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ABSTRACT

Central Asia (CA) is subjected to a large variability of precipitation. This study presents a statistical model,

relating precipitation anomalies in three subregions of CA in the cold season (November–March) with var-

ious predictors in the preceding October. Promising forecast skill is achieved for two subregions covering

1)Uzbekistan, Turkmenistan, Kyrgyzstan, Tajikistan, and southernKazakhstan and 2) Iran,Afghanistan, and

Pakistan. ENSO in October is identified as the major predictor. Eurasian snow cover and the quasi-biennial

oscillation further improve the forecast performance. To understand the physical mechanisms, an analysis of

teleconnections between these predictors and the wintertime circulation over CA is conducted. The corre-

lation analysis of predictors and large-scale circulation indices suggests a seasonal persistence of tropical

circulation modes and a dynamical forcing of the westerly circulation by snow cover variations over Eurasia.

An EOF analysis of pressure and humidity patterns allows separating the circulation variability over CA into

westerly and tropical modes and confirms that the identified predictors affect the respective circulation

characteristics. Based on the previously established weather type classification for CA, the predictors are

investigated with regard to their effect on the regional circulation. The results suggest a modification of the

Hadley cell due to ENSO variations, with enhanced moisture supply from the Arabian Gulf during El Niño.
They further indicate an influence of Eurasian snow cover on the wintertime Arctic Oscillation (AO) and

Northern Hemispheric Rossby wave tracks. Positive anomalies favor weather types associated with dry

conditions, while negative anomalies promote the formation of a quasi-stationary trough over CA, which

typically occurs during positive AO conditions.

1. Introduction

With its continental climate, central Asia (CA) is

characterized by water scarcity and a pronounced vari-

ability of precipitation. While the summer is usually

dry, a significant portion of the annual precipitation falls
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during the extended winter season (from November to

March, hereafter called the cold season) (Schiemann

et al. 2008; Barlow et al. 2016). Particularly in the high

Tien Shan and Pamir mountain regions precipitation

falls as snow and is released during spring and summer,

when it is required for irrigated agriculture, particularly

in Uzbekistan and Kazakhstan, where cotton and wheat

production represent an important source of income.

The upstream countries Kyrgyzstan and Tajikistan ad-

ditionally need the water for hydropower production.

Thus the variability of the cold season precipitation

poses challenges to the post-Soviet economies and raises

political tensions. The prolonged drought of 1999–2001

as well as the drought event of 2007/08 had far-reaching

consequences, such as regionwide crop failure, loss of

livestock, breakdown of hydropower electricity pro-

duction, and an increase in diseases (Barlow et al. 2016).

Likewise, climate-induced refugee movements and in-

ternational conflicts on water allocation and manage-

ment have been reported (Lautze et al. 2002; Barlow

et al. 2016; Agrawala et al. 2001).

A robust seasonal forecast of summer water avail-

ability is required in order to adapt the agricultural

strategies to anomalous hydroclimatic conditions and to

allow a fair water distribution between the central Asian

countries and thus to prevent potential political con-

flicts. Some forecast skill has been achieved by means of

simple statistical techniques, taking cold season pre-

cipitation or remote sensing–based estimates of the re-

gional snow cover extent in spring as predictor variables

for summer discharge in several central Asian river ba-

sins (Schär et al. 2004; Dixon and Wilby 2016; Barlow

and Tippett 2008; Apel et al. 2018). However, the sig-

nificant predictors do not emerge before late spring and

thus enable a forecast of summer runoff anomalies

only a few months in advance. A profound under-

standing of cold season hydroclimatic variations, asso-

ciated large-scale atmospheric processes, and their

driving mechanisms is crucial in order to extend the lead

time of seasonal predictions of water availability.

In Part I of the presented study (Gerlitz et al. 2018,

hereafter Part I) we comprehensively analyzed the

variability of the cold season climate in central Asia by

means of an automatic weather classification approach.

Eight weather types (WTs) were identified and in-

vestigated with regard to their tropical and extratropical

drivers and their near-surface climate expression.

Anomalously moist WTs were shown to be associated

with the formation of a Rossby trough over central Asia,

which triggers a southward shift of the westerly jet

stream and an intensification of westerly moisture ad-

vection into the target domain. Particularly the super-

position of the positive states of the North Atlantic

Oscillation (NAO) and the east Atlantic/western Russia

pattern (EA/WR) has been shown to favor WTs asso-

ciated with moist conditions. Besides westerly circula-

tion modes, El Niño–Southern Oscillation (ENSO) has

been shown to significantly influence the frequency of

WTs characterized by strong pressure anomalies in the

south of the target domain. El Niño events are shown to

stimulate the formation of an anticyclonic circulation

anomaly over the Indian subcontinent and thus the in-

tensification of southwesterly moisture fluxes from the

Arabian Sea into central Asia. This leads to increased

precipitation amounts during the ENSO warm phase.

As ENSO is characterized by a low-frequency vari-

ability and usually shows a seasonally persistent be-

havior, ENSO indices have been suggested as skillful

predictor variables for seasonal climate forecasts. Pre-

cipitation predictions in tropical regions are frequently

based on ENSO variations (Kumar et al. 2013), but

ENSO-related indices have also been suggested as

skillful predictors of seasonal precipitation in various

extratropical regions. For central and Southwest Asia,

variations of tropical circulation modes, such as ENSO

and the Indo-Pacific warm pool (which is strongly anti-

correlated with ENSO), have been suggested as impor-

tant drivers of precipitation variations and changes

(Gerlitz et al. 2016; Mariotti 2007; Barlow et al. 2002,

2016; Roghani et al. 2016). However, because of the

dominant influence of westerly wave tracks, their em-

bedded synoptic features, and associated moisture

fluxes, the skill of statistically based seasonal pre-

cipitation forecast models is generally low in extra-

tropical regions. Although several studies highlight the

importance of Eurasian Rossby wave tracks for the

central Asian winter climate (Part I; Bothe et al. 2012;

Syed et al. 2006; Schiemann et al. 2008), little effort

has yet been made to predict anomalous westerly

moisture fluxes and related hydroclimatic variations in

central Asia.

Notwithstanding, various studies investigate the pre-

dictability of the large-scale Eurasian winter climate,

particularly with regard to variations of the Arctic Os-

cillation (AO) and NAO. Auspicious progress has been

made by considering snow cover anomalies in Octo-

ber as a predictor variable for the mean state of the

Arctic Oscillation during subsequent winter (Cohen and

Entekhabi 1999; Cohen et al. 2012). Both observational

and modeling studies indicate that enhanced snow cover

over Eurasia in October triggers an early and strong

formation of the Siberian high due to an increased sur-

face albedo and a consequential diabatic cooling and

stabilization of the planetary boundary layer (Cohen

1994; Gastineau et al. 2017). The resultant increase of

the zonal pressure gradient between the eastern Arctic
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and the northern Eurasian continent provokes the for-

mation of a persistent wave pattern that propagates into

the upper troposphere and leads to a weakened strato-

spheric polar vortex (Cohen et al. 2014). Particularly in

December and January, a significantly increased fre-

quency of weak polar vortex conditions has been ob-

served after positive snow cover and sea level pressure

anomalies over Siberia (Kretschmer et al. 2016). A

subsequent downward propagation of wave activity

promotes the development of a negative AO and the

occurrence of cold air outbreaks in the midlatitudes. On

the contrary, reduced snow cover over Eurasia triggers a

strong zonal flow and favors positive AO conditions.

Allen and Zender (2011) show that a positive trend of

the winter AO index for the period 1950–90 and a neg-

ative trend thereafter are closely related to decadal

variations of autumn snow cover over Eurasia.

Cohen and Jones (2011) illustrate that Eurasian snow

cover in October serves as a skillful covariate for the

prediction of winter temperature for large parts of the

NorthernHemisphere. García-Serrano and Frankignoul
(2014), Brands et al. (2012), and Totz et al. (2017)

demonstrate the potential of statistically based winter

precipitation forecasts for Europe taking cryospheric

variables (i.e., snow cover and sea ice) over Eurasia and

the Arctic during preceding autumn as covariates. Fur-

ther, SST anomalies in the Atlantic domain (most no-

tably the Atlantic tripole) have been suggested as

potential drivers of AO/NAO (Sutton et al. 2000; Czaja

and Frankignoul 2002; Cassou et al. 2004). Finally, the

quasi-biennial oscillation (QBO), a dominant and well

predictable mode of variability in the tropical strato-

sphere has been identified as a potential predictor for

the winter state of AO/NAO (Boer and Hamilton 2008;

Marshall and Scaife 2009; Scaife et al. 2014). Observa-

tions show that the positive phase of QBO (corre-

sponding to westerly winds in the tropical stratosphere)

is associated with a stronger and zonally oriented po-

lar vortex, which favors the development of a positive

AO. Negative correlations between the QBO index

and sea level pressure during winter have been detected

for large parts of Eurasia, including CA (Boer and

Hamilton 2008).

Here we intend to quantify the skill of various pre-

dictors, including Euro/Atlantic pressure modes, tropi-

cal SST anomalies, and Eurasian snow cover indices in

October, for the forecast of cold season precipitation

anomalies in CA. A multilinear regression-based sea-

sonal forecast model with stepwise predictor selection

is presented and applied to three subregions of the tar-

get domain, which are previously derived by means

of a cluster analysis of interannual precipitation varia-

tions. The investigation of teleconnections based on the

statistical relation of large-scale climate indices with

surface variables, however, is associated with large un-

certainties, due to the quality and the short period of

available observations, which often results in a lack of

statistical significance and might lead to spurious cor-

relations. To bridge the scale gap between large-scale

teleconnection indices and observed precipitation

anomalies, we analyze the influence of the identified

predictor variables on the large- and regional-scale cir-

culation over CA. To quantify the effect of important

predictor variables at the Northern Hemispheric scale,

predictors are related with seasonal mean climate

indices in the subsequent cold season. An empirical or-

thogonal function (EOF) analysis of pressure and hu-

midity fields is conducted to distinguish the major

circulation modes over CA. The separation of westerly

and tropical circulationmodes enables the assignment of

particular predictor variables to the respective portion

of the atmospheric variability.

Finally, based on the previously established objective

WT classification (Part I), we investigate the influence of

the identified predictor variables on the synoptic re-

gimes and the regional-scale circulation. WTs are ana-

lyzed with regard to their pressure patterns andmoisture

fluxes and the consequential precipitation characteris-

tics. The major predictor variables of the regression

model (particularly ENSO and Eurasian snow cover)

are related to the frequency of WTs in the subsequent

cold season, which allows assessing the influence of

tropical and extratropical drivers on the regional circu-

lation over CA and the associated precipitation climate.

Section 2 gives a brief overview of the data and the ap-

plied statistical techniques. In section 3 the skill of the

statistical model is discussed and the effects of the

identified predictor variables on the large and regional-

scale circulation over central Asia are investigated in

detail. Section 4 summarizes the findings and discusses

the applicability of the results.

2. Data and methods

The operational model is based on the free and open

source programming interface of R (R Development

Core Team 2008) and makes use of freely available

datasets only, which are automatically downloaded and

processed.

a. Precipitation data and preprocessing

Various precipitation datasets are available covering

CA, including gridded observations such as CRU-TS

(Harris et al. 2014; New et al. 1999), APHRODITE

(Yatagai et al. 2012), and GPCP (Adler et al. 2003), and

reanalysis data such as ERA-Interim (Dee et al. 2011),
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ERA-Interim/Land (Balsamo et al. 2015), and NCEP–

NCAR (Kalnay et al. 1996). Most of the datasets are in

close agreement concerning the variability of cold sea-

sonal precipitation sums (not shown). The presented

study is based on the ERA-Interim reanalysis, which

provides 6-hourly surface climate estimates as well as

large-scale atmospheric fields for 60 pressure levels

between 1000 and 1hPa at a spatial resolution of 0.758.
The reanalysis spans the period after 1979 and is

continuously extended, which allows a regular recali-

bration and re-evaluation of the forecasting model.

Since ERA-Interim combines modeling results with

ground and radiosonde observations and remote sensing

data using a 4D data assimilation system, the free-

atmospheric fields can be considered as the best guess

of large-scale atmospheric conditions. Several studies

show that ERA-Interim sufficiently simulates the vari-

ability of relevant free-air and near-surface meteoro-

logical parameters, even over the complex mountain

regions of central and High Asia (Bao and Zhang 2013;

Gao et al. 2014; Wang and Zeng 2012; Liu et al. 2018).

Precipitation estimates are obtained for a domain

covering the entire CA (508–808E, 308–558N). The pre-

cipitation fields are aggregated to cold seasonal sums

(November–March) and converted to the standardized

precipitation index (SPI) for each grid cell (Guttman

1998). For this purpose, a gamma distribution is fitted to

the empirical distribution of precipitation and the ex-

ceedance probability of observed precipitation sums is

converted to z scores of the normal distribution. The

gridded SPI time series are aggregated to regions with

quasi-homogeneous precipitation variability by means

of a bootstrap clustering approach (Hennig 2007). For a

predefined range of cluster numbers (k 5 1–8), a k-

means clustering is conducted with the original SPI time

series and with 100 artificial records, derived by means

of bootstrap resampling. The robustness of the cluster-

ing results is estimated for each cluster of a partition

with k elements based on the Jaccard coefficient J.

Values of J . 0.75 suggest robust clusters, whereas

values of J , 0.5 indicate a high uncertainty of the

cluster solution (Hennig 2007). To select a robust but

still detailed partition, the adequate number of quasi-

homogeneous regions is chosen as the maximum k

with J . 0.75 for all clusters. The SPI time series are

spatially averaged for each cluster region and spatial

mean SPI values serve as predictand variables for the

forecasting model.

b. Predictor selection, model calibration, and
evaluation

The mean cold seasonal precipitation anomalies in

each region are analyzed with regard to their statistical

relationships with various predictor variables in pre-

ceding October. A comprehensive list of potential pre-

dictor variables, with their abbreviations and definitions,

is given in Table 1. Possible mechanisms are suggested

based on the introductory literature review and marked

with W indicating a potential influence on westerly

moisture fluxes and T indicating a potential influence on

tropical moisture fluxes. The Euro/Atlantic pressure

modes (AO, NAO, EA, EA/WR, SCA, POL/EUR; see

Table 1) as well as most of the SST indices (ATP, Niño-
112, Niño-3.4, Niño-4, AMO, PDO, WHWP; see

Table 1) and tropical circulation modes (SOI, QBO;

see Table 1) are available for download from the

National Oceanic and Atmospheric Administration

(www.esrl.noaa.gov/psd/data). The monthly mean SSTs

of the Indo-Pacific warm pool (WP; 108S–108N, 1208–
1508E) are extracted from the global ERSST v03 dataset

(Smith and Reynolds 2003). Snow-related parameters

[Eurasian snow cover (SC), Europe SC, Siberia SC,

High Asia SC, and snow advance index (SAI); see

Table 1] are derived from the Northern Hemispheric

Snow Cover Extent (NH-SCE) dataset (Estilow et al.

2015), which provides weekly gridded snow cover maps

since 1971 based on various sources of satellite imagery

and in situ observations. The snow cover extent is

extracted for all of Eurasia as well as for Europe (208W–

508E, 308–708N), Siberia (608–1808E, 508–808N), and

High Asia (608–1108E, 208–508N) and the maximum

snow coverage in October is derived. The SAI (Brands

et al. 2012), defined as the linear increase of snow cover

over Eurasia during October, is calculated as the linear

regression of four weekly snow cover estimates. All

predictor variables are normalized by mean and stan-

dard deviation.

A multiple linear regression model is separately

established for each subregion based on a stepwise

procedure, including forward selection and backward

elimination of predictor variables (von Storch and

Zwiers 2002; Hertig and Jacobeit 2011). Starting with

the predictor, which is most significantly correlated with

the SPI time series, the iterative procedure includes one

additional covariate at each step, as long as additional

variables are found to significantly improve the re-

gression results (F test; a 5 0.1). To avoid the selection

of predictor variables that are only correlated with ob-

served precipitation sums due to a common temporal

trend, the predictor selection procedure is conducted for

detrended time series. The regression model is de-

veloped based on all selected predictor variables by

means of the least squares fit and utilized the original

nondetrended records. The statistical model is cross-

validated by a leave-one-out procedure; that is, at each

step of the cross-validation one year is omitted and
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predictor selection and regression calibration are con-

ducted based on the remaining data. Various regression

models, which might be based on different predictor

combinations, are generated during cross-validation.

This allows quantifying the uncertainty arising from

both the selection of covariates and the statistical fit. The

skill of the model is specified as the correlation co-

efficient of observed and hindcasted SPI values for both

the final regression model (considering all available

years) and the cross-validation. A 90% prediction in-

terval of the forecast is estimated bymeans of a residual-

based approach, assuming that cross-validated model

errors follow a normal distribution. The final model

output displays the frequency of predictor selection

during the cross-validation for each subregion. Further,

normalized time series of the selected predictors and the

fractional response of the final regression model are

plotted. The fractional response of a particular predictor

variable is calculated as the result of the regression

model applied to a modified predictor time series, which

retains the values of the considered covariate, while

other covariates are set to zero. Finally the modeling

results, including observed, modeled, and cross-validated

SPI time series and the 90% prediction interval, are

presented for each subregion. For the operational pre-

cipitation forecast, the model only considers predictors,

which are selected by more than 50% of the models

during cross-validation.

c. Predictor influence on large- and regional-scale
circulation patterns

To better understand the teleconnections and atmo-

spheric mechanisms behind the skill of the statistical

forecasting approach, the effect of the predictor vari-

ables on the central Asian climate is investigated at two

different spatial scales: a large scale considering the state

of Northern Hemispheric circulation and a regional one

focusing on the prevalent synoptic patterns over central

Asia. For a large-scale perspective, predictors are sta-

tistically related with mean circulation indices and

ERA-Interim fields of geopotential height and humidity

for the cold seasons 1979/80 to 2016/17. To distinguish

the major modes of circulation variability affecting the

target region, we conduct an EOF analysis of seasonal

TABLE 1. Potential predictors for the linear precipitation forecast model; W indicates a potential influence on westerly moisture fluxes

and T a potential influence on tropical moisture fluxes.

Abbreviation Definition Source Potential mechanism

AO Arctic Oscillation NOAA W

NAO North Atlantic Oscillation NOAA W

EA East Atlantic pattern NOAA W

EA/WR East Atlantic/western Russia pattern NOAA W

SCA Scandinavian pattern NOAA W

POL/EUR Polar/Eurasian pattern NOAA W

ATP Atlantic SST tripole NOAA W

Niño-112 Normalized SST in ENSO-12 region

(08–108S, 908–808W)

NOAA T

Niño-3.4 Normalized SST in ENSO-34 region

(58N–58S, 1708–1208W)

NOAA T

Niño-4 Normalized SST in ENSO-4 region

(58N–58S, 1608E–1508W)

NOAA T

TNI Trans-Niño index, difference of Niño-112

and Niño-4
NOAA T

AMO Atlantic multidecadal oscillation NOAA W

QBO Quasi-biennial oscillation NOAA W

PDO Pacific decadal oscillation NOAA T

WHWP Monthly anomaly of the ocean surface

area warmer than 28.58C in the Atlantic

and eastern North Pacific

NOAA T

WP Normalized SST of Indo-Pacific warm

pool (108S–108N, 1108–1308E)
ERSST v03 W/T

SAI Snow advance index NH-SCE W

Eurasia SC Snow cover anomalies over Eurasia NH-SCE W

Siberia SC Snow cover anomalies over Siberia

(608–1808E, 508–808N)

NH-SCE W

Europe SC Snow cover anomalies over Europe

(208–508E, 308–708N)

NH-SCE W

High Asia SC Snow cover anomalies over High Asia

(608–1108E, 208–508N)

NH-SCE W
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(November–March) mean ERA-Interim 500-hPa geo-

potential height and total column water fields for a do-

main covering 08–908E, 208–708N. This domain covers

the western part of the Eurasian continent as well as the

Indian Ocean and thus includes the previously identified

moisture sources of the central Asian winter climate

(Part I; Syed et al. 2006; Mariotti 2007). Spatial loadings

of pressure and humidity are analyzed for three domi-

nant patterns and the time series of EOF scores are

related to the contemporaneous state of large-scale

circulation indices as well as to predictor variables in

preceding October. Finally, focusing on regional syn-

optic patterns and associated precipitation anomalies,

we analyze the previously established automatic WT

classification for central Asia (for details on the classi-

fication methodology, see Part I). The influence of pre-

dictor variables in October on the frequency of dry and

moist WTs during subsequent cold season is quantified

by means of a univariate composite analysis. Data are

divided into seasons representing a rather negative

(0%–33% quantile), normal (33%–66%), and positive

state (66%–100% quantile) of the considered predictor

variable, and the mean seasonal WT frequency anomaly

(%) is depicted. Statistically significant deviations (t test,

a 5 0.1) from the overall frequency mean are high-

lighted and discussed with regard to their large-scale

drivers.

3. Results

a. Seasonal precipitation forecast: Predictors and skill

Three quasi-homogeneous regions of cold season pre-

cipitation variability have been identified by the boot-

strap cluster approach (Fig. 1). A Jaccard coefficient J .
0.9 suggests a robust partition of the data into three

clusters. In contrast, values of J, 0.7 for cluster solutions

with k 5 2 or k $ 4 indicate a considerably higher un-

certainty and a rather fuzzy separation of the data

(Fig. 1a). Subregion 1 covers the northern Kazakh plains

and is bordered by the Kazakh uplands (Fig. 1b). Sub-

region 2 encompasses southern Kazakhstan, Uzbekistan,

Kyrgyzstan, Tajikistan, and northern Turkmenistan and

extends to the mountain barriers of Pamir and Elburz.

Subregion 3 includes the territories of Iran, Afghanistan,

and Pakistan. The SPI time series for regions 2 and 3

(Fig. 1d) clearly exhibit the central Asian droughts of

1999–2001 and 2007/08. The correlations between SPI

time series of different cluster region appear to be in-

significant for the period 1979–2017 (Fig. 1c).

A correlation analysis of all predictor variables with

observed SPI time series in each subregion (Fig. 1e)

indicates a strong influence of ENSO-related variables

for regions 2 and 3. Correlations exceed r 5 0.4 and are

highly significant. This also applies to PDO and WP,

which are strongly correlated with ENSO (see Fig. S1

in the online supplemental material for the cross-

correlation matrix of all predictor variables). Signifi-

cant correlations of cold season precipitation in regions

2 and 3 are also detected for October NAO; however, a

high correlation between NAO/AO and ENSO indices

in October has also been observed (see the online sup-

plemental material). This can either be coincidental or

indicate a coupling between NAO and ENSO due to an

effect of extratropical Pacific SSTs on Northern Hemi-

spheric planetary wave tracks, as reported by Wu and

Lin (2012). Positive correlations with October QBO are

detected for all regions, but are only statistically signif-

icant for region 3. Further, negative correlations of snow

related predictors (Eurasian, Siberian, and High Asian

snow cover) are distinctly defined for regions 2 and 3,

although not always significant. The SPI time series of

region 1 is characterized by an absence of significant

correlations with large-scale predictor variables, in-

dicating that a robust forecast of seasonal precipitation

by means of the linear regression approach is rather

unfeasible for the northern Kazakh plains. In gen-

eral, cold season precipitation sums over the northern

Kazakh plains are low (,200mm) and single, non-

predictable precipitation events may significantly affect

the SPI time series. No model development was thus

carried out for region 1. In contrast, regions 2 and 3 are

characterized by high mountain terrain resulting in a

frequent uplift of westerly and tropical air masses. This

leads to considerably higher precipitation amounts (up

to 800mm during cold season at west facing slopes) and

also to a stronger influence of large-scale atmospheric

variations.

Modeling results for regions 2 and 3 are presented in

Fig. 2. The cross-validated correlations between obser-

vations and predictions for regions 2 and 3 amount to

0.34 and 0.41, respectively, which is a similar skill com-

pared with more complex and nonlinear statistical

forecasting models for central Asia (see, e.g., Gerlitz

et al. 2016). Although the prediction range is large (with

SPI 6 1.0 for region 2 and SPI 6 1.3 for region 3), the

major characteristics of interannual precipitation vari-

ability are well captured for both regions. Both time

series feature drought events in 1985/86, 1999–2001, and

2007/08, which are also apparent in the hindcast mod-

eling results. The same applies for an additional drought

in region 3 in 1997 and a period of primarily positive SPI

anomalies in both regions during the early 1990s.

The Niño-4 index is identified as an important

predictor for both regions. Siberian snow cover and

the Scandinavian pattern are selected as secondary
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covariates for cluster 2. For cluster 3 the quasi-biennial

oscillation and SCA are considered as further pre-

dictors. The analysis of various linear models generated

during the cross-validation procedure indicates a robust

predictor selection (Fig. 3). More than 80% of the

models are based on the aforementioned predictor

combinations. Occasionally, Niño-4 is replaced by other

ENSO-related covariates (Niño-3.4, IOD) and Siberian

snow cover is substituted by other snow indices. Nota-

bly, some models also select snow cover–related pre-

dictor variables for region 3. Because of a strong

intercorrelation of snow cover indices (Fig. S1), an in-

dependent analysis of the impact of snow cover anom-

alies in different subregions of Eurasia based on

statistical techniques appears to be difficult. The same

applies for ENSO-related covariates.

The time series of predictor variables and the frac-

tional predictor response of the linear model indicate

that drought events are mainly associated with the

negative (cold) phase of ENSO. The positive response

of the regression model for region 3 to variations of

QBO is particularly evident during the 2000s, where SPI

anomalies appear to be characterized by a biannual cy-

cle. A negative response to variations of the Scandina-

vian pattern is apparent for both regions. For region 2, a

negative influence of snow cover–related predictor

variables is clearly depicted. Siberian snow cover is

characterized by mainly negative anomalies before 1995

and positive anomalies thereafter, which leads to a

positive response of the regression model until the mid-

1990s and a subsequent negative feedback. The SPI time

series for both regions show slight, although not statis-

tically significant, negative trends (Part I), indicating

that Eurasian snow cover should be considered as a

potential driver of the drying tendency during recent

decades.

FIG. 1. Clustering results of cold seasonal SPI variations over central Asia. (a) Minimum Jaccard coefficient for

cluster solutions with k 5 1–8 clusters. (b) Quasi-homogeneous regions of precipitation variability over central

Asia, based on a cluster solution with k 5 3. (c) Pearson correlations of the mean SPI time series for three sub-

regions. The size of circles is proportional to the correlation values. (d) Time series of mean SPI values for each

cluster region. (e) Pearson correlations of mean cold seasonal SPI for each region with potential predictor variables

in the preceding October. The size of squares is proportional to the correlation values. Significant correlations (a5
0.1) are marked with an asterisk (*).
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b. Atmospheric drivers of precipitation anomalies

1) LARGE-SCALE CIRCULATION FEATURES

The correlation analysis of predictor variables

with cold seasonal mean circulation indices indicates a

persistence of tropical circulation modes (Fig. 4). Par-

ticularly the state of ENSO indices in October shows

positive and statistically significant correlations with

mean ENSO conditions during subsequent cold sea-

son. The same applies to covariates, which are strongly

FIG. 2. Hindcast results of the statistical model for regions 2 and 3. (a) Time series of October predictor variables

identified by the stepwise predictor selection. (b) Time series of fractional response to selected predictor variables

based on the final regression model. (c) Time series of SPI observations as well as hindcast results for the final

regressionmodel and the cross-validation procedure. The gray polygon indicates the 90%prediction interval, based

on residuals of the cross-validation. Correlations between observations and hindcast results are provided for the

final regression and the cross-validation (cv).
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correlated with ENSO at a seasonal scale (e.g., the PDO

and IOD). Likewise the Scandinavian pattern features a

statistically significant persistence for the analyzed pe-

riod. A persistent behavior of SCA during the cold

season and an associated influence on temperature and

precipitation anomalies over the Northern Hemisphere

have been previously detected. Bueh and Nakamura

(2007) show that a mutual influence of the prevailing

near-surface circulation and North Atlantic SSTs is

likely responsible for the frequent reestablishment of

the pattern. Besides the seasonal persistence of some

hydroclimatologically relevant circulation features, the

FIG. 3. Predictor selection during cross-validation for regions 2 and 3. Bars indicate the number of linear models,

which include the particular covariate (maximum is 37).

FIG. 4. Pearson correlation matrix of cold seasonal mean circulation indices with the state of

selected predictor indices in the preceding October (denoted by _P). The size of squares is

proportional to the correlation values. Significant correlations (a 5 0.1) are marked with an

asterisk (*).
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correlation matrix indicates a dynamic forcing of west-

erly circulation modes by snow cover anomalies over

Eurasia. In agreement with previous studies (Cohen and

Jones 2011; Allen and Zender 2011), negative and par-

tially significant correlations are detected between snow

cover anomalies over Eurasia and Siberia in October

and the state of the Arctic and North Atlantic Oscilla-

tion during the following cold season. Notably, snow

cover variations over Europe show a strong positive

relationship with the east Atlantic/western Russia pat-

tern in winter, which might indicate a dynamic effect

of longitudinal snow cover gradients on the forma-

tion of stationary Rossby wave tracks. Further, QBO in

October shows a positive, although nonsignificant, corre-

lationwithNAOduringwinter, which suggests amoderate

influence of QBO on westerly circulation characteristics

via its effect on the strength and stability of the polar

vortex (Boer and Hamilton 2008).

Figure 5 depicts the correlation maps of October

Eurasian snow cover, ENSO, andQBOwith mean fields

of sea level pressure, vertically integrated moisture, and

sea surface temperature over Eurasia and the Indian

Ocean during the winter season (December–February).

Correlation fields for the extended cold season

(November–March) feature a similar picture. However

results for the latter are less significant (not shown). The

FIG. 5. Pearson correlation maps of cold season mean sea level pressure (SLP), vertically integrated moisture, and sea surface tem-

perature (SST) with Eurasian snow cover extent, the Niño-3.4 index and the QBO index in the preceding October. Bold contour lines

indicate the limit of statistically significant correlations (a 5 0.1). Note that the color scale for SLP is reversed.
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correlation maps indicate a significant influence of snow

cover variations on the large-scale circulation over

Eurasia. Positive correlations of October snow cover

with mean cold seasonal SLP are evident for large parts

of northern Eurasia and particularly for central Asia.

The zone of positive correlations is sharply bordered by

the mountain barriers of Tien Shan, Pamir, and Hin-

dukush. The influence of Siberian snow cover on the

large-scale circulation over Eurasia is particularly pro-

nounced during the late winter months (Kretschmer

et al. 2016; Cohen et al. 2014, see also Fig. S2). While

November conditions preceded by positive snow cover

anomalies are characterized by the formation of high sea

level pressure over northern Eurasia, a distinct modifi-

cation of the westerly circulation characteristics is only

apparent during January and February. Composite

maps of the zonal winds at the 500- and 200-hPa levels

(Fig. S2) are clearly similar to the negative state of

AO/NAO in late winter and indicate a northward shift

of the westerly jet stream over central Asia. The corre-

lation between QBO in October and cold seasonal SLP

shows a reversed spatial pattern with significant negative

relationships over northern Eurasia. For both Eurasian

snow cover and QBO, a significant correlation with the

seasonal mean atmospheric moisture content is detected

for the central Asian domain.

While snow cover–related indices and QBO signifi-

cantly influence the prevailing circulation features

over the westerly dominated parts of the Eurasian

continent, ENSO indices show the strongest correla-

tions with SLP anomalies over the Indian Ocean. El

Niño events are typically associated with persistent

positive anomalies of SLP over the Indian sub-

continent, which increases the tropical moisture sup-

ply into central Asia and partly explains the positive

correlations with the seasonal mean moisture content

(Fig. 5). Besides their influence on large-scale pressure

anomalies El Niño events are accompanied by an in-

crease of SSTs over the western Indian Ocean (Fig. 5).

This most likely leads to an increased moisture supply

due to the amplification of evapotranspiration and

thus certainly improves the predictive skill of ENSO

related indices.

The EOF analysis of 500-hPa geopotential height

(GPH) and vertically integrated moisture for the

Eurasian domain (08–908E, 208–708N) suggests a clear

separation of the circulation variability over central

Asia into tropical and extratropical modes (Fig. 6). The

explained variance of the three major modes of

500-hPa GPH variability amounts to 0.79. The first

pattern features a pressure gradient between northern

and southern parts of the target domain and clearly

resembles the AO/NAO (Fig. 6a). The correlation

of the EOF1 scores with the seasonal mean AO

index amounts to r 5 0.72 (Fig. 6b). Strong negative

correlations are detected for the cold seasonal scores of

EOF1 with preceding snow cover anomalies over the

Eurasian continent, indicating an influence of Eurasian

snow cover anomalies in autumn on the westerly cir-

culation characteristics over the central Asian domain

(Fig. 6c). In contrast, EOF2 and particularly EOF3

show clear centers of action over the Indian sub-

continent and strong pressure gradients over central

Asia. Their scores significantly correlate with simulta-

neous and lagged ENSO indices (Figs. 6a,b). Especially

the negative phase of EOF3 features positive GPH

anomalies and thus an anticyclonic circulation over the

Indian Ocean, which results in an enhanced south-

westerly flow during El Niño events. During the neg-

ative phase of EOF3, negative GPH anomalies are

apparent over the Indian subcontinent, while positive

anomalies occur over central Asia. The significantly

negative relationship of EOF3 scores with ENSO in-

dices might indicate a dynamic stimulation of a Rossby

ridge during La Niña events, as proposed by Barlow

et al. (2002).

The EOF loadings of vertically integrated moisture

fields feature similar characteristics and likewise sepa-

rate the circulation variability over the Eurasian domain

into a westerly and a tropical portion (Fig. 6a). As for

geopotential height, the first mode of variability is

characterized by a latitudinal gradient with positive

loadings north of the major mountain barriers of Pamir

and Tien Shan. Significant correlations are detectedwith

the simultaneous AO index as well as with preceding

snow cover anomalies, indicating a dynamic forcing of

the Arctic Oscillation by Eurasian snow cover and a

consequential modification of moisture fluxes into cen-

tral Asia. EOF2 is characterized by a pronounced center

of action over the Indian subcontinent and the southern

parts of central Asia. The EOF2 scores are strongly

negatively correlated with simultaneous and lagged

ENSO indices, which indicates an intensification of

tropical moisture fluxes into central Asia during the

ENSO warm phase.

Summarizing, the analysis of large-scale circulation

indices, ERA-Interim pressure and moisture fields, and

the EOF analysis shows that the major features of the

seasonal mean circulation over central Asia can be par-

titioned into tropical and extratropical modes. A certain

degree of predictability has been identified for both

fractions of the large-scale circulation, although the

strength of statistical relationships is in general larger for

tropical modes. These are particularly driven by season-

ally persistent variations of ENSO. Westerly circulation

features are influenced by deviating boundary conditions,
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particularly by snow cover variations over the Eurasian

continent, and feature a strong intraseasonal variability.

2) WEATHER TYPE FREQUENCIES

In Part I we established an automatic weather type

classification for central Asia. Eight weather types were

identified and analyzed with regard to their prevailing

pressure patterns andmoisture fluxes over Eurasia, their

characteristic near-surface climate conditions over cen-

tral Asia, and their tropical and extratropical drivers. In

Fig. 7, themean 500-hPa geopotential height field as well

as the fields of GPH anomalies are depicted and the

corresponding vertical integrated moisture fluxes are

illustrated for each WT. Precipitation anomalies are

shown (normalized by the cold season 6-hourly mean)

as well as correlations of WT frequencies with simul-

taneous variations of selected teleconnection indices.

Particularly, WTs 3, 7, and 8 feature strongly positive

precipitation anomalies, which are associated with

the formation of a Rossby trough over central Asia

(T[KAZ], T[CA]), a southward shift of the frontal jet

stream, and a consequential intensification of westerly

moisture fluxes over central Asia. The monthly frequen-

cies of those WTs show positive (and partly significant)

correlations with the simultaneous east Atlantic/west-

ern Russia pattern and the AO/NAO, indicating that

the superposition of those circulation modes triggers the

formation of a Rossby trough over central Asia and

the successional positive precipitation anomalies. On the

contrary anticyclonic anomalies due to the formation of

a Rossby ridge over central Asia (WT1, WT2, and WT4/

R[CA], R[KAZ]) result in a northward shift of west-

erly moisture fluxes and lead to negative precipitation

anomalies. In general, dry WTs show negative (although

not always significant) relationships with AO/NAO and

EA/WR at a monthly scale. WT5 and WT6 are charac-

terized by a strong meridional flow and a latitudinal

precipitation gradient over central Asia. These WTs are

FIG. 6. (a) Spatial distribution of EOF loadings for the major three modes of variability of (top) SLP and (bottom) total column water

content (TCW) for the period 1979–2016. The eigenvalues are indicated for each EOF and the correlations between SLP EOF scores and

TCW EOF are depicted. (b) Correlations of EOF scores with simultaneous mean seasonal circulation indices. (c) Correlations of EOF

scores with selected predictor variables in the preceding October (_P). The size of squares is proportional to the correlation values.

Significant correlations (a 5 0.1) are marked with an asterisk (*).
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strongly related to variations of the Scandinavian pattern

and typically occur during negative NAO conditions.

Besides westerly circulation modes, WTs feature pres-

sure anomalies over the Indian Ocean that modulate the

southwesterly flow over central Asia and the advection of

moist tropical air masses into the target domain. In-

tensified southwesterly winds are related to the formation

of an anticyclonic circulation over the Indian Ocean,

which is frequently developed during the ENSO warm

phase, and lead to moist conditions in the entire domain

FIG. 7. MajorWT characteristics. (a) Mean geopotential height and vertically integratedmoisture fluxes over Eurasia. The box displays

the region used for the WT classification. (b) Mean GPH anomalies and anomalies of moisture fluxes (standard deviations). (c) Mean

anomalies of 6-hourly precipitation anomalies (indicated as a proportion on the cold seasonal mean). (d) Spearman rank correlation

between the monthly state of contemporaneous teleconnection indices and the corresponding frequencies of WTs. The size of squares is

proportional to the correlation values. Significant correlations are marked with an asterisk (*); a5 0.1. Correlations are only depicted if

the monthly mean relative WT frequency exceeds 10%. Acronyms indicate the major features (and their centers of action) for each WT:

Rossby ridge (R), Rossby trough (T), anticyclonic anomaly (AC), cyclonic anomaly (C), central Asia (CA),Kazakhstan (KAZ),Mongolia

(MON), Eastern Europe (EE), and the Indian Ocean and Indian subcontinent (Indic).
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(WT6, WT8/AC[Indic]). On the contrary, reduced

southwesterlies due to the formation of a low pressure cell

and a cyclonic circulation over the Indian Ocean during

the ENSO cold phase (WT2, WT7/C[Indic]) provoke

drier conditions. Weather types have been shown to

represent a superposition and regional manifestation of

Euro/Atlantic Rossby waves and pressure anomalies over

the IndianOcean. Both drivers simultaneouslymodify the

synoptic circulation over central Asia.

To quantify the influence of selected predictors of the

statistical forecast model on the regional circulation and

associated precipitation anomalies over central Asia,

quantile-based bar plots illustrating the anomalies of

mean WT frequencies preceded by the 0%–33%, 33%–

66%, and 66%–100% quantiles of selected covariates

are shown in Fig. 8. Particularly for moist WTs, which

are characterized by positive relationships with simul-

taneous variations of NAO/AO and EA/WR at a

monthly scale, a statistically significant influence of snow

cover–related predictors is detected. The seasonal mean

frequency of WT7 (T[CA]/C[Indic]) is significantly in-

creased in cold seasons preceded by negative snow cover

anomalies in October (129.6%, 0%–33% quantile) and

significantly reduced if snow cover in October is above the

FIG. 8. Influence of predictor variables on the seasonal frequency of WTs. Data are divided into seasons representing rather negative

(defined as the 0%–33% quantile; blue bars), normal (33%–66% quantile; gray bars), and positive states (66%–100% quantile; red bars)

of the considered index. The mean seasonal WT frequency anomalies (%) during subsequent cold season (November–March) are de-

picted. Statistically significant deviations from the overall frequency mean (t test; a 5 0.1) are marked (striped).
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66% quantile (228.9%). For WT 8 (T[CA]/AC[Indic),

which resembles WT7 in terms of GPH variations over

northern Eurasia, no statistically significant link with

Eurasian snow cover in October is detected, although

significantly reduced frequencies preceded by positive

anomalies of the snow cover extent over High Asia are

observed. Frequencies of WT5 and WT6, which show

an increased frequency during the negative phase of

AO/NAO, feature a reversed relationship with snow

cover–related predictors. Thus there is evidence that the

formation of a planetary trough over central Asia, a

prominent synoptic feature of the positive AO/NAO

(WT3, WT7, and WT8) associated with moisture conver-

gence and positive precipitation anomalies, is partly trig-

gered by reduced snowcover rates overEurasia inOctober

and a consequential long-lasting modification of the

hemispheric circulation in subsequent winter. The dy-

namicalmechanism linking enhancedEurasian snowcover

with an increased strength of the Siberian high, a weak-

ening of the polar vortex, and eventually a negative man-

ifestation of the Arctic Oscillation (Cohen and Entekhabi

1999; Cohen and Jones 2011) might explain the significant

correlation between WT frequencies and snow cover var-

iations. Strong relationships forWT7 andWT8 frequencies

are further detected with the October state of the Scan-

dinavian pattern. Both WTs show a reduced frequency

(224.3%, 219.5%) preceded by negative SCA indices,

which might point to a general tendency toward a stronger

meridional flow (i.e., a seasonal persistence of SCA). For

example, Bueh and Nakamura (2007) show that SCA is

characterized by a stationary behavior and a frequent re-

establishment, which leads to a modification of tempera-

ture and precipitation patterns at the seasonal scale.

Gastineau et al. (2017) and Bueh and Nakamura (2007)

further illustrate that snow cover variations over Eurasia

are driven by SCA and its downstream wave tracks to a

large extent. This suggests an indirect predictive skill of

SCA via its influence on the Siberian snowfall, the for-

mation of characteristic Northern Hemispheric wave pat-

terns, and a subsequent modification of the tropospheric

and stratospheric dynamics. However the large-scale pro-

cesses linking SCA in October with WT frequencies in

subsequent winter are not fully understood and the ro-

bustness of the correlations needs further clarification.

In contrast to AO and SCA, the ENSO circulation is

usually regarded as seasonally persistent [see section

3b(1)]. During the ENSOwarmphase (El Niño) positive
GPH anomalies and thus an anticyclonic circulation

anomaly prevail over the Indian Ocean and northern

India, resulting in southwesterly winds over Iran and

Afghanistan and an advection of tropical moisture from

the Red Sea and the Arabian Gulf into central Asia

(Fig. 7). Particularly the frequencies of WTs 7 and 8 are

significantly influenced by ENSO conditions in previous

October. WT7, featuring a cyclonic circulation over the

Indian subcontinent (C[Indic]) and a reduced advection

of tropical moisture into central Asia, shows a signifi-

cantly reduced frequency (218.1%), while its counter-

part WT8 (AC[Indic]), which is characterized by strong

southwesterly moisture fluxes and highest precipitation

amounts, occurs significantly more often (15.2%) during

and after El Niño events. A negative influence of ENSO

is further evident for the seasonal frequencies of the dry

WT4 (R[CA]), which might, in accordance with the

EOF analysis provided above, indicate a stimulation of a

planetary ridge over central Asia and associated dry

conditions during La Niña events (see also Barlow et al.

2002). Besides of their influence on large-scale GPH and

circulation anomalies, El Niño events are accompanied

by an increase of SSTs over the western Indian Ocean

(Fig. 5), which leads to a pronounced WT internal in-

fluence of ENSO with higher moisture supply during

ENSO events for all WTs (Part I).

Previous studies suggested a link between rising sea

surface temperature in the Indo-Pacific warm pool (WP)

and prevailing precipitation trends over central Asia. The

WP is strongly anticorrelated with ENSO, but features a

pronounced positive trend during recent decades (Barlow

and Hoell 2015; Barlow et al. 2002; Hoell et al. 2017).

However, an additional forecast skill of the WP could not

be confirmed in our analysis (see section 3a). Significant

deviations of positive and negative warm pool anomalies

are detected for frequencies of WT2 and WT3 only. This

is inconsistent with the observed relationships with ENSO

and might be a statistical artifact due to a common trend.

An ENSO independent influence of the WP on the WT

composition over central Asia, as supposed by Barlow

and Hoell (2015), is not clearly verified. Likewise, no clear

influence of the October state of QBO onWT frequencies

in subsequent cold season is detected. The correlation

with mean sea level pressure in winter (Fig. 5), however,

indicates that the positiveQBO is associated with negative

pressure anomalies over northern Eurasia and central

Asia. Slight but not significant positive correlations of

the QBO index with the cold seasonal AO and NAO in-

dices are illustrated in Fig. 4. This might indicate a gen-

eral increase of westerly moisture fluxes during the

positive phase of QBO (Marshall and Scaife 2009; Boer

and Hamilton 2008), resulting in enhanced seasonal pre-

cipitation amounts in central Asia. However, a significant

positive relationship between QBO and ENSO [as

observed by Yuan et al. (2014); see also Fig. S1 in the

supplemental material of this paper] impedes the identi-

fication of an independent QBO signal. Therefore, a dis-

tinct modification of the regional circulation due to QBO

variations remains ambiguous.
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4. Summary and discussion

Cold season (November–March) precipitation anoma-

lies have a strong impact on the rural economies of the

central Asian countries and robust seasonal forecasts

are required in order to enable an adaption to

anomalous climate conditions and to implement an

application-oriented decision support system in this

climatically vulnerable region. Hence there exists de-

mand for simple, user-friendly and computationally ef-

ficient tools, which allow a robust forecast of cold

seasonal precipitation.

Bymeans of a multivariate linear regression approach

including a stepwise predictor selection procedure,

moderate forecast skills could be achieved for two sub-

regions covering Uzbekistan, Kyrgyzstan, Tajikistan,

and southern Kazakhstan (subregion 2) and Iran,

Afghanistan, and northern Pakistan (subregion 3). Cross-

validated correlations of observed and predicted cold

season precipitation sums in preceding October reach

up to 0.34 and 0.41, respectively. ENSO and the Eur-

asian snow cover extent in October were identified as

important predictor variables. The Scandinavian pattern

and the quasi-biennial oscillation were found to further

improve the statistical forecast skill.

To confirm the statistical relationships and to identify

the large-scale and synoptic atmospheric mechanisms

resulting in a predictive potential of the considered

covariates, a systematic analysis of the cold season cli-

mate in central Asia has been conducted at different

spatial scales. Results suggest that moist conditions are

associated with the persistent regional manifestation of

El Niño, which provokes an anticyclonic anomaly over

northern India and an enhanced advection of moisture

from theArabianGulf and the Red Sea. Further, positive

anomalies of sea surface temperatures over the western

Indian Ocean lead to an increase of evapotranspiration

and enhanced moisture supply during El Niño events.

Besides ENSO, variations of Northern Hemispheric cir-

culation modes have been shown to propagate into

central Asia. Particularly the simultaneous positive

manifestation of the Arctic Oscillation and the east At-

lantic/western Russia patterns stimulates WTs associated

with a Rossby trough over central Asia and a conse-

quential intensification of westerly moisture fluxes.

The Eurasian snow cover extent in October has been

shown to influence the regional circulation over Eurasia

due to cascading processes at different spatial scales. As

previously reported (Handorf et al. 2015; Brands et al.

2012; Cohen and Jones 2011; Cohen and Entekhabi

1999; Nakamura et al. 2015), the winter state of the

Arctic Oscillation is affected by snow anomalies over

Eurasia during preceding autumn. Positive anomalies

provoke a negative AO via an intensification of the Si-

berian high and a weakening of the stratospheric polar

vortex and vice versa. At a regional scale, the positive

state of AO/NAO during winter season favors the for-

mation of a stationary Rossby trough over central Asia,

which is associated with strongly positive precipitation

anomalies, whereas the negative AO state favors dry

conditions.

Some studies indicate that snow cover variations

over Eurasia not only influence the interannual vari-

ability of the near-surface climate, but also explain

observed changes in temperature and precipitation

during recent decades. Cohen et al. (2012) explain

observed negative temperature trends over Eurasia

after 1988 by means of a negative shift of the Arctic

Oscillation after the mid-1990s, which is shown to be

directly linked with enhanced snow cover over Eurasia.

In Part I of the presented study, we show that an ob-

served drying tendency over most parts of central Asia

after 1979 can be partially explained a modified WT

composition. Although the magnitude of precipitation

trends is underestimated, the spatial pattern, with

slight positive precipitation trends over the Tien Shan

and strongly negative trends in the south of the target

domain, is well reproduced by the WT-based re-

construction of seasonal precipitation amounts (Part

I). Particularly the frequency of the moist WT7, which

is highly positively correlated with the contemporane-

ous AO, shows a significant negative trend (Part I).

This suggests that negative precipitation trends over

central Asia are at least partially triggered by in-

creasing Eurasian snow cover and the corresponding

AO phase shift in the 1990s.

In general, the pronounced climatic changes in the

Arctic, with temperature trends exceeding double the

global mean (Screen and Simmonds 2010; Serreze and

Francis 2006; Johannessen et al. 2016), have been sug-

gested to strongly influence the snow coverage over the

Eurasian continent and the climate of the midlatitudes.

Liu et al. (2012) demonstrate that sea ice variations in

the Arctic in summer and autumn influence the snow

cover extent over Eurasia, particularly due to increased

evapotranspiration during ice free periods. Thus, the

recent expansion of autumn snow cover over Eurasia

and the consequential negative shift of AO might be

interpreted as a climate change signal triggered by re-

duced sea ice extent. Various studies argue that the

Arctic amplification and the sea ice loss in the Barents

Sea lead to a decreased thermal gradient in the polar

regions and thus reduces the atmospheric baroclinity,

which drives the westerly jet stream (Cohen et al. 2012;

Kretschmer et al. 2016; Gao et al. 2015; Overland

2016). As a consequence, wavier jet stream conditions
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(resembling the negative AO), associated with atmo-

spheric blocking or cold air outbreaks in the mid-

latitudes, become more likely (Barnes et al. 2017;

Woollings et al. 2014; García-Herrera and Barriopedro

2006). Di Capua and Coumou (2016) show that the

frequency of wavy jet stream conditions during autumn

and winter features a significant positive trend after

1979. The formation of planetary wave tracks and as-

sociated Northern Hemispheric pressure and humidity

patterns have been suggested to strongly influence sea

ice conditions in the Arctic (Mann et al. 2017; Li and

Wang 2013). Likewise, results by Nakamura et al. (2015)

andHandorf et al. (2015) indicate that thewinter state of

AO is partially triggered by sea ice variations in the

Arctic Ocean. This suggests that global warming pro-

vokes an increased frequency of extreme weather con-

ditions at the regional scale. Since dry conditions over

central Asia are shown to be related to the negative AO

state and the associated planetary wave tracks, global

warming might lead to an increased drought risk.

However, due to a low signal-to-noise ratio in the

westerly dominated midlatitudes, the derivation of ro-

bust climate change scenarios, especially with regard to

hydroclimatic extremes, remains challenging (Chen

et al. 2016; Overland 2016; Woollings et al. 2014).

Our study quantifies the statistical relationships of

hydroclimatic variations in central Asia with contem-

poraneous and lagged teleconnection indices by means

of a multivariate linear analysis and provides an over-

view of relevant large-scale and synoptic mecha-

nisms, allowing forecasting of anomalous precipitation

amounts during the boreal cold season. Recent studies

based on dynamical forecast models for longer periods,

however, observed a temporally variant skill of seasonal

climate predictions, particularly for the North Atlantic

domain (Weisheimer et al. 2017), which points toward

nonstationarity of statistical relationships and an in-

teraction of tropical and extratropical circulation modes

(Scaife et al. 2014). Thus, the analysis of the robustness

of the predictor–predictand relationship, particularly

with regard to changing circulation characteristics in the

context of global warming, as well as the nonlinear in-

teraction of tropical circulation modes and extratropical

wave patterns and their combined influence on the

central Asian precipitation climate requires further

research.
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