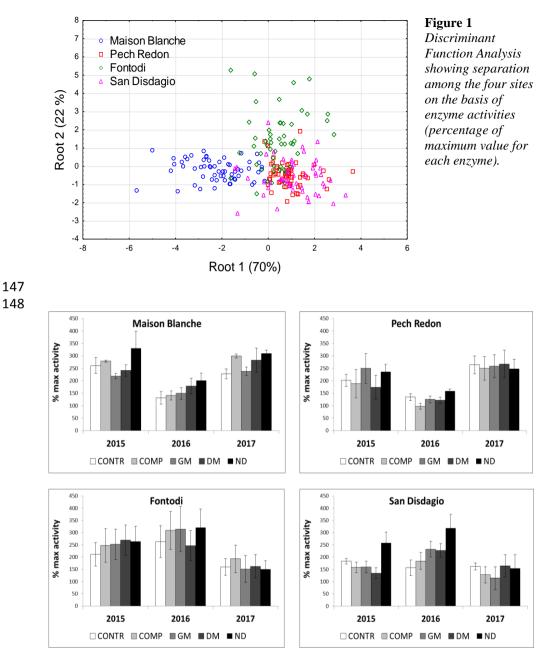

Site	Treatment	Year	nmol MUF g ⁻¹ h ⁻¹								
Sile		rear	CELL	AP	bG	NAG	XYL	BUT	AC	ARYI	
		2015	15	118	164	56	18	465	801	34	
	CONTR	2016	24	131	226	47	28	709	1041	32	
		2017	11	51	122	33	18	390	562	34	
		2015	21	126	185	76	21	605	984	33	
	COMP	2016	38	156	236	71	31	823	1123	35	
		2017	17	66	176	44	18	480	535	43	
		2015	24	133	165	77	23	556	893	38	
	GM	2016	37	160	270	53	33	770	1136	41	
		2017	17	86	133	32	16	331	458	36	
Fontodi		2015	22	142	204	76	26	678	1056	33	
	DM	2016	20	143	178	38	29	651	953	33	
		2017	14	71	151	33	19	351	462	34	
	ND	2015	21	134	184	85	30	559	934	37	
		2016	43	165	285	51	31	788	1097	41	
		2017	15	66	125	39	14	347	474	32	
	ANOVA										
	Year		***	***	***	***	***	***	***	n.s.	
	Treatment		n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	
	Y * T		n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	
	CONTR	2015	10	138	92	35	16	500	949	20	
		2016	12	113	88	21	14	432	870	15	
		2017	6	96	71	22	14	439	996	25	
	СОМР	2015	8	133	72	26	14	385	917	16	
		2016	16	130	105	27	19	536	916	15	
		2017	9	79	67	18	15	353	887	19	
	GM	2015	11	119	87	30	15	416	816	17	
-		2016	19	148	189	37	28	608	1016	19	
		2017	11	85	68	25	14	322	813	17	
San Diada sia	DM	2015	10	106	63	27	12	348	713	12	
Disdagio		2016	17	160	167	40	25	593	1057	18	
		2017	11	92	132	31	19	499	959	22	
		2015	22	171	177	55	23	595	1099	33	
	ND	2016	36	182	269	51	37	692	1166	40	
		2017	21	84	117	33	16	360	568	29	
	ANOVA		10	138	92	35	16	500	949	20	
	Year		*	***	**	*	**	**	n.s.	n.s.	
	Treatment		***	n.s.	***	*	n.s.	n.s.	n.s.	***	
	Y * T		n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	

Table 1 (to be continued)

CELL=cellulose; **AP**=acid phosphatase; β G=glucosidase; **NAG**=N-acetyl- β -glucosaminidase; **XYL**= β -xylosidase; **BUT**=butyrate esterase; **AC**=acetate esterase; **ARYL**=arylsulphatase

- 145
- 146

¹⁴⁴ 145

Figure 2. SUM of enzyme activities in the four sites in the three sampling years before (2015) and after (2016 and 2017) treatments. Error bars are reported.

149

150 Table 2. Percentage difference of enzyme activities with respect to Control in the four sites after treatments application in 2016 and 2017. Significant differences are reported in bold.

Site	Year	Treatment -	% difference with respect to control										
			CELL	AP	bG	NAG	XYL	BUT	AC	ARYL	SUM	S-Y	
Maison Blanche		COMP	37	-10	20	-7	8	15	18	17	8	14	
	2016	GM	39	7	15	8	6	7	26	21	14	3	
	2016	DM	99	31	38	46	36	12	35	34	36	7	
		ND	140	17	89	67	61	44	44	72	53	17	
		COMP	86	7	33	61	33	26	23	35	31	8	
	2017	GM	46	-8	10	1	3	-3	-7	18	5	1	
	2017	DM	61	14	13	20	39	10	13	39	24	3	
		ND	128	-14	80	29	44	24	2	55	36	3	
Pech Redon	2016	COMP	-33	-17	-46	-19	-43	-17	-23	-4	-27	-4	
		GM	6	2	-18	8	-24	0	-8	-1	-7	-1	
		DM	2	-3	-14	-16	-33	-4	-5	-1	-10	-1	
		ND	30	15	18	15	20	21	14	3	18	3	
	2017	COMP	-3	-5	-1	-6	-10	-10	-2	2	-5	2	
		GM	6	-16	18	-2	-8	-8	-7	2	-2	2	
		DM	1	-20	24	8	1	3	-2	1	1	1	
		ND	-8	-15	8	-10	-4	-7	-14	0	-6	0	
Fontodi	2016	COMP	55	19	4	50	8	16	8	3	17	3	
		GM	52	22	20	12	17	9	9	-1	19	-1	
		DM	-16	9	-21	-19	4	-8	-8	-6	-6	-6	
		ND	78	26	26	8	9	11	5	1	22	1	
	2017	COMP	45	28	45	31	5	23	-5	-6	21	-6	
		GM	49	69	9	-6	-10	-15	-19	-19	-5	-19	
		DM	24	38	24	-1	9	-10	-18	-8	1	-8	
		ND	36	29	3	16	-22	-11	-16	-2	-6	-2	
San Disdagio	2016	COMP	31	15	20	32	33	24	5	6	17	6	
		GM	61	30	116	78	97	41	17	13	48	13	
		DM	39	41	90	95	75	37	21	8	45	8	
		ND	197	61	207	146	154	60	34	19	103	19	
	2017	COMP	55	-19	-6	-20	2	-19	-11	-8	-21	-8	
		GM	78	-12	-5	13	-5	-27	-18	-16	-29	-16	
		DM	73	-4	85	41	32	14	-4	0	1	0	
		ND	249	-13	64	47	9	-18	-43	-6	-5	-6	

DOI: 10.6092/issn.2281-4485/7891

151 153

- 154 These two sites showed also the largest impact of treatments (Table 2), however a
- different response was observed in the four vineyards (Table 1 and 2):

156 Maison Blanche

- 157 In the first year DM showed to be the most effective treatment, able to increase
- 158 most of the enzyme activities considered. This effect decreased in the second year,
- 159 and was maintained for enzymes related to cellulose and hemicellulose degradation 160 and arylsulphatase only, suggesting a short-term effect of this treatment
- application, more evident and permanent for C-cycling enzymes. In the second
- 162 year COMP showed the maximum increase with respect to CONTR, for all
- 163 enzymes. GM increased cellulase activity only, in both years.

164 **Pech Redon**

- 165 The treatments did not affect significantly enzyme activities, with the exception of 166 β -glucosidase in the second year after dry mulching. This vineyard showed also the
- 167 lowest difference between CONTR and ND soils, suggesting that soil functionality
- 168 was i) less responsive to degradation or ii) degradation was not so strong.

169 Fontodi

- 170 In the first year GM increased cellulolytic enzymes and acid phosphatase and this
- 171 effect persisted in the second year. However, other enzymes were not affected by
- this treatment. In the second year COMP application positively affected enzyme
- activities related to C and P cycling, and also N cycling with DM. This vineyard
- seemed to be slower in the response to treatments, even if after the second year of
- treatments the activities were comparable to those of ND soil.

176 San Disdagio

- This vineyard showed the highest percentage effects of treatments, in particular in the first year, when GM and DM almost doubled enzyme activities with respect to CONTR, though without reaching the values of ND soils. This effect was evident for most enzymes of C, N, S, and P cycling. In the second year the effect persisted for cellulase with all treatments and also for chitin and hemicellulose degrading enzymes with DM.
- 183

184 <u>Conclusions</u>

Overall, treatments application showed to improve soil enzyme activities, although to different extent depending on vineyard type and treatment. Maison Blanche and San Disdagio were the two vineyards most responsive to treatments, possibly as a consequence of the largest difference between degraded and non-degraded soil found in these two sites. Among treatments, DM and Compost seemed to be effective to recover soil functionality in degraded vineyards. However, the effect might be limited in the short term.

193 <u>References</u>

BADIANE N.N.Y., CHOTTE J.L., PATE E., MASSE D., ROULAND C. (2001) Use of

soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid
tropical regions. Applied Soil Ecology, 18:229-238.

- BENDING G.D., TURNER M.K., RAYNS F., MARX M.C., WOOD M. (2004) Microbial
 and biochemical soil quality indicators and their potential for differentiating areas under
 contrasting agricultural management regimes. Soil Biology and Biochemistry, 36:1785–
 1792.
- 202 COSTANTINI E.A.C., CASTALDINI M., DIAGO M.P., GIFFARD B., LAGOMARSINO
- 203 A., SCHROERS H.J., PRIORI S., VALBOA G., AGNELLI A.E., AKÇA E., D'AVINO L.,
- FULCHIN E., GAGNARLI E., KIRAZ M.E., KNAPIČ M., PELENGIĆ R., PELLEGRINI
 S., PERRIA R., PUCCIONI S., SIMONI S., STORCHI P., TANGOLAR S.,
- 205 S., FERRIA R., FUCCIONI S., SHORT S., STORETH F., TAROOLAR S., 206 TARDAGUILA J., VIGNOZZI N., ZOMBARDO A. (2018) Effects of soil erosion on
- agro-ecosystem services and soil functionality: a multidisciplinary study in nineteen
- organically farmed European and Turkish vineyards. Journal of Environment Management,
 (in press).
- 210 D'AVINO L., PRIORI S., SCHROERS H.J., TANGOLAR S., TARDAGUILA J.,
- 211 GIFFARD B. FANTAPPIÈ M., COSTANTINI E.A.C. (2018) Restoring soil functionality
- in degraded areas within 1 vineyards by organic treatments: the experimental layout of the
- resolve core-organic+ project, EQA International Journal of Environmental Quality, 30:21-
- **214** 31.
- DICK W. A., TABATABAI M. A. (1993) Significance and potential use of soil enzymes.
 In: F. Blaine (Eds) Soil Microbial Ecology. Marcel Dekker. NY.
- 217 MARX M.C., WOOD M., JARVIS S.C. (2001) A microplate fluorometric assay for the
- study of enzyme diversity in soils. Soil Biology and Biochemistry, 33:1633–1640.
- MOSCATELLI M.C., LAGOMARSINO A., GARZILLO A.M.V., PIGNATARO A.,
 GREGO S. (2012) β-Glucosidase kinetic parameters as indicators of soil quality under
 conventional and organic cropping systems applying two analytical approaches. Ecological
 Indicators, 13:322–327.
- 223 VEPSÄLÄINEN M., KUKKONEN S., VESTBERG M., SIRVIÖ H., NIEMI R.M. (2001)
- Application of soil enzymes activity test kit in a field experiment. Soil Biology and
- **225** Biochemistry, 33:1665–1672.
- 226