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METAMODEL CONSTRUCTION FOR SENSITIVITY ANALYSIS

Sylvie Huet1 and Marie-Luce Taupin21

Abstract. We propose to estimate a metamodel and the sensitivity indices of a complex model m in
the Gaussian regression framework. Our approach combines methods for sensitivity analysis of complex
models and statistical tools for sparse non-parametric estimation in multivariate Gaussian regression
model. It rests on the construction of a metamodel for aproximating the Hoeffding-Sobol decomposition
of m. This metamodel belongs to a reproducing kernel Hilbert space constructed as a direct sum of
Hilbert spaces leading to a functional ANOVA decomposition. The estimation of the metamodel is
carried out via a penalized least-squares minimization allowing to select the subsets of variables that
contribute to predict the output. It allows to estimate the sensitivity indices of m. We establish an
oracle-type inequality for the risk of the estimator, describe the procedure for estimating the metamodel
and the sensitivity indices, and assess the performances of the procedure via a simulation study.

Résumé. Nous considérons l’estimation d’un méta-modèle d’un modèle complexe m à partir des ob-
servations d’un n-échantillon dans un modèle de régression gaussien. Nous en déduisons une estimation
des indices de sensibilité de m. Notre approche combine les méthodes d’analyse de sensibilité de mod-
èles complexes et les outils statistiques de l’estimation non-paramétrique en régression multivariée. Elle
repose sur la construction d’un méta-modèle qui approche la décomposition de Hoeffding-Sobol de m.
Ce méta-modèle appartient à un espace de Hilbert à noyau reproduisant qui est lui-même la somme
directe d’espaces de Hilbert, permettant ainsi une décomposition de type ANOVA. On en déduit des
estimateurs des indices de sensibilité de m. Nous établissons une inégalité de type oracle pour le risque
de l’estimateur, nous décrivons la procédure pour estimer le méta-modèle et les indices de sensibilité,
et évaluons les performances de notre méthode à l’aide d’une étude de simulations.

1. Introduction
We consider a Gaussian regression model

Y = m(X) + σε, (1)

where X is a d random vector with a known distribution PX = P1× . . .×Pd on X a compact subset of Rd, and
ε is independent of X, and distributed as a N (0, 1) variable. The variance σ2 is unknown and the number of
variables d may be large. The function m is a complex and unknown function from Rd to R. It may present
strong non-linearities and high order interaction effects between its coordinates. On the basis of a n-sample
(Yi,Xi), i = 1, . . . , n, we aim to construct metamodels and perform sensitivity analysis in order to determine
the infuence of each variable or group of variables on the output.
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Our approach combines methods for sensitivity analysis of a complex model and statistical tools for sparse
non-parametric estimation in multivariate Gaussian regression model. It rests on the construction of a meta-
model for aproximating the Hoeffding-Sobol decomposition of the function m. This metamodel belongs to a
reproducing kernel Hilbert space constructed as a direct sum of Hilbert spaces leading to a functional ANOVA
decomposition involving variables and interactions between them. The estimation of the metamodel is carried
out via a penalized least-squares minimization allowing to select the subsets of variables X that contribute to
predict the output Y . Finally, the estimated metamodel allows to estimate the sensitivity indices of m.

A lot of work has been done around meta-modelling and sensitivity indices estimation.
For a complete account on global sensitivity analysis, see for example the book by Saltelli et al. [35]. Let us

briefly present the context of usual global sensitivity analysis. Suppose that we are able to calculate the ouputs
z of a model m for n realizations of the input vector X, such that zi = m(Xi) for i = 1, . . . , n. Starting from the
values (zi,Xi), i = 1, . . . n, the objectives of meta-modelling and global sensitivity analysis are to approximate
the function m by what is called a metamodel or to quantify the influence of some subsets of the variables X
on the output z. This metamodel helps to understand the behavior of the model, or allows to speed up future
calculation using it in place of the original model m.

In particular when the inputs variables X are independent, if m is square integrable, one may consider
the classical Hoeffding-Sobol decomposition [36, 41] that leads to write m according to its ANOVA functional
expansion:

m(x) = m0 +
∑
v∈P

mv(xv), (2)

where P denotes the set of parts of {1, . . . , d} with dimension 1 to d and where for all x ∈ Rd, xv denotes the
vector with components xj for j ∈ v. The functions mv are centered and orthogonal in L2(PX) leading to the
following decomposition of the variance of m: Var (m(x)) =

∑
v Var (mv(xv)). The Sobol sensitivity indices,

introduced by Sobol [36], are defined for any group of variables xv, v ∈ P by

Sv = Var (mv(xv))
Var (m(x)) .

They quantify the contribution of a subset of variables x to the output m(x). Several approaches are available
for estimating these sensitivity indices, see for example Iooss and Lemaître [17] for a recent review. Among all
of them, let us consider the one based on metamodel construction that allows to directly obtain the sensitivity
indices. Generally one consider metamodels that correspond to an ANOVA-type decomposition, and that are
candidate to approximate the Hoeffding decomposition ofm. The ANOVA-type decomposition leads to consider
functions defined as follows:

f : X → R, f(x) = f0 +
∑
v∈P

fv(xv), EPXfv(xv) = EPXfv(xv)fv′(xv′) = 0 ∀v, v′ ∈ P (3)

for functions fv that are chosen to belong to some functionnal spaces. The polynomial Chaos construction,
see for example Ghanem and Spanos [14], Soize and Ghanem [38], can be used to approximate the Hoeffding
decomposition of m. This approach was considered by Blatman and Sudret [5] who propose a method for
truncating (such that to keep polynomials with degree less than some integer) the polynomial Chaos expansion
and then an algorithm based on least angle regression for selecting the terms in the expansion. For the same
purpose, Gu and Wu [15] propose an algorithm based on the hierarchy principle (lower order effects are more
likely to be important than higher order effects) and on the heredity principle (interaction can be active only
if one or all of its parent effects are also active). This approach joins the one proposed by Bach [2] for variable
selection based on hierarchical kernel learning.

Inspired by Touzani [39], Durrande et al. [12] propose to approximate m by functions belonging to a repro-
ducing kernel Hilbert space (RKHS). The RKHS is constructed as a direct sum of Hilbert spaces leading to
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a functional ANOVA decomposition (see Equation (3)), such that the projection of m onto the RKHS is an
approximation of the Hoeffding decomposition of m.

Following Lin and Zhang [25], Touzani and Busby [40] propose an algorithm to calculate the penalized least-
square estimator of m on the RKHS space, where the least-square criteria is penalized by the sum of the norms
of m on each Hilbert subspace. This group-lasso type procedure allows both to select and calculate the non-zero
terms in the functional ANOVA decomposition.
Our objective is to propose an estimator of a metamodel which will approximate the Hoeffding decomposition
of m considering a Gaussian regression model defined at Equation (1) and to deduce from this estimated
metamodel, estimators for the sensitivity indices of m. Contrary to the usual setting of sensitivity analysis
where m(Xi) is available, only the observations Y are available, which leads us to consider the nonparametric
multivariate regression setting.

Let us briefly describe the methods related to this regression setting and review their theoretical properties,
starting with papers assuming an univariate additive decomposition for the function m in the context of high-
dimensional sparse additive models. Precisely, denote by F1-add, the set of functions f defined on X such that
f(x) = f0 +

∑d
a=1 fa(xa) where f0 is a constant, and where for a = 1, . . . , d, the functions fa are centered and

square-integrable with respect to Pa. For each function f , the set Sf of indices a ∈ {1, . . . d} such that fa is not
identically zero is called the actice set of f .

Ravikumar et al. [32] propose a group-lasso procedure where each function fa is approximated by its truncated
decomposition on a basis of functions. They provide an algorithm and, assuming that the function m belongs
to the set F1-add and that Sm is sparse, prove the consistency of the active set and of the risk of the estimator
of m.

Meier et al. [27] propose to combine a sparsity penalty (group-lasso) and a smoothness penalty (ridge) for
estimating m(x). Considering the fixed design framework, they establish some oracle properties of the empirical
risk for estimating the projection of m onto the set of univariate additive functions F1-add.

Raskutti et al. [31] consider the case where each univariate function fa belongs to a RKHS and as Meier et
al. [27] combine a sparsity and a smoothness penalty. Assuming that the d variables X are independent, they
derive upper bounds for the integrated and the empirical risks, as well as a lower bound for the integrated risk
over spaces of sparse additive models whose each component is bounded with respect to the RKHS norm.

Additive sparse modelling is too restrictive in practical settings because it does not take into account inter-
actions between variables that may affect the relationship between Y and X. The generalization of additive
smoothing splines to interaction smoothing splines leading to an ANOVA-type decomposition (see Equation (3))
was proposed by several authors (see for example Wahba [42], Friedman [13], Wahba et al. [43]).

To control smoothness and to enforce sparsity in the ANOVA-type decomposition, Gunn and Kandola [16]
propose to consider the ANOVA decomposition as a weighted linear sum of kernels and to use a lasso penalty
on the weights to select the terms in the decomposition as well as a ridge penalty to ensure smoothness of
the kernel expansion. The COSSO proposed by Lin and Zhang [25] is based on smoothness penalty defined as
the sum of the RKHS-norms of the functions fv. The authors study existence and rate of convergence of the
estimator. In a more general framework, where the function m is written as a linear span of a large number of
kernels, Koltchinskii and Yuan [21] established oracle inequalities on the excess risk assuming that the function
m has a sparse representation (the set of v ∈ P such that f∗v is non zero is sparse). The authors generalized their
results to a penalty function that combines sparsity and smoothness (see Koltchinskii et al. [22]), as proposed
by Meier et al. [27] and Raskutti et al. [31].

Recently Kandasamy and Wu [19] proposed an estimator called SALSA, based on a ridge penalty, where the
ANOVA-type decomposition is restricted to set v ∈ P such that |v| ≤ Dmax. The authors propose to choose
Dmax via a cross-validation procedure.

Our contributions
Using the functionnal ANOVA-type decomposition as proposed by Durrande et al. [12], we propose an

estimator of a metamodel which approximates the Hoeffding decomposition of m. Following the most recent
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works in the framework of nonparametric estimation of sparse additive models, we propose a penalized least-
square estimator where the penalty function enforces both the sparsity and the smoothness of the terms in the
decomposition. We show that our estimator satisfies an oracle inequality with respect to the empirical and
integrated risks.

Our procedure allows both to select and estimate the terms in the ANOVA decomposition, and therefore, to
select the sensitivity indices that are non-zero and estimate them. In particular it makes possible to estimate
Sobol indices of high order, a point known to be difficult in practice.

Finally, using convex optimization tools, we develop an algorithm (available on request) in R [30], for calcu-
lating the estimator. A simulation study shows the good performances of our estimator in practice.

The paper is organised as follows: The RKHS construction based on ANOVA kernels and the procedure for
estimating a metamodel are presented in Section 2. The estimators of the Sobol indices are given in Section 3.
The theoretical properties of the metamodel estimator are stated in Theorem 4.1 and Corollaries 4.1 and 4.2
whose proofs are postponed in Sections 7 and 8. Section 5 is devoted to the calculation of the estimator and
Section 6 to the simulation study.

2. Meta-modelling
We start from the Hoeffding decomposition (see Sobol [37] and Van der Vaart [41], p. 157) of the function

m that consists in writting m as in Equation (2)

m(x) = m0 +
∑
v∈P

mv(xv),

where P denotes the set of parts of {1, . . . , d} with dimension 1 to d and where for all x ∈ Rd, xv denotes the
vector with components xj for j ∈ v. For all v, v′ in P,

EX (mv(Xv)) = EX (mv(Xv)mv′(Xv′)) = 0.

We propose to consider a functionnal space based on the tensorial product of Reproducing Kernel Hilbert
spaces (RKHS), and to approximate the unknown function m by its projection denoted f∗ on such such RKHS
space. One of the key point is to construct the space H such that the terms of the decomposition of a function
f in H correspond to its Hoeffding-Sobol decomposition.

2.1. RKHS construction
Let us describe the construction of spaces H, based on ANOVA kernels, construction which was given by

Durrande et al. [12].
Let X = X1 × . . . × Xd be a compact subset of Rd. For each coordinate a ∈ {1, · · · , d}, we choose a RKHS

Ha and its associated kernel ka defined on the set Xa ⊂ R such that the two following properties are satisfied
(1) ka : Xa ×Xa → R is Pa × Pa measurable,
(2) EPa

√
ka(Xa, Xa) <∞.

The RKHS Ha may be decomposed as Ha = H0a
⊥
⊕ H1a, where

H0a = {fa ∈ Ha,EPa(fa(Xa)) = 0} ,
H1a = {fa ∈ Ha, fa(Xa) = C} ,

the kernel k0a associated to the RKHS H0a being defined as follows (see Berlinet and Thomas-Agnan [4]):

k0a(xa, x′a) = ka(xa, x′a)− EU∼Pa(ka(xa, U))EU∼Pa(ka(x′a, U))
E(U,V )∼Pa×Paka(U, V ) .
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The ANOVA kernel is defined as

k(x,x′) =
d∏
a=1

(1 + k0a(xa,x′a)) = 1 +
∑
v∈P

kv(xv,x′v), where kv(xv,x′v) =
∏
a∈v

k0a(xa, x′a),

and the corresponding RKHS

H = ⊗da=1

(
1
⊥
⊕ H0a

)
= 1 +

∑
v∈P
Hv,

where the RKHS Hv is associated with kernel kv. According to this construction, any function f ∈ H satisfies

f(x) = 〈f, k(x, ·)〉H = f0 +
∑
v∈P

fv(x),

where fv(x) = 〈f, kv(x, ·)〉H depends on xv only. For all v ∈ P, fv(xv) is centered and for all v′ 6= v, fv(xv)
and fv′(xv′) are uncorrelated. We get thus the Hoeffding decomposition of f .

2.2. Approximating the Hoeffding decomposition of m

Let f∗ = f∗0 +
∑
v∈P f

∗
v which minimizes

‖m− f‖2
L2(PX) = EX (m(X)− f(X))2

over functions f ∈ H. This f∗ can be viewed as an approximation of m and more specifically his Hoeffding de-
composition is an approximation of the Hoeffding decomposition ofm. Therefore if the Hoeffding decomposition
of m is written as in Equation (2), each function f∗v approximates the function mv.

The idea is propose an estimator of f∗ as estimator of m.

2.3. Selection step
Since P is the set of parts of {1, . . . , d}, the number of functionsf∗v is related to the cardinality of P = 2d− 1

that may be huge. Our construction is thus associated to a selection strategy.
The selection of f∗v in f∗ is based on a ridge-group-sparse type procedure which minimizes the penalized least-

squares criteria over functions f ∈ H. The least-squares criteria is penalized in order to both select few terms
in the additive decomposition of f over sets v ∈ P, and to favour smoothness of the estimated fv. The ridge
regularization is ensured by controling the norm of fv in the Hilbert space Hv for all v, and the group-sparse
regularization is strengthened by controling the empirical norm of fv, defined as

‖f‖n =

√√√√ 1
n

n∑
i=1

f2
v (Xv,i).

For any f ∈ H such that f = f0 +
∑
v∈P fv, and for some tuning parameters (µv, γv, v ∈ P), let L(f) be defined

as

L(f) = 1
n

n∑
i=1

(
Yi − f0 −

∑
v∈P

fv(Xv,i)
)2

+
∑
v∈P

µv‖fv‖Hv +
∑
v∈P

γv‖fv‖n. (4)

Let us define the set of functions F

F =
{
f such that f = f0 +

∑
v∈P

fv, fv ∈ Hv, ‖fv‖Hv ≤ 1
}
. (5)
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Then the estimator f̂ is defined as
f̂ = argmin {L(f), f ∈ F} . (6)

Remark 2.1. The construction of the RKHS spaces described above, allows to consider functionnal spaces that
suit well to the smoothness of the function m, irrespectively of the distribution of X. Indeed, the kernels k0,a
depend on the distribution of X only for calculating the projection onto the space of constant functions. In
comparison, the decomposition based on the truncated polynomial Chaos expansion, used for sensitivity analysis
(see Blatman and Sudret [5]), is based on the distribution of X, and only the choice of the truncation handles
the smoothness of the approximation.

3. Sensitivity analysis

3.1. Sobol indices
Let us go back to the Hoeffding decomposition Equation (2). The orthogonality between two terms in this

decomposition leads to the additive decomposition of the variance of m(x):

Var (m(x)) =
∑
v∈P

Var (mv(xv)) .

Each of these variance terms are related to Sobol indices [36]. For example, the Sobol indice linked with the
interaction between variables xv is defined as

Sv = Var (mv(xv))
Var (m(x)) ,

or the global Sobol indices for the variable xa, a ∈ {1, · · · , d}, is

Ga =
∑
v⊇{a}Var (mv(xv))

Var (m(x)) .

Those Sobol indices and global Sobol indices quantify the contribution of a subset of variables x to the output
m(x). As it is said in the introduction direct estimation of these Sobol indices may require lot of calculations.
We consider here methods based on metamodels to directly obtain Sensitivity indices.

3.2. Estimation of Sobol indices
Thanks to the orthogonality property of functions in H, the variance of m(x) will be estimated by

V̂ar (m(x)) =
∑
v∈P

V̂ar (mv(xv)) , where V̂ar (mv(xv)) = EX

(
f̂2
v (Xv)

)
= ‖f̂v‖2

L2(PX). (7)

In practice, in order to avoid calculating the variance of f̂v(Xv), one may use an estimator based on the
empirical variances of functions f̂v. Precisely, if f̂v,· is the mean of the f̂v(Xv,i), for i = 1, . . . , n, then

V̂ar
emp

(mv(xv)) = 1
n− 1

n∑
i=1

(
f̂v(Xv,i)− f̂v,·

)2
. (8)

One of the main contribution of this approach is to allow the estimation of Sobol indices of any order, whereas
classical methods only deal with small order, generally less than two.
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4. Theoretical result: oracle inequality for metamodel

In this section we state the oracle inequality for the estimated metamodel f̂ which approximates the Hoeffding
decomposition of the unknown function m.

4.1. Notations and Assumptions
For a function f ∈ H, f = f0 +

∑
v∈P fv, we denote by Sf its support and |Sf | its cardinality. More precisely

Sf = {v ∈ P, fv 6= 0} . (9)

We consider RKHS spaces Hv, v ∈ P satisfying the following assumptions:
• for all fv ∈ Hv, EXf

2
v (X) <∞,

• for all fv ∈ Hv, fv′ ∈ Hv′ , EXfv(X) = 0 and EXfv(X)fv′(X) = 0,
• there exists R′ > 0 such that

∀fv ∈ Hv ‖fv‖∞ = sup {|fv(X)|,X ∈ X} ≤ R′. (10)

For each v ∈ P, let ωv,k, for k ≥ 1 be the eigenvalues of the operator associated to the self reproducing kernel
kv, arranged in the decreasing order. Let us define the function Qn,v(t), for positive t, as follows:

Qn,v(t) =
√

5
n

∑
k≥1

min(t2, ωv,k), (11)

and for some ∆ > 0 let νn,v be defined as follows

νn,v = inf
{
t such that Qn,v(t) ≤ ∆t2

}
. (12)

For each v ∈ P, νn,v refers to the so-called critical univariate rate, the minimax-optimal rate for L2(PX)-
estimation of a single univariate function in the hilbert space Hv (e.g. Mendelson [28]).

Our choices of regularization parameters and rates are specified in terms of the quantities:

λn,v = max
{
νn,v,

√
d/n

}
. (13)

Theorem 4.1. Let us consider the regression model defined at Equation (1). Let (Yi,Xi), i = 1, . . . , n be a
n-sample with the same law as (Y,X). Let f̂ be defined by (6).

If there exist constants Cl, l = 1, 2, 3, C1 ≥ 1, and 0 < η < 1 such that the following conditions are satisfied:

for all v ∈ P, λn,v ≤ min
{
γv
C1
,

√
µv
C1

}
, nλ2

n,v ≥ −C2 log λn,v, (14)

and

for all f ∈ F , max

∑
v∈Sf

γ2
v ,
∑
v∈Sf

µv

 ≤ 1, (15)

then, with probability greater than 1− η,

‖m− f̂‖2
n ≤ C3 inf

f∈F

‖m− f‖2
n + σ2

∑
v∈Sf

(
µv + γ2

v

) .
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The result can be easily generalized to the minimization of L(f) over the space Fr defined as follows: For some
positive constants rv, v ∈ P,

Fr =
{
f such that f = f0 +

∑
v∈P

fv, fv ∈ Hv, ‖fv‖Hv ≤ rv

}
. (16)

Indeed, we just have to consider the RKHS H′v associated with the kernel k′v(xv,x
′

v) = r2
vkv(xv,x

′

v) in place of
the RKHS Hv. Then minimizing

1
n

∑
i

(
Yi − f0 −

∑
v

fv(Xv,i)
)2

+
∑
v

µvrv‖fv‖H′v +
∑
v

γv‖fv‖n

over the set

F
′

=
{
f such that f = f0 +

∑
v

fv, fv ∈ H
′

v, ‖fv‖H′v ≤ 1
}
,

is equivalent to minimizing L(f) over the set Fr.

Let us now comment on the theorem.
• The term ‖m−f‖2

n refers to the usual bias term quantifying the approximation properties of the Hilbert
space H as a distance between the true m and f , its approximation into H.
• Koltchinskii et Yuan [22] considered what is called the multiple kernel learning problem, where the
functions in H have an additive representation over kernel spaces. They do not assume that the variable
X are independent, nor that the kernel spaces satisfy an orthogonality condition. In return, they assume
that some decomposability type properties are satisfied, and they introduce some characteristics related
to the degree of “dependence” of the kernel spaces.
• In the particular case when the decomposition is limited to the main effects of the variables, then the
problem comes back to the classical nonparametric additive model. The theoretical properties of the
estimator based on a ridge-group-sparse type procedure have already been established (see for example
Meier et al. [27], and Raskutti et al. [31]).
• Weights in the penalty terms may be of interest for applications. The theoretical result highlights that
the tuning parameters (µv, γv) should depend on the decreasing of the eigenvalues of the kernel defining
Hv. Besides, we may be interested by introducing weigths that favor small order interaction terms.
• Because we aim to approximate the Hoeffding decomposition of m, we need to have orthogonality
between the spaces Hv, v ∈ P. This condition, required by our objective, is also a key point in the proof
of the Theorem, when the problem is to compare the euclidean norm of functions in H with the norm
in L2(PX). At this step we need to assume that Assumption (15) holds to conclude.
• We do not assume that the functions in F are uniformly globally bounded, that is that the sup{|f(x)|,x ∈
X} is bounded by a constant that does not depend on f . Instead we assume that each function within
the unit ball of the Hilbert space Hv is uniformly bounded by a constant multiple of its Hilbert norm. In
fact, the functions f in the space F , written as f0 +

∑
v fv satisfy that for each group v, fv is uniformly

bounded. This assumption is easily satisfied as soon as the kernel kv is bounded on the compact set X .
Indeed, ‖fv‖∞ ≤ supX∈X

√
kv(Xv,Xv)‖fv‖Hv . We refer to Raskutti et al. [31] for a discussion on that

subject and a comparison with the work of Koltchinskii et Yuan [22].
• Assuming that nλ2

n,v ≥ −C2 log λn,v allows to control the probability of the union of |P| events. This
is a mild condition, satisfied for λn,v = Kn/

√
n for Kn of the order

√
logn.

The following corollary gives an upper bound of the risk with respect to the L2(PX) norm. It is mainly a
consequence of Theorem 4.1 (its proof is given Section 8.2 page 47).
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Corollary 4.1. Under the assumptions of Theorem 4.1, we have that, with probability greater than 1 − η, for
some constant C4,

‖m− f̂‖2
L2(PX) ≤ C4 inf

f∈F

‖m− f‖2
n + ‖m− f‖2

L2(PX) + σ2
∑
v∈Sf

(
µv + γ2

v

) .

From this corollary we can compare the V̂ar (mv(xv)) (see Equation (7)) with the variance ofmv(xv). Thanks
to the following inequality∣∣∣‖f̂v‖L2(PX) − ‖mv‖L2(PX)

∣∣∣ ≤ ‖f̂v −mv‖L2(PX) ≤ ‖f̂ −m‖L2(PX),

and to Corollary 4.1, we get the following result

if mv ≡ 0 then V̂ar (mv(xv)) ≤ ‖f̂ −m‖2
L2(PX),

if ‖mv(xv)‖L2(PX) ≥ c > 0 then

∣∣∣∣∣ V̂ar (mv(xv))
Var (mv(xv))

− 1

∣∣∣∣∣ ≤ ‖f̂ −m‖2
L2(PX)/c.

4.2. Rate of convergence
Corollary 4.2. Under the same condition as Theorem 4.1, if γv = cλn,v and µv = cλ2

n,v for c ≥ C1, then

‖m− f̂‖2
n ≤ C3 inf

f∈F

‖m− f‖2
n +

∑
v∈Sf

ν2
n,v + d|Sf |

n

σ2

 .

The result is non asymptotic in the sense that it is shown for any (n, d). Nevertheless, the upper bound is
relevant when the infimum is reached for functions f whose decomposition in H is sparse, and when d is small
face to n. In fact, the coefficient d occuring in the rate d|Sf |/n comes from the logarithm of the cardinality of
P equal to log(2d − 1). When d is large, it may be judicious to limit the decomposition of functions in H, to
interactions of limited order, so that the number of terms in the decomposition stays of the order log(d).

Let us discuss the rate of convergence given by
∑
v∈Sf ν

2
n,v. For the sake of simplicity let us consider the

case where the variables X1, . . . , Xd have the same distribution P1 on X1 ⊂ R, and where the unidimensionnal
kernels k0a are all identical, such that kv(xv,x′v) =

∏
a∈v k0(xa, x′a). The kernel k0 admits an eigen expansion

given by
k0(x, x′) =

∑
`≥1

ω0,`ζ`(x)ζ`(x′),

where the eigenvalues ω0,` are non negative and ranged in the decreasing order, and where the ζ` are the
associated eigen functions, orthonormal with respect to L2(P1). Therefore the kernel kv admits the following
expansion

kv(xv,x
′

v) =
∑

`=(`1...`|v|)

|v|∏
a=1

ω0,`a︸ ︷︷ ︸
ωv,`

|v|∏
a=1

ζ`a(xa)︸ ︷︷ ︸
ζv,`(xv)

|v|∏
a=1

ζ`a(x
′

a)︸ ︷︷ ︸
ζv,`(x′v)

.

Consider now the case where the eigenvalues ω0,` are decreasing at a rate `−2α for some α > 1/2. It can
be shown, see Section 8.3, that the rate νn,v defined at Equation (12) is bounded above by a term of order
n−α/(2α+1)(logn)γ , where γ ≥ (|v| − 1)α/(2α − 1). Note that in this particular case, the rate of convergence
depends on |v| through the logarithmic term, and that up to this logarihmic term the rate of convergence has
the same order than the usual nonparametric rate for unidimensionnal functions. It follows that the RKHS
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space H should be chosen such that the unknown function m is well approximated by sparse functions in H
with low order of interactions.

5. Calculation of the estimator
The functional minimization problem described at Equation (6) is equivalent to a parametric minimization

problem. Indeed, we know that ifH is a RKHS associated with a kernel k : X×X → R, then for all (x1, . . . ,xn) ∈
Xn, and for all (α1, . . . , αn) ∈ Rn, the function f(·) =

∑n
i=1 αik(xi, ·) is inH and ‖f‖2

H =
∑n
i,i′=1 αiαi′k(xi,x′i′).

In particular, it can be shown that the solution to our minimization problem is written as f = f0 +
∑
v∈P fv

where, according to the representer Theorem (see Kimeldorf and Whahba [20]), fv(·) =
∑n
i=1 θvikv(Xvi, ·) for

some parameter θ ∈ Rn|P| with components (θv,i, i = 1, . . . , n, v = 1, . . . , |P|).
Let ‖ · ‖ denotes the usual euclidean norm in Rn. For each v ∈ P, let Kv be the n × n matrix with

components (Kv)i,i′ = kv(Xvi,Xvi′) that satisfies t(K1/2)K1/2 = K. Let f̂0 and θ̂ be the minimizer of the
following penalized least-squares criteria:

C(f0,θ) = 1
n
‖Y− f01n −

∑
v∈P

Kvθv‖2 + 1√
n

∑
v∈P

γv‖Kvθv‖+
∑
v∈P

µv‖K1/2
v θv‖. (17)

Then the estimator f̂ defined at Equation (6) satisfies

f̂(x) = f̂0 +
∑
v∈P

f̂v(xv) with f̂v(xv) =
n∑
i=1

θ̂v,ikv(Xv,i,xv).

Because C(f0,θ) is a convex and separable criteria, we propose to calculate θ̂ using a block coordinate descent
algorithm described in the following section.

Note that the estimator f̂ defined at Equation (6) should satisfy ‖fv‖Hv = ‖K1/2
v θv‖ ≤ 1, or generally

‖fv‖Hv ≤ rv for some positive rv, see (16). Usually we have no idea of the value of this upper-bound in
practice, and we propose to remove this contraint in the optimization procedure. Nevertheless, if one wants to
consider such an additional constraint, the problem can be solved at the price of some additional complication,
considering a Lagrangian method for example, see Section 8.7 for more details.

5.1. Algorithm
We will assume that for all v ∈ P the matrices Kv are strictly definite positive. If it is not the case, one

modifies Kv by Kv + ξIn where ξ is a small positive value, in order to ensure positive definiteness.
Using a coordinate descent procedure, we minimize the criteria C(f0,θ) along each group v at a time. At

each step of the algorithm, the criteria is minimized as a function of the current block’s parameters, while
the parameters values for the other blocks are fixed to their current values. The procedure is repeated until
convergence, considering for example that the convergence is obtained if the norm of the difference between two
consecutive solutions is small enough. See for exemple Boyd et al. [8] for optimization in such context.

For the sake of simplicity, we consider the minimization of the following criteria:

C ′(f0,θ) = ‖Y− f0 −
∑
v∈P

Kvθv‖2 +
∑
v∈P

γ′v‖Kvθv‖+
∑
v∈P

µ′v‖K1/2
v θv‖. (18)

Taking γ′v =
√
nγv and µ′v = nµv, this is exactly the same criteria as the one defined at Equation (17).
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Let us begin with the constant term f0. Because the penalty function does not depend on f0, minimizing
C ′(f0,θ) with respect to f0 for fixed values of θ leads to

f0 = Y· −
∑
v

n∑
i=1

(Kvθv)i /n, (19)

where Y· denotes the mean of Y and (Kvθv)i denotes the i-th component of Kvθv. In what follows, we consider
a group v, and fix the values of the parameters for all the other groups. We describe the algorithm and postpone
the proofs in Section 8.7.
Let us first consider the case where both µ′v and γ′v are non zero. If ∂C ′v denotes the subdifferential of C ′(f0,θ)
with respect to θv, we need to solve 0 ∈ ∂C ′v, which is equivalent to

−2KvRv + 2K2
vθv + γ′vsv + µ′vtv = 0, (20)

where
Rv = Y− f0 −

∑
w 6=v

Kwθw

and where sv and tv satisfy:

if θv = 0 ‖K−1
v sv‖ ≤ 1, and ‖K−1/2

v tv‖ ≤ 1,

if θv 6= 0 sv = K2
vθv

‖Kvθv‖
, and tv = Kvθv

‖K1/2
v θv‖

.

The first task is to obtain necessary and sufficient conditions for which the solution θv = 0 is the optimal one.
Let

J(t) = ‖2Rv − µ′vK−1
v t‖2, and J∗ = argmin

{
J(t), for t ∈ Rn such that ‖K−1/2

v t‖ ≤ 1
}
. (21)

Then the solution to Equation (20) is zero if and only if J∗ ≤ γ′2v . Calculating J∗ is a ridge regression problem
that can be easily solved (see Propositions 8.2 and 8.3 in Section 8.7).

If the solution to Equation (20) is not θv = 0, the problem is to solve the subgradient equation:

θv =
(

µ′v

2‖K1/2
v θv‖

In +Kv + γ′v
2‖Kvθv‖

Kv

)−1

Rv. (22)

Because θv appears in both sides of the equation, a numerical procedure is needed (see Proposition 8.4).
Other cases.

• If all the µ′v are equal to 0, the parameters θv are not identifiable.
• If all the γ′v are equal to 0, then we have to solve a classical group-lasso problem with respect to the
parameters θ′v defined as θ′v = K

1/2
v θv for all v ∈ P.

• Let v such that µ′v = 0, γ′v 6= 0 and assume that at least one of the µ′w is non zero for w ∈ P, w 6= v.
Then it is shown in Proposition 8.1 that θv = 0 if and only if 2‖Rv‖ ≤ γ′v.
• In the same way, if γ′v = 0, and µ′v 6= 0, then θv = 0 if and only if 2‖K1/2

v Rv‖ ≤ µ′v.
Finally the algorithm is the following:

(1) Start with an initial value θ = θ0.
(2) Calculate f0 using Equation (19). For the group v, calculate Rv and determine if the group v should

be excluded or not either by solving the problem defined at Equation (21) if µ′v 6= 0 and γ′v 6= 0, or
directly if one of them equals 0. If it is the case, set θv = 0. If not, solve Equation (22) to obtain θv.

(3) Iterate step 2. over all the groups v.
(4) Iterate step 2. and 3. until convergence.
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5.2. Choice of the tuning parameters
For each value of the tuning parameters (µ′v, γ′v), v ∈ P, the algorithm provides an estimate of m and of the

Sobol indices. The problem for choosing these parameters values is crucial. We propose to restrict this choice
by considering tuning parameters proportionnal to known weights: for all v ∈ P, µ′v = µωv and γ′v = γζv, where
the weights ωv and ζv are fixed. For example, one can take weights that increase with the cardinal of v in order
to favour effects with small interaction order between variables. Or, according to the theoretical result given at
Theorem 4.1, we can choose ωv = ν̂2

n,v and ζv = ν̂n,v, where ν̂n,v is an estimate of νn,v based on the eigenvalues
of the matrix Kv. Any other choice, depending on the problem of interest, may be relevant.

Once the weights are chosen, we estimate m, on the basis of a learning data set (Yi,Xi), i = 1, . . . n, for a
grid of values of (µ, γ). We first set γ = 0, and calculate µmax the smallest value of µ such that the solution to
the minimization of

‖Y− f0 −
∑
v∈P

Kvθv‖2 + µ
∑
v∈P

ωv‖K1/2
v θv‖,

is θv = 0 for all v ∈ P. Then we can consider µ` = µmax2−` for ` ∈ {1, . . . , `max}, as a grid of values for µ. The
grid of values for γ may be chosen after few attempts.

For choosing the final estimator, say f̂ , we suppose that we have at our disposal a testing data set (Y Ti ,XT
i ), i =

1, . . . nT , and we propose two procedures.

Proc. GS: The first one uses the testing data set for estimating the prediction error. Precisely, for each
value of (µ, γ) in the grid, let f̂(µ,γ)(·) be the estimation of m obtained with the learning data set. Then

PE(µ, γ) = 1
nT

nT∑
i=1

(
Y Ti − f̂(µ,γ)(XT

i )
)2

estimates the prediction error, and we propose to choose the pair (µ, γ) that minimizes PE(µ, γ), say
(µ̂, γ̂). Finally the estimator, denoted f̂GS is defined as f̂GS = f̂(µ̂,̂γ). In the following, we will refer to
this procedure as the Group-Sparse procedure.

Proc. rdg: Doing the parallel with the inconsistency of the lasso for estimating the support of the pa-
rameters in the classical regression problem, we propose to choose the tuning parameter that minimizes
the risk of the ridge estimator over the support estimated by the ridge-group-sparse procedure. In-
deed, if the tuning parameter is chosen to minimize the prediction error, the lasso is not consistent for
support estimation (see [24] for example). One idea to overcome this problem, is to choose the tuning
parameter that minimizes the risk of the Gauss-lasso estimator which is calculated in two steps: For a
given value of the tuning parameter, the estimation of the support of the parameter is estimated using
a lasso procedure, then the least square estimator over this support is calculated. When the objective is
support estimation, some numerical simulations [33] and theoretical results [18] suggest that it may be
more advisable not to apply the selection schemes based on prediction risk to the lasso estimators, but
rather to the Gauss-lasso estimators. Our procedure, called the ridge procedure, applies the same idea
in the framework of sparse nonparametric estimation. Precisely it considers the collection of supports
composed of the different S

f̂(µ,γ)
when (µ, γ) belongs to the grid. For each support S in this collection,

we estimate f using a ridge procedure assuming that the support of f is S: for a given λ, f rdg
λ,S is defined

as follows:

f rdg
λ,S = argmin

 1
n

n∑
i=1

(
Yi − f0 −

∑
v∈S

fv(Xv,i)
)2

+ λ
∑
v∈S
‖fv‖2

Hv , f = f0 +
∑
v∈S

fv, fv ∈ Hv

 .
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We choose a grid of values for λ, and for each S in the collection and λ in the grid, we estimate the
prediction error PE(λ, S) defined as follows:

PE(λ, S) = 1
nT

nT∑
i=1

(
Y Ti − f

rdg
λ,S(XT

i )
)2
.

For each S in the collection, let λ̂(S) be the minimizer of PE(λ, S) when λ varies in the grid, and let Ŝ
be the minimizer of PE(λ̂(S), S), then the estimator denoted f̂ rdg is defined as f̂ rdg = f rdg

λ̂(Ŝ),Ŝ
.

If a testing data set is not available, we can use the classical V-fold cross validation (see [1] for example) either
to estimate PE(µ, γ) or to estimate PE(λ, S).

6. Simulation study
In order to evaluate the performances of our method for estimating a meta-model and sensitivity indices of

a function m we carried out a simulation study. We consider the g-function of Sobol defined on [0, 1]d as

m(x) =
d∏
a=1

|4xa − 2|+ ca
1 + ca

, ca > 0,

whose Sobol indices can be expressed analytically (see Saltelli et al. [34]). Following the simulation experiment
proposed by Durrande et al. [12], we take d = 5 and (c1, c2, c3, c4, c5) = (0.2, 0.6, 0.8, 100, 100). The lower the
value of ca, the more significant the variable xa. The variables Xa, a = 1, . . . , d are independent and uniformly
distributed on [0, 1]. We consider the regression model Yi = m(Xi) + σεi, for i = 1, . . . , n, with N (0, 1)
independent error terms εi.
Simulation design. We present the results for n ∈ {50, 100, 200}, σ ∈ {0, 0.2}. For all a = 1, . . . , d, the kernels
ka are the same: we considered the Brownian kernel, kb(x, x′) = 1 + min {x, x′}, the Matérn kernel, km(x, x′) =
(1 + 2|x− x′|) exp(−2|x− x′|), and the Gaussian kernel, kg(x, x′) = exp(x− x′)2.

For each simulation, we generate three independent data sets as follows : a Latin Hypercube Sample of
the inputs is simulated to give the matrix X with n rows and d = 5 columns, and a n-sample of independent
centered Gaussian variable with variance 1 is simulated. This operation is repeated three times in order to
obtain the learning and testing data sets and a third data set for estimating the estimators performances. As
explained in Section 5.2, we choose optimal values of the tuning parameters, (µ, γ) by minimizing a prediction
error PE, and get an estimator f̂ of m, as well as estimates of the Sobol indices:

Ŝv = V̂ar (mv(xv))∑
w∈P V̂ar (mw(xw))

.

Let Ωv be the matrix whose components satisfy

(Ωv)i,i′ =
∏
a∈v

EU∼Pa (k0a(U,Xa,i)k0a(U,Xa,i′)) for i, i′ = 1, . . . , n.

The estimator V̂ar (mv(xv)) is calculated as follows:

V̂ar (mv(xv)) = α̂Tv Ωvα̂v.

We also propose to estimate these quantities by their empirical variances as in Equation (8).
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σ = 0 σ = 0.2
n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

Proc. GS 0.814 0.920 0.959 0.737 0.835 0.889
Proc. rdg 0.874 0.976 0.989 0.763 0.854 0.892

Table 1. Estimated coefficient of determination R2 for different values of n and σ, with the
Matérn kernel.

σ = 0 σ = 0.2
n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

Proc. GS 0.033 0.0137 0.0139 0.051 0.028 0.020
Proc. rdg 0.011 0.0009 0.0007 0.042 0.022 0.013

Table 2. Estimated empirical risk ER for different values of n and σ with the Matérn kernel.

Performance indicators. To evaluate the performances of our method for estimating a meta-model, we use the
classical coefficient of determination R2 estimated using the third data set (Y Pi ,XP

i ), i = 1, . . . , n:

R2 = 1−

∑n
i=1

(
Y Pi − f̂(XP

i )
)2

∑n
i=1
(
Y Pi − Y P·

)2 .

Moreover we calculate the empirical risk ER = ‖m − f̂‖2
n. For each simulation s, we get R2

s and ERs and we
report the means of these quantities over all simulations.

Similarly, for each v, and each simulation s, we get Ŝv,s and we report its mean, Ŝv,·, its estimated standard-
error, and to sum up the behaviour of our procedure for estimating the sensitivity indices, we estimate the
global error, denoted GE, defined as follows

GE =
∑
v

(Ŝv,s − Sv)2.

In order to assess the performances of our procedure for selecting the greatest Sobol Indices, precisely those
that are greater than some small quantity as ρ = 10−4, we calculate for each group v ∈ P, the percentage of
simulations for which v is in the support of the estimator f̂ . Then we average these quantities, on one hand
over groups v such that Sv > ρ, and on the other hand, over groups v such that Sv ≤ ρ. Let us denote these
quantities pSelSv>ρ and pSelSv≤ρ respectively.

For each (µ, γ) in a grid of values, the estimator f̂µ,γ is defined as the minimizer of the criteria given at
Equation (18) taking ωv = ζv = 1 for all v ∈ P. In order to save computation time, we restrict the optimisation
to sets v such that |v| ≤ 3. Some preliminary simulations showed that the terms coresponding to |v| ≥ 4 are
nearly always equal to 0.
Choosing the tuning parameters. Let us begin with the comparison of the two methods proposed for choosing
the final estimator, see Section 5.2. The results are given in Tables 1 and 2. It appears that the procedure
based on the ridge estimator after selection of the groups outperforms the method based on the group-sparse
estimator. As expected both methods perform better when n increases, and when σ = 0.

Similarly, the Sobol indices are better estimated, in the sense of the global error, with the procedure based
on the ridge estimate of the metamodel, see Table 3. The means of the estimators for the Sobol indices greater
than ρ = 10−4 are given in Tables 4 and 5. It appears than S{1} is over-estimated using the procedure based
on the group-sparse estimator, leading to under-estimate the Sobol indices associated with interactions of order
2. This tendancy is much less pronounced with the procedure based on the ridge estimator.
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σ = 0 σ = 0.2
n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

Proc. GS 1.91 0.79 0.45 2.41 1.16 0.54
Proc. rdg 0.80 0.10 0.03 1.50 0.47 0.15

Table 3. Estimated global error GE× 100 for different values of n and σ with the Matérn kernel.

v = {1} v = {2} v = {3} v = {1, 2} v = {1, 3} v = {2, 3} v = {1, 2, 3} sum
S.I. 43.3 24.3 19.2 5.63 4.45 2.50 0.579 99.98
Proc. GS 50.1 (6.2) 26.5 (5.4) 20.9 (4.9) 0.69 (0.8) 0.63 (1.1) 0.51 (0.9) 0.02 (0.07) 99.29
Proc. rdg 45.4 (4.3) 25.3 (3.4) 20.3 (3.5) 3.08 (2.5) 2.18 (2.1) 1.44 (1.8) 0.09 (0.5) 98.66

Table 4. The first line of the table gives the true values of the Sobol indices ×100 greater
than 10−2, as well as their sum in the last columns. The following lines give the mean of the
estimators as well as their standard-error (in parenthesis), calculated over 100 simulations, for
n = 50, and σ = 0 with the Matérn kernel.

v = {1} v = {2} v = {3} v = {1, 2} v = {1, 3} v = {2, 3} v = {1, 2, 3} sum
S.I. 43.3 24.3 19.2 5.63 4.45 2.50 0.579 99.98
Proc. GS 47.5 (5.4) 26.2 (4.9) 19.8 (3.7) 2.35 (1.5) 1.45 (1.2) 0.84 (0.8) 0.03 (0.1) 98.95
Proc. rdg 43.5 (3.9) 25.0 (3.6) 19.7 (2.8) 4.85 (1.7) 3.39 (1.5) 2.02 (1.3) 0.05 (0.3) 99.02

Table 5. The first line of the table gives the true values of the Sobol indices ×100 greater
than 10−2, as well as their sum in the last columns. The following lines give the mean of the
estimators as well as their standard-error (in parenthesis), calculated over 100 simulations, for
n = 100, and σ = 0.2 with the Matérn kernel.

SI < ρ SI ≥ ρ v = {1} v = {2} v = {3} v = {1, 2} v = {1, 3} v = {2, 3} v = {1, 2, 3}
Proc. GS 17.9 68 100 100 100 72 66 67 9
Proc. rdg 6.3 51 100 100 100 72 62 47 4

Table 6. The first two columns give respectively pSelSv≤ρ and pSelSv>ρ. The last columns
give the values of pSelv for each group v such that Sv > ρ. Results for n = 50 and σ = 0 with
the Matérn kernel.

Let us now consider the performances of the procedure for selecting the non zero Sobol indices. In Tables 6
and 7 we report the percentages of simulations for which the Sobol indices smaller (respectively greater) than ρ
are selected, and for which each of Sobol index greater than ρ is selected. From these results, we conclude that
the procedure based on the ridge estimator is more strict for selecting non-zero Sobol indices.
Comparing different kernels. Finally we compare the performances of the procedures for different kernels, see
Tables 8 and 9. The means of the estimated empirical risk, ER, and of the global error for estimating the
sensitivity indices, GE, are calculated for each kernel. It appears that the Matérn kernel gives the best results,
except for the case n = 50 and σ = 0 where the empirical risk of f̂GS is smaller for the Brownian kernel.

In practice, one may want to choose the kernel according to the smallest prediction error. For that purpose,
we propose to calculate the estimators f̂GS and/or f̂ rdg for each kernel, as described in Section 5.2, as well as
their associated prediction errors. Then we choose the kernel for which the prediction error is minimized. The
results are reported under the column “mixed” in Tables 8 and 9. It appears that the estimated empirical risks
for this “mixed” procedure are nearly equal to the minimum estimated empirical risks over the different kernels.
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SI < ρ SI ≥ ρ v = {1} v = {2} v = {3} v = {1, 2} v = {1, 3} v = {2, 3} v = {1, 2, 3}
Proc. GS 38 85 100 100 100 100 99 98 18
Proc. rdg 6 58 100 100 100 98 92 77 3

Table 7. The first two columns give respectively pSelSv≤ρ and pSelSv>ρ. The last columns
give the values of pSelv for each group v such that Sv > ρ. Results for n = 100 and σ = 0.2
with the Matérn kernel.

n = 50, σ = 0 n = 100, σ = 0.2
Matérn Gaussian Brownian mixed Matérn Gaussian Brownian mixed

Proc. GS 0.033 0.054 0.027 0.028 0.033 0.054 0.027 0.028
Proc. rdg 0.011 0.024 0.025 0.011 0.011 0.024 0.025 0.023

Table 8. Estimated empirical risk ER: Performances of the procedures according to the
kernel choice.

n = 50, σ = 0 n = 100, σ = 0.2
Matérn Gaussian Brownian mixed Matérn Gaussian Brownian mixed

Proc. GS 1.91 2.49 2.19 1.88 1.16 1.90 1.69 1.16
Proc. rdg 0.80 1.39 1.40 0.85 0.48 0.83 0.73 0.51

Table 9. Estimated global error GE× 100: Performances of the procedures according to the
kernel choice.

7. Sketch of proof of Theorem 4.1
We give here a sketch of the proof and we postpone to Section 8 for complete statements. In particular, we

denote by C constants that vary from an equation to the other, and we assume that σ = 1.
The proof of Theorem 4.1 starts in the same way as the proof of Theorem 1 in Raskutti et al. [31]. Nevertheless

it differs in several points, in particular because the terms occuring in the decomposition of functions inH depend
on several variables and thus are not independent. Indeed, fv(Xv) and f ′v(Xv′) are not independent as soon as
the groups v and v′ share some of the variables Xa, a = 1, . . . , d. Moreover, we do not assume that the function
m is in F .

Starting from the definition of f̂ , some simple calculation (see Equation (28)) give that for all f ∈ F

C‖m− f̂‖2
n ≤ ‖m− f‖2

n +

∣∣∣∣∣ 1n
n∑
i=1

εi(f̂(Xi)− f(Xi))

∣∣∣∣∣+
∑
v∈Sf

(
γv‖f̂v − fv‖n + µv‖f̂v − fv‖Hv

)
.

If we set g = f̂ − f , then g ∈ H, g = g0 +
∑
v gv, with gv = f̂v − fv, and for each v, ‖gv‖Hv ≤ 2.

The main problem is now to control the empirical process. For each v, letting λn,v as in (13), we state (see
Lemma 8.1, page 44) that, with high probability,

if ‖gv‖n ≤ λn,v‖gv‖Hv then

∣∣∣∣∣
n∑
i=1

εigv(Xv,i)

∣∣∣∣∣ ≤ Cnλ2
n,v‖gv‖Hv ,

if ‖gv‖n > λn,v‖gv‖Hv then

∣∣∣∣∣
n∑
i=1

εigv(Xv,i)

∣∣∣∣∣ ≤ Cnλn,v‖gv‖n.
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Therefore, if for all v, µv and γv satisfy Equation (14), we deduce that with high probability (setting g = f̂−f)

C‖m− f̂‖2
n ≤ ‖m− f‖2

n

∑
v∈Sf

(γv‖gv‖n + µv‖gv‖Hv ) +
∑
v/∈Sf

(
γv‖f̂v‖n + µv‖f̂v‖Hv

)
.

Besides we can express the decomposability property of the penalty as follows (see lemma 8.2, page 45): with
high probability (in the set where the empirical process is controled as stated above),∑

v/∈Sf

(
γv‖f̂v‖n + µv‖f̂v‖Hv

)
≤ C

∑
v∈Sf

(γv‖gv‖n + µv‖gv‖Hv ) .

Putting the things together, and noting again that ‖gv‖Hv ≤ 2, we obtain the following upper bound

C‖m− f̂‖2
n ≤ ‖m− f‖2

n +
∑
v∈Sf

( µv + γv‖gv‖n) .

The last important step consists in comparing
∑
v∈Sf ‖gv‖n to ‖

∑
v∈Sf gv‖n. More precisely, it can be shown

(see lemma 8.3, page 45) that for all v ∈ P, with high probability, we have

‖gv‖n ≤ 2‖gv‖L2(PX) + γv.

Using the orthogonality assumption between the spaces Hv, we have
∑
v∈Sf ‖gv‖

2
L2(PX) = ‖

∑
v gv‖2

L2(PX), and
thus we get

C‖m− f̂‖2
n ≤ ‖m− f‖2

n +
∑
v∈Sf

µv +
∑
v∈Sf

γ2
v + ‖

∑
v∈Sf

(f̂v − fv)2‖2
L2(PX).

Finally it remains to consider different cases according to the rankings of ‖f̂−f‖2
L2(PX), ‖f̂−f‖2

n and
∑
v∈Sf µv+

γ2
v to get the result of Theorem 4.1.

8. Proofs
Recall that we cconsider the regression model defined at Equation (1), where X has distribution PX =

P1 × . . . × Pd defined on X a compact subset of Rd, and ε is distributed as N (0, σ2). We denote by PX,ε the
distribution of (X, ε). We observe a n sample (Yi,Xi), i = 1, . . . , n with law PX,ε.

The notation and the procedure are given in Sections 2 and 4.
Let us add on few notations that will be used along the proofs.
For v ∈ P we denote |v| the cardinal of v. For a function φ : R|v| 7→ R, we denote Vn,ε the empirical process

defined by

Vn,ε(φ) = 1
n

n∑
i=1

εiφ(Xv,i). (23)

For the sake of simplicity we assume σ = 1. Moreover, we set R′ = 1, see (10). Consequently, for any function
f ∈ H, ‖fv‖Hv ≤ 1, and ‖fv‖∞ ≤ ‖f‖Hv . The proofs can be done exactly in the same way by considering the
general case. In the proofs, the ‖ · ‖L2(PX) norm will be denoted by ‖ · ‖2.

8.1. Proof of Theorem 4.1
The proof is based on four main lemmas proved in Section 8.5. In Section 8.4 other lemmas used all along

the proof are stated. Their proof are postponed to Section 8.6.
Let us first establish inequalities that will be used in the following. Let f ∈ H and v ∈ Sf (see (9)).



44 S. HUET AND M.L. TAUPIN

Using that for any v ∈ Sf , and any norm ‖ · ‖ in Hv, ‖fv‖ − ‖f̂v‖ ≤ ‖fv − f̂v‖ and that for any v /∈ Sf ,
‖fv‖ = 0, we get that∑

v∈P
µv‖fv‖Hv −

∑
v∈P

µv‖f̂v‖Hv ≤
∑
v∈Sf

µv‖fv − f̂v‖Hv −
∑
v∈Sc

f

µv‖f̂v‖Hv , (24)

∑
v∈P

γv‖fv‖n −
∑
v∈P

γv‖f̂v‖n ≤
∑
v∈Sf

γv‖fv − f̂v‖n −
∑
v∈Sc

f

γv‖f̂v‖n. (25)

Combining (24), and (25), to the fact that for any function f ∈ H, L(f̂) ≤ L(f), we obtain that

‖m− f̂‖2
n ≤ ‖m− f‖2

n +B,

with
B = 2Vn,ε

(
f̂ − f

)
+
∑
v∈Sf

[
µv‖f̂v − fv‖Hv + γv‖f̂v − fv‖n

]
−
∑
v∈Sc

f

[
µv‖f̂v‖Hv + γv‖f̂v‖n

]
. (26)

If ‖m− f‖2
n ≥ B, we immediately get the result since in that case

‖m− f̂‖2
n ≤ 2‖m− f‖2

n ≤ 2‖m− f‖2
n +

∑
v∈Sf

µv +
∑
v∈Sf

γ2
v .

If ‖m− f‖2
n < B, we get that

‖f̂ −m‖2
n ≤ 2B (27)

≤ 4|Vn,ε
(
f̂ − f

)
|+ 2

∑
v∈Sf

[
µv‖f̂v − fv‖Hv + γv‖f̂v − fv‖n

]
. (28)

The control of the empirical process |Vn,ε
(
f̂ − f

)
| is given by the following lemma (proved in Section 8.5.1,

page 52).

Lemma 8.1. Let Vn,ε be defined in (23). For any f in F , we consider the event T defined as

T =
{
∀f ∈ F ,∀v ∈ P, |Vn,ε

(
f̂v − fv

)
| ≤ κλ2

n,v‖f̂v − fv‖Hv + κλn,v‖f̂v − fv‖n
}
, (29)

where the quantities λn,v are defined by Equation (13) and where κ = 10+4∆. Then, for some positive constants
c1, c2,

PX,ε (T ) ≥ 1− c1
∑
v∈P

exp(−nc2λ
2
n,v).

Conditionning on T , Inequality (28) becomes

‖f̂ −m‖2
n ≤ 4κ

∑
v∈P

[
λ2
n,v‖f̂v − fv‖Hv + λn,v‖f̂v − fv‖n

]
+ 2

∑
v∈Sf

[
µv‖f̂v − fv‖Hv + γv‖f̂v − fv‖n

]
,

which may be decomposed as follows

‖f̂ −m‖2
n ≤

∑
v∈Sf

[
4κλ2

n,v + 2µv
]
‖f̂v − fv‖Hv +

∑
v∈Sf

[4κλn,v + 2γv] ‖f̂v − fv‖n +

4
∑
v∈Sc

f

κλ2
n,v‖f̂v − fv‖Hv + 4

∑
v∈Sc

f

κλn,v‖f̂v − fv‖n.
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If we choose C1 ≥ κ in Theorem 4.1, then κλ2
n,v ≤ µv/2 and κλn,v ≤ γv/2 and the previous inequality

becomes

‖f̂ −m‖2
n ≤ 6

∑
v∈Sf

[
µv‖f̂v − fv‖Hv + γv‖f̂v − fv‖n

]
+ 4

∑
v∈Sc

f

[
µv‖f̂v‖Hv + γv‖f̂v‖n

]
. (30)

Next we use the decomposability property of the penalty expressed in the following lemma (proved in Sec-
tion 8.5.2 page 54).

Lemma 8.2. For any f ∈ F , under the assumptions of Theorem 4.1 with C1 ≥ κ, conditionnally on T ,
see (29), we have

∑
v∈Sc

f

µv‖f̂v‖Hv +
∑
v∈Sc

f

γv‖f̂v‖n ≤ 3
∑
v∈Sf

µv‖f̂v − fv‖Hv + 3
∑
v∈Sf

γv‖f̂v − fv‖n.

Hence, by combining (30) and Lemma (8.2) we obtain

‖f̂ −m‖2
n ≤ 18

∑
v∈Sf

[
µv‖f̂v − fv‖Hv + γv‖f̂v − fv‖n

]
.

For each v, ‖f̂v − fv‖Hv ≤ 2 (because the functions f̂v et fv belong to the class F , see (5)), and consequently,
for some constant C,

‖f̂ −m‖2
n ≤ C

∑
v∈Sf

µv +
∑
v∈Sf

γv‖f̂v − fv‖n

 . (31)

To finish the proof it remains to compare the two quantities
∑
v∈Sf ‖f̂v − fv‖

2
n and ‖

∑
v∈Sf f̂v − fv‖

2
n. For

that purpose we show that ‖
∑
v∈Sf f̂v − fv‖n is less than ‖

∑
v∈Sf f̂v − fv‖2

2 plus an additive term coming
from concentration results (see the Lemma given below). Next, thanks to the orthogonality of the spaces Hv
with respect to L2(PX), ‖

∑
v∈Sf f̂v − fv‖

2
2 =

∑
v∈Sf ‖f̂v − fv‖

2
2. To conclude, it remains to consider several

cases, according to the rankings of ‖
∑
v∈Sf f̂v − fv‖

2
2, ‖

∑
v∈Sf f̂v − fv‖

2
n, and d2(f). This is the subject of the

following lemma whose proof is given in Section 8.5.3, page 55.

Lemma 8.3. For f ∈ H, let A be the event

A =
{
∀f ∈ F ,∀v ∈ P, ‖f̂v − fv‖n ≤ 2‖f̂v − fv‖2 + γv

}
. (32)

Then, for some positive constant c2,

PX,ε (A) ≥ 1−
∑
v

exp(−nc2γ
2
v).
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On the set A, Inequality (31) provides that, for all K > 0

1
C
‖f̂ −m‖2

n ≤
∑
v∈Sf

(
µv + 2γv‖f̂v − fv‖2 + γ2

v

)
(33)

≤
∑
v∈Sf

(
µv + (1 +K)γ2

v + 1
K
‖f̂v − fv‖2

2

)
, (34)

≤
∑
v∈Sf

(
µv + (1 +K)γ2

v

)
+ 1
K

∑
v∈P
‖f̂v − fv‖2

2

≤
∑
v∈Sf

(
µv + (1 +K)γ2

v

)
+ 1
K
‖
∑
v∈P

f̂v − fv‖2
2. (35)

Inequality (34) uses the inequality 2ab ≤ 1
K a

2+Kb2 for all positiveK, and Inequality (35) uses the orthogonality
with respect to L2(PX).

In the following we have to consider several cases, according to the rankings of ‖
∑
v∈P f̂v−fv‖2, ‖

∑
v∈P f̂v−

fv‖n and d(f) defined as follows

d2(f) = max

∑
v∈Sf

γ2
v ,
∑
v∈Sf

µv

 . (36)

More precisely, we consider three cases
Case 1: ‖

∑
v∈P f̂v − fv‖2 ≤ ‖

∑
v∈P f̂v − fv‖n.

Case 2: ‖
∑
v∈P f̂v − fv‖n ≤ ‖

∑
v∈P f̂v − fv‖2 ≤ d(f)

Case 3: ‖
∑
v∈P f̂v − fv‖n ≤ ‖

∑
v∈P f̂v − fv‖2 and d(f) ≤ ‖

∑
v∈P f̂v − fv‖2.

Case 1: From (35), for any f ∈ H, we get

1
C
‖f̂ −m‖2

n ≤
∑
v∈Sf

(
µv + (1 +K)γ2

v

)
+ 1
K
‖f̂ − f‖2

n.

Hence, using that for all K ′ > 0,

‖f̂ − f‖2
n ≤ (1 +K ′)‖f̂ −m‖2

n + (1 + 1/K ′)‖f −m‖2
n, (37)

we obtain for a suitable choice of K ′, say 1 +K ′ < K/C, that, for some positive constant C ′,

‖f̂ −m‖2
n ≤ C ′

‖f −m‖2
n +

∑
v∈Sf

µv +
∑
v∈Sf

γ2
v

 .
This shows the result in Case 1.

Case 2: Inequality (35) becomes

1
C
‖f̂ −m‖2

n ≤
∑
v∈Sf

(
µv + (1 +K)γ2

v

)
+ 1
K
d2(f),

which gives the expected result since d2(f) = max
{∑

v∈Sf µv,
∑
v∈Sf γ

2
v

}
.
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Case 3: Recall that in this case, ‖
∑
v∈P f̂v − fv‖n ≤ ‖

∑
v∈P f̂v − fv‖2 and d(f) ≤ ‖

∑
v∈P f̂v − fv‖2. This

case is solved by applying the following Lemma (proved in Section 8.5.4, page 55), which states that with high
probability, ‖f̂ − f‖2 ≤

√
2‖f̂ − f‖n.

Lemma 8.4. Let f =
∑
v fv ∈ F with support Sf , d(f) be defined by (36), and let G(f) be the class of

functions written as g =
∑
v∈P gv, such that ‖gv‖Hv ≤ 2 satisfying for all f ∈ F

C1
∑
v∈P

µv‖gv‖Hv +
∑
v∈P

γv‖gv‖n ≤
∑
v∈Sf

4µv‖gv‖Hv +
∑
v∈Sf

4γv‖gv‖n

C2
∑
v∈Sf

γv‖gv‖n ≤ 2
∑
v∈Sf

γv‖gv‖2 +
∑
v∈Sf

γ2
v

C3 ‖g‖n ≤ ‖g‖2.

Then the event {
‖g‖2

n ≥
‖g‖2

2
2 , ‖g‖2 ≥ d(f)

}
has probability greater than 1− exp(−nc3

∑
v∈Sf λ

2
n,v) for some constant c3.

Note that Assumption nλ2
n,v ≥ −C2 log(λn,v) implies that λn,v = Kn,v/

√
n with Kn,v → ∞. Then, if f is

such that |Sf | ≥ 1, exp(−nc3
∑
v∈Sf λ

2
n,v) ≤ exp(−c3 minv∈P Kn,v). If f is such that |Sf | = 0, then Condition

C1 is not satisfied except if gv = 0 for all v ∈ P. Because we will apply Lemma 8.4 to gv = f̂v − fv, this event
has probability 0. Therefore the event

C =
{
∀f ∈ F , such that g =

∑
v∈P

(f̂v − fv) ∈ G(f), and ‖g‖2
n ≥
‖g‖2

2
2 , ‖g‖2

2 ≥ d(f)
}

(38)

has probability greater than 1− η/3 for some 0 < η < 1.
Conditionning on the events T and A (defined by (29) and (32)), and according to Lemma 8.2,

∑
v∈P(f̂v−fv)

belongs to the set G(f). According to (35), we conclude in the same way as in Case 1.
Finally, it remains to quantify PX,ε(T ∩A∩C). Following Lemma 8.1, and Lemma 8.3, T , respectively A, has

probability greater than 1−c1
∑
v∈P exp(−nc2λ

2
n,v), respectively 1−

∑
v exp(−nγ2

v). Each of these probabilities
is greater 1− η/3 thanks to the assumption nλ2

n,v ≥ −C2 log λn,v.

8.2. Proof of Corrolary 4.1
We start from Theorem 4.1 which states that with high probability,

‖f̂ −m‖2
n ≤ C

‖f −m‖2
n +

∑
v∈Sf

µv +
∑
v∈Sf

γ2
v

 ,

and use that for all θ > 0,

‖f̂ −m‖2
2 ≤ (1 + θ)‖f̂ − f‖2

2 + (1 + 1
θ

)‖m− f‖2
2. (39)

For d defined by (36), we consider once again the three cases defined page 46.
Case 1: According to (37) and (39), we get the result since

‖f̂ −m‖2
2 ≤ (1 + θ) ‖ f̂ − f ‖2

n +(1 + 1
θ

)‖m− f‖2
2.
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Case 2: We directly obtain that

‖f̂ −m‖2
2 ≤ (1 + θ)d2(f) + (1 + 1

θ
)‖m− f‖2

2.

Case 3: Recall that in this case, ‖
∑
v∈P f̂v − fv‖n ≤ ‖

∑
v∈P f̂v − fv‖2 and d(f) ≤ ‖

∑
v∈S f̂v − fv‖2. Apply

Lemma 8.4 (page 47) and conclude that conditionning on the events T and A, defined by (29) and (32), then∑
v∈P f̂v − fv belongs to G(f) defined in Lemma 8.4. Now, conditionning on the event C we get the result since

‖
∑
v∈P

f̂v − fv‖2
2 ≤ 2‖

∑
v∈P

f̂v − fv‖2
n.

�

8.3. Rate of convergence
Recall that we consider the case where the variables X1, . . . , Xd have the same distribution P1 on X1 ⊂ R,

and where the unidimensionnal kernels k0a are all identical.
In this context, our goal is to show that the rate νn,v defined at Equation (12) is bounded above by a term

of order n−α/(2α+1)(logn)γ , where γ ≥ (|v| − 1)α/(2α− 1).
We start from the fact that, kv(xv,x′v) =

∏
a∈v k0(xa, x′a), with a kernel k0 admitting an eigen expansion

given by
k0(x, x′) =

∑
`≥1

ω0,`ζ`(x)ζ`(x′),

where the eigenvalues ω0,` are non negative and ranged in the decreasing order at the rate `−2α for some α > 1/2,
and where the ζ` are the associated eigen functions, orthonormal with respect to L2(P1).

Therefore the kernel kv admits the following expansion

kv(xv,x
′

v) =
∑

`=(`1...`|v|)

|v|∏
a=1

ω0,`a︸ ︷︷ ︸
ωv,`

|v|∏
a=1

ζ`a(xa)︸ ︷︷ ︸
ζv,`(xv)

|v|∏
a=1

ζ`a(x
′

a)︸ ︷︷ ︸
ζv,`(x′v)

.

According to this expansion the ωv,` are of order (
∏|v|
a=1 `a)−2α.

In order to control the rate νn,v defined as

νn,v = inf
{
t such that Qn,v(t) ≤ ∆t2

}
,

we have to calculate an upper bound for Q2
n,v(t). We start with the following inequalities that hold up to some

constant, for t−1/α > 1,

Q2
n,v(t) = 5

n

∑
`

min(t2, ωv,`)

.
1
n
t2

∑
`=(`1...`|v|)

I(`−2α
1 × . . .× `−2α

|v| ≥ t
2) + 1

n

∑
`=(`1...`|v|)

|v|∏
a=1

`−2α
a

.
1
n
t2

∑
`=(`1...`|v|)

I(`1 × . . .× `|v| ≤ t−1/α) + 1
n

∑
j≥1

1
j2α

|v| . (40)
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Now let us mention that α > 1/2,
∑
j≥1

1
j2α is a constant that depends on α. We thus focus on the first term

in the right hand side of Equation (40).
Let u = t−1/α ≥ 1 and let B|v| be defined as follows:

B|v| =
∑

`=(`1...`|v|)

I(`1 ≤ u, . . . , `|v| ≤ u).

Let us prove that
B|v| ≤ u

(
1 + log(u))|v|−1

)
. (41)

Proof of Equation (41): First note that

B1 =
∑
`≥1

I(` ≤ u) ≤ uI(u ≥ 1).

In the same way,

B2 =
∑

`1≥1,`2≥1
I(`1`2 ≤ u) =

∑
`1≥1,`2≥1

I(`1 ≤ u)I(`2 ≤ u/`1) =
∑
`1≥1

I(`1 ≤ u)
∑
`2≥1

I(`2 ≤ u/`1)

≤
∑
`1≥1

I(`1 ≤ u) u
`1
I( u
`1
≥ 1) = u

∑
`1≥1

1
`1
I(`1 ≤ u)

≤ u (1 + log(u)) .

More generally,

B|v| =
∑

`1≥1,...`|v|≥1
I(`1 . . . `|v| ≤ u)

=
∑

`1≥1,...,`|v|−1≥1
I(`1 . . . `|v|−1 ≤ u)

∑
`|v|≥1

I(`|v| ≤ u/`1...`|v|−1)

≤ u
∑

`1≥1,...,`|v|−1≥1

1
`1 . . . `|v|−1

I(`1 . . . `|v|−1 ≤ u).

Let A|v| be defined as follows:

A|v| =
∑

`1≥1,...`|v|≥1

1
`1 . . . `|v|

I(`1 . . . `|v| ≤ u),

then we get B|v| ≤ uA|v|−1. If we show that

A|v| ≤ (1 + log(u))|v| , (42)

then Inequality (41) is proved.
Proof of Equation (42) :

A1 =
∑
`≥1

1
`
I(` ≤ u) = 1 +

∑
`≥2

1
`
I(` ≤ u) ≤ 1 +

∫ u

1

1
v
dv = 1 + log(u).
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Moreover,

A2 =
∑

`1≥1,`2≥1

1
`1`2

I(`1`2 ≤ u) =
∑
`1≥1

1
`1
I(`1 ≤ u)

∑
`2≥1

1
`2
I(`2 ≤ u/`1)

=
∑
`1≥1

1
`1
I(`1 ≤ u) (1 + log(u/`1))

= (1 + log(u))2 −
∑
`1≥1

log(`1)
`1

I(`1 ≤ u)

≤ (1 + log(u))2
.

In the same way we have

A|v| =
∑

`1≥1,...`|v|≥1

1
`1 . . . `|v|

I(`1 . . . `|v| ≤ u)

=
∑

`1≥1,...,`|v|−1≥1

1
`1 . . . `|v|−1

I(`1 . . . `|v|−1 ≤ u)
∑
`|v|≥1

1
`|v|

I(`|v| ≤ u/`1...`|v|−1)

≤
∑

`1≥1,...,`|v|−1≥1

1
`1 . . . `|v|−1

I(`1 . . . `|v|−1 ≤ u)
(
1 + log(u/`1 . . . `|v|−1)

)
≤ (1 + log(u))|v| .

And Bound (42) is proved.
Rate of convergence. Let us come back to the control of the rate νn,v = inf

{
t such that Qn,v(t) ≤ ∆t2

}
.

Thanks to (41) we obtain that, up to some constant that depends on |v| and α,

Q2
n,v(t) .

1
n
t2
∑

`

I(`1 × . . .× `|v| ≤ t−1/α) + 1
n

∑
j≥1

1
j2α

|v|

.
1
n
t2−1/α

(
1− 1

α
log(t)

)|v|−1
+ 1
n
.

It remains now to find t such that, up to constant

1√
n
t1−1/2α

(
1− 1

α
log(t)

)(|v|−1)/2
≤ t2.

If t = n−β(log(n))γ with β = α/(1 + 2α), γ > 0, α > 1/2, then

1− 1
α

log(t) = 1− 1
α

log
(
n−α/(1+2α)(log(n))γ

)
= 1− 1

α

(
− α

1 + 2α log(n) + γ log log(n)
)

= 1 + 1
1 + 2α log(n)− γ

α
log log(n)

≤ log(n) as soon as log(n) > 1 + 1
2α.
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Therefore νn,v will be smaller than the infimum of t such that

1√
n
t1−1/2α (log(n))(|v|−1)/2 ≤ t2,

which is satisfied if γ ≥ (|v| − 1)α/(2α− 1).

8.4. Intermediate Lemmas
For v ∈ P, let Hv be the RKHS associated to the self reproducing kernel kv. Let Qn,v and νn,v and be

defined by Equations (11) and (12). For any function gv ∈ Hv, let Vn,ε be defined at Equation (23) and consider
the following processes

Wn,2,v(t) = sup {|Vn,ε(gv)| , ‖gv‖Hv ≤ 2, ‖gv‖2 ≤ t} (43)
Wn,n,v(t) = sup {|Vn,ε(gv)| , ‖gv‖Hv ≤ 2, ‖gv‖n ≤ t} . (44)

Lemma 8.5. If EX,ε denotes the expectation with respect to the distribution of (X, ε), we have for all t > 0,

EX,εWn,2,v(t) ≤ Qn,v(t).

Its proof is given in Section 8.6.1 page 59.

Lemma 8.6. Let b > 0 and let G(t) be the following class of functions:

G(t) = {gv ∈ Hv, ‖gv‖Hv ≤ 2, ‖gv‖2 ≤ t, ‖gv‖∞ ≤ b} . (45)

Let Ωv,t be the event defined as

Ωv,t =
{

sup {|‖gv‖2 − ‖gv‖n|, gv ∈ G(t)} ≤ bt

2

}
. (46)

Then for any t ≥ νn,v, the event Ωv,t has probability greater than 1 − exp(−c2nt
2), for some positive constant

c2.

Its proof is given in Section 8.6.2, page 60.

Lemma 8.7. For any function gv ∈ Hv satisfying ‖gv‖Hv ≤ 2, ‖gv‖∞ ≤ b and ‖gv‖2 ≥ t, for all t ≥ νn,v and
b ≥ 1, the event (

1− b

2

)
‖gv‖2 ≤ ‖gv‖n ≤

(
1 + b

2

)
‖gv‖2

has probabilty greater than 1− exp(−c2nt
2) for some positive constant c2.

Its proof is given in Section 8.6.3, page 61.

Lemma 8.8. If Eε denotes the expectation with respect to the distribution of ε, we have

PX,ε
{∣∣Wn,n,v(t)− Eε

(
Wn,n,v(t)

)∣∣ ≥ δt} ≤ 4 exp
(
−nδ

2

2

)
. (47)

Its proof is given in Section 8.6.4, page 62.
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Lemma 8.9. Conditionnaly on the space Ωv,t defined by (46), we have the two following inequalities:

PX,ε
{∣∣Wn,2,v(t)− Eε

(
Wn,2,v(t)

)∣∣ ≥ δt} ≤ 4 exp
(
−nδ

2

8

)
, (48)

PX
{
EεWn,2,v(t)− EX,ε

(
Wn,2,v(t)

)
≥ x

}
≤ exp

(
− nx2

Qn,v(t)

)
. (49)

Its proof is given in Section 8.6.5, page 62.

Lemma 8.10. Let λn,v be defined at Equation (13), ∆ at Equation (12) and κ = 10 + 4∆. Conditionnaly
on the space Ωv,λn,v defined at Equation (46), for some positive constants c1, c2, with probability greater than
1− c1 exp(−c2nλ

2
n,v), we have

Wn,n,v(λn,v) ≤ κλ2
n,v and EεWn,n,v(λn,v) ≤ κλ2

n,v. (50)

Its proof is given in Section 8.6.6, page 63.

8.5. Proofs of Lemma 8.1 to 8.4:
8.5.1. Proof of Lemma 8.1 (page 44)

For f ∈ F and v ∈ P, let gv = f̂v − fv. Note that ‖gv‖Hv ≤ 2. Let us show that

|Vn,ε(gv)| ≤ κ
[
λ2
n,v‖gv‖Hv + λn,v‖gv‖n

]
. (51)

We start by writing that

|Vn,ε(gv)| = ‖gv‖Hv
∣∣∣∣Vn,ε( gv

‖gv‖Hv

)∣∣∣∣ ≤ ‖gv‖HvWn,n,v

( ‖gv‖n
‖gv‖Hv

)
. (52)

Consider the two following cases:
Case A: ‖gv‖n ≤ λn,v‖gv‖Hv ,
Case B: ‖gv‖n > λn,v‖gv‖Hv .

Case A: Since ‖gv‖n ≤ λn,v‖gv‖Hv , we have

Wn,n,v

( ‖gv‖n
‖gv‖Hv

)
≤Wn,n,v(λn,v).

We then apply Lemma 8.10, page 52, and conclude that (51) holds in Case A for each v ∈ P since, with high
probability

|Vn,ε(gv)| ≤ κλ2
n,v‖gv‖Hv ≤ κλ2

n,v‖gv‖Hv + κλn,v‖gv‖n. (53)

Case B: Consider now the case ‖gv‖n > λn,v‖gv‖Hv and let us show that for any v ∈ P,

Wn,n,v

(
‖gv‖n
‖gv‖Hv

)
≤ κλn,v‖gv‖n.

Let rv be a deterministic number such that rv > λn,v. Our first step relies on the study of the processWn,n,v(rv),
for rv > λn,v. In that case we state two results:
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R1 For any deterministic rv ≥ λn,v, with probability greater than 1− c1 exp(−c2nλ
2
n,v),

Wn,n,v(rv) ≤ κrvλn,v. (54)

R2 Inequality (54) continues to hold for random rv of the form

rv = ‖gv‖n
‖gv‖Hv

.

Combining these two points implies that, with probability greater than 1− c1 exp(−c2nλ
2
n,v),

‖gv‖HvWn,n,v

( ‖gv‖n
‖gv‖Hv

)
≤ κ‖gv‖nλn,v.

Consequently, in Case B, according to (52), for each v, Inequality (51) holds because

|Vn,ε(gv)| ≤ κ‖gv‖nλn,v ≤ κλ2
n,v‖gv‖Hv + κλn,v‖gv‖n.

This ends up the proof of Lemma 8.1.

Proof of R1. Taking t = rv and δ = λn,v in (47), with probability greater than 1− 4 exp(−nλ2
n,v), we have

Wn,n,v(rv) ≤ Eε[Wn,n,v(rv)] + rvλn,v.

Next we prove that for some positive rv, with probability Montura - Kairos Jacket - Softshell jacket than
1− exp(−ncλ2

n,v), we have

EεWn,n,v(rv) ≤ κrvλn,v. (55)

Let ν̂n,v defined as the smallest solution of Eε[Wn,n,v(t)] ≤ κt2. For Wn,n,v, defined by (43), we write

EεWn,n,v(rv) = rv
ν̂n,v

Eε sup {|Vn,ε(gv)|, ‖gv‖Hv ≤ ν̂n,v/rv, ‖gv‖n ≤ ν̂n,v}

≤ rv
ν̂n,v

EεWn,n,v(ν̂n,v) ≤
rv
ν̂n,v

κν̂2
n,v = κrv ν̂n,v.

Besides, Lemma 8.10 stated that on the event Ωv,λn,v , EεWn,n,v(λn,v) ≤ κλ2
n,v. It follows from the definition

of ν̂n,v, and Lemma 8.6, that ν̂n,v ≤ λn,v for all v ∈ P with probability greater than 1− exp(−nc2
∑
v∈P λ

2
n,v).

Consequently, for any deterministic rv such that rv ≥ λn,v, (54) is satisfied with high probability.

Proof of R2. Let us prove R2 by using a peeling-type argument. Our aim is to prove that (54) holds for any
rv of the form

rv = ‖gv‖n
‖gv‖Hv

.

Since ‖gv‖∞/‖gv‖Hv ≤ 1, we have ‖gv‖n/‖gv‖Hv ≤ 1. We thus restrict ourselves to rv satisfying rv =
‖gv‖n/‖gv‖Hv with ‖gv‖n/‖gv‖Hv ∈ (λn,v, 1].

We start by splitting the interval (λn,v, 1] intoM disjoint intervals such that (λn,v, 1] = ∪Mk=1(2k−1λn,v, 2kλn,v],
for some M that will be chosen later. Consider the event Dc defined as follows:

Dc = {∃v ∈ P and ∃gv, such that |Vn,ε(gv)| ≥ κλn,v‖gv‖n, with
‖gv‖n
‖gv‖H

∈ (λn,v, 1]}.
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We prove that, for some positive constants c1, c2,

P [Dc] ≤ c1 exp(−c2nλ
2
n,v).

For gv ∈ Dc, let k be the integer in {1, · · · ,M}, such that

2k−1λn,v ≤
‖gv‖n
‖gv‖Hv

≤ 2kλn,v.

This k satisfies

‖gv‖HvWn,n,v

(
2kλn,v

)
≥ ‖gv‖HvWn,n,v

( ‖gv‖n
‖gv‖Hv

)
≥ |Vn,ε(gv)| ≥ κλn,v‖gv‖n.

Therefore, we get

Wn,n,v(2kλn,v) ≥ κλn,v
‖gv‖n
‖gv‖Hv

≥ κλ2
n,v2k−1 ≥ κλn,v2 2kλn,v.

By taking rv = 2kλn,v in (54), we have

P
[
Wn,n,v(2kλn,v) ≥ κ

λn,v
2 2kλn,v

]
≤ c1 exp(−c2nλ

2
n,v).

Now let us write Dc as follows:

Dc =
⋃

k=1,··· ,M

{
∃v,∃ gv such that|Vn,ε(gv)| ≥ κλn,v

‖gv‖n
‖gv‖Hv

with ‖gv‖n
‖gv‖H

∈ (2k−1λn,v, 2kλn,v)
}
.

The set Dc has probability smaller than c1M exp(−c2nλ
2
n,v). If we choose M such that logM ≤ (c2/2)nλ2

n,v,
then the probability of the set T is greater than

1−
∑
v∈P

c1 exp−c2

2 nλ
2
n,v.

It follows that R2 is proved which ends up the proof of Lemma 8.1. �

8.5.2. Proof of Lemma 8.2 (page 45).
Starting from (27) with B defined by Equation (26), we write

1
2‖f̂ −m‖

2
n ≤ 2|Vn,ε(f̂ − fv)|+∑

v∈Sf

[µv‖f̂v − fv‖Hv + γv‖f̂v − fv‖n]−
∑
v∈Sc

[µv‖f̂v‖Hv + γv‖f̂v‖n].

On the event T defined in (29) we have

1
2‖f̂ −m‖

2
n ≤ 2κ

∑
v∈P

λ2
n,v‖f̂v − fv‖Hv + 2κ

∑
j∈P

λn,v‖f̂v − fv‖n +

∑
v∈Sf

[µv‖f̂v − fv‖Hv + γv‖f̂v − fv‖n]−
∑
v∈Sc

[µv‖f̂v‖Hv + γv‖f̂v‖n].
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Rearranging the terms we obtain that

1
2‖f̂ −m‖

2
n ≤

∑
v∈Sf

(2κλ2
n,v + µv)‖f̂v − fv‖Hv +

∑
v∈Sf

(2κλn,v + γv)‖f̂v − fv‖n +

∑
v∈Sc

f

(2κλ2
n,v − µv)‖f̂v‖Hv +

∑
v∈Sc

f

(2κλn,v − γv)‖f̂v‖n.

Now, thanks to Assumption (14) with C1 ≥ κ we have κλ2
n,v ≤ µv and 2κλn,v ≤ γv and Lemma 8.2 is shown

since

0 ≤ 1
2‖f̂ −m‖

2
n ≤ 3

∑
v∈Sf

µv‖f̂v − fv‖Hv + 3
∑
v∈Sf

‖f̂v − fv‖n −∑
v∈Sc

f

µv‖f̂v‖Hv −
∑
v∈Sc

f

γv‖f̂v‖n.

�

8.5.3. Proof of Lemma 8.3 (page 45):
Let us consider the following two cases:
• ‖f̂v − fv‖2 ≤ γv. We apply Lemma 8.6 (page 51) to the function gv = f̂v − fv. It satisfies gv ∈ G(γv)
with b = 2 (recall that ‖ · ‖∞ ≤ ‖ · ‖Hv ). Moreover, γv ≥ C1λn,v ≥ C1νnv ≥ νn,v as soon as C1 ≥ 1.

It follows that, for some positive c2, with probability greater than 1− exp(−nc2γ
2
v),

‖f̂v − fv‖n ≤ ‖f̂v − fv‖2 + γv.

• ‖f̂v − fv‖2 ≥ γv. We apply Lemma 8.7 (page 51) to the function gv = f̂v − fv with b = 2. It follows
that, for some positive c2, with probability greater than 1− exp(−nc2γ

2
v),

‖f̂v − fv‖n ≤ 2‖f̂v − fv‖2.

�

8.5.4. Proof of Lemma 8.4 (page 47):
Let d(f) be defined by (36), and let G(f) and G′(f) be the following sets

G(f) =
{
g =

∑
v∈P

gv, satisfying ‖gv‖Hv ≤ 2, and Conditions C1, C2, C3
}
,

G′(f) = {g ∈ G(f), such that ‖g‖2 = d(f)} .

Let us consider the two events B and B′ defined as follows:

B′ = {∀h ∈ G′, ‖h‖2
n ≥ d(f)2/2} and B = {∀h ∈ G, ‖h‖2

n ≥ ‖h‖2
2/2, and ‖h‖2 ≥ d(f)}.

Let us first remark that B′ is included into B: if h ∈ B′ , then h ∈ G, ‖h‖2 = d(f) and ‖h‖2
n ≥ d(f)2/2. It

follows that ‖h‖2
n ≥ ‖h‖2

2/2 and ‖h‖2 ≥ d(f). Therefore Lemma 8.4 is proved if B′ holds with high probability.
Consider

Zn(G′) = sup
g∈G′
{d(f)2 − ‖g‖2

n}.
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We show that the event Zn(G′) ≤ d(f)2/2 has probability greater than 1− c1 exp(−nc2d(f)2).
Let us briefly recall the notion of covering numbers for a totally bounded metric space (G, ρ), consisting of a

set G and a metric ρ defined from G×G into R+. A δ-covering set of G is a collection of functions f1, · · · , fN
such that for all f ∈ G there exists k ∈ {1, 2, · · · , N} such that ρ(f, fk) ≤ δ.

The δ-covering number N(δ,G, ρ) is the cardinality of the smallest δ-covering set. A propercovering restricts
the covering to use only elements in the set G. The proper covering number denoted Npr(δ,G, ρ) satisfies

N(δ,G, ρ) ≤ Npr(δ,G, ρ) ≤ N(δ/2,G, ρ). (56)

Let us now consider a d(f)/8-covering of (G′, ‖ · ‖n), so that, for all g in G′ there exists gk such that
‖g − gk‖n ≤ d(f)/8. The associated proper covering number is

Npr = Npr(d(f)/8,G′, ‖ · ‖n). (57)

Now, for all g ∈ G′, T1 = ‖gk‖2
n − ‖g‖2

n, and T2 = d2(f)− ‖gk‖2
n, we write

d(f)2 − ‖g‖2
n = T1 + T2.

The proof is splitted into four steps:
Step 1 The first step consists in showing that

T1 = ‖gk‖2
n − ‖g‖2

n ≤
d(f)2

4 . (58)

Step 2 The second step consists in proving that, for Npr given at Equation (57) and for some constant C,

PX

[
max

k∈{1,··· ,Npr}
[d(f)2 − ‖gk‖2

n] ≥ d2/4
]
≤ exp

(
logNpr − Cnd(f)2

)
.

Step 3 The third step concerns the control of Npr: we show the following result

logNpr ≤ n
(

64
d(f)Eε sup

g∈G′
|Vn,ε(g)|

)2
.

Step 4 The last step consists in bounding from above the Gaussian complexity:

Eε sup
g∈G′
|Vn,ε(g)| ≤ 20κ

C1
d(f)2.

Let us conclude the proof of the lemma before proving these four steps.
Putting together Steps 3 and 4, for c3 < C and C1 large enough, then Step 2 states that

PX

(
T2 ≥

d(f)2

4

)
≤ PX

[
max

k∈{1,··· ,Npr}
[d(f)2 − ‖gk‖2

n] ≥ d(f)2/4
]
≤ exp

(
− c3nd(f)2

)
.

Now, we have

PX
[
Zn(G′) ≤ d(f)2/2

]
= PX

[
max

g1,··· ,gN
{d(f)2 − ‖gk‖2

n} ≥
d(f)2

4

]
≤ exp

(
− c3nd(f)2

)
.

We conclude the proof of the lemma, by noting that d(f)2 ≥ C2
1
∑
v λ

2
n,v (see (13), (36) and (14)).
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Proof of Step 1: We start by writing that

‖gk‖2
n − ‖g‖2

n = 1
n

n∑
i=1

[
(gk(Xi))2 − (g(Xi))2]

≤ ‖gk − g‖n

√√√√ 1
n

n∑
i=1

[gk(Xi) + g(Xi)]2.

Using that (a+ b)2 ≤ 2a2 + 2b2, g ∈ G′, and g satisfies Condition C3, we get

1
n

n∑
i=1

[gk(X(i)) + g(X(i))]2 ≤ 2‖gk‖2
n + 2‖g‖2

n ≤ 4d(f)2.

Besides, the covering set is constructed such that ‖gk − g‖n ≤ d(f)/8. It follows that Step 1 is proved.

Proof of Step 2: We prove that for some constant C,

PX

[
T2 ≥

d2

4

]
≤ PX

[
max

1≤k≤Npr
{d(f)2 − ‖gk‖2

n} ≥
d(f)2

4

]
≤ exp

(
logNpr − C

nd(f)2

1 + d(f) + d(g)2

)
.

As gk ∈ G′, d = ‖gk‖2. Then

max
1≤k≤Npr

{
d(f)2 − ‖gk‖2

n

}
= max

1≤k≤Npr
[‖gk‖2

2 − ‖gk‖2
n].

Applying Theorem 3.5 in Chung and Lu [10] we have that for all positive λ

PX

[
n∑
i=1

(gk(Xi))2 ≤ nE(gk(Xi))2 − λ

]
≤ exp

(
− λ2

2nE(gk(X))4

)
.

Taking λ = nd(f)2/4 and using that ‖gk‖2
2 = d(f)2 we get

PX

[
{d2 − ‖gk‖2

n} ≥
d(f)2

4

]
≤ exp

(
− nd(f)4

32E(gk(X))4

)
.

It follows that

PX

[
max

1≤k≤Npr
d(f)2 − ‖gk‖2

n ≥
d(f)2

4

]
≤

Npr∑
k=1

exp
(
− nd(f)4

32E(gk(X))4

)
≤ exp

(
logNpr −

nd(f)4

32 maxk E(gk(X))4

)
. (59)

It remains to calculate EXg
4(X) for g ∈ G′. Precisely we show the following result:

Eg4(X) ≤ cd(f)2 (1 +O(d(f)2)
)
.
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This result comes from the property of the RKHS H: indeed g ∈ H is written g =
∑
v∈P gv where the functions

gv are centered and orthogonal in L2(PX). Therefore Eg4(X) is the sum of the following terms:

A1 =
∑
v∈P

EXg
4
v(Xv), A2 =

(
4
2

)∑
v 6=v′

EXg
2
v(Xv)g2

v′(Xv′),

A3 =
(

4
3

) ∑
v1 6=v2 6=v3

EXg
2
v1

(Xv1)gv2(Xv2)gv3(Xv3), A4 =
(

4
3

) ∑
v1 6=v2

EXg
3
v1

(Xv1)gv2(Xv2)

A5 =
(

4
1

) ∑
v1 6=v2 6=v3 6=v4

EXgv1(Xv1)gv2(Xv2)gv3(Xv3)gv4(Xv4).

Using the Cauchy-Schwartz inequality and the fact that ‖gv‖∞ ≤ ‖gv‖Hv ≤ 2, and ‖g‖2 = d(f) (because
g ∈ G′), we get that A1 is proportionnal to d(f)2, A2, A3, A5 to d(f)4, and A4 to d(f)3. For example

A1 =
∑
v∈P

EXg
4
v(Xv) ≤ ‖g‖2

∞

∑
v∈P
‖gv‖2

2 = ‖g‖2
∞‖

∑
v∈P

gv‖2
2 ≤ 4d(f)2.

After calculation of the terms Ai, since d(f)2 is assumed to be smaller than one, we get that

max
k

EX(gk(X))4 ≤ cd(f)2(1 +O(d(f)2)). (60)

Step 2 is proved by combining (59) and (60).

Proof of Step 3: Let Npr be defined at Equation (57). We prove that

√
logNpr

n
≤ 64
d(f)Eε sup

g∈G′
|Vn,ε(g)|.

We start from (56) and write that

logNpr(d(f)/8,G′, ‖ · ‖n) ≤ logN(d(f)/16,G′, ‖ · ‖n).

Using the Sudakov minoration (see Pisier [29]) we have that for all positive ω

√
logN(ω,G′, ‖ · ‖n) ≤ 4

√
n

ω
Eε

[
sup
g∈G′
|Vn,ε(g)|

]
.

Hence by taking ω = d(f)/16, Step 3 is proved.

Proof of Step 4: The last step consists in bounding from above the Gaussian complexity Eε supg∈G′ |Vn,ε(g)|.
This control is performed by using Lemma 8.5 (page 51). According to Inequality (51),

|Vn,ε(g)| ≤ κ
[∑
v∈P

λ2
n,v‖gv‖Hv +

∑
v∈P

λn,v‖gv‖n

]
,
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with λn,v defined by Equation (13) satisfying C1λn,v ≤ γv and C1λ
2
n,v ≤ µv for all v ∈ P. It follows

sup
g∈G′

∑
v∈P
|Vn,ε(gv)| ≤ κ sup

g∈G′

[∑
v∈P

λ2
n,v‖gv‖Hv +

∑
v∈P

λn,v‖gv‖n

]

≤ κ

C1
sup
g∈G′

[∑
v∈P

µv‖gv‖Hv +
∑
v∈P

γv‖gv‖n

]

and according to Condition C1,

sup
g∈G′

∑
v∈P
|Vn,ε(gv)| ≤

4κ
C1

(
sup
g∈G′

∑
v∈S

µv‖gv‖Hv + sup
g∈G′

∑
v∈S

γv‖gv‖n

)
,

≤ 4κ
C1

(
2
∑
v∈S

µv + sup
g∈G′

∑
v∈S

γv‖gv‖n

)
,

because ‖gv‖Hv ≤ 2. Now, according to Condition C2, and using that 2ab ≤ a2 + b2, we get

sup
g∈G′

∑
v∈P
|Vn,ε(gv)| ≤

4κ
C1

[
2
∑
v∈S

µv + 2
∑
v∈S

γ2
v + sup

g∈G′

∑
v∈S
‖gv‖2

2

]

≤ 4κ
C1

[
2
∑
v∈S

(µv + γ2
v) + d(f)2

]
,

the last inequality coming from the fact for all g ∈ G′, ‖g‖2
2 = d(f)2 ≥

∑
v∈S ‖gv‖2

2.
Finally, thanks to (36), we get

sup
g∈G′

∑
v∈P
|Vn,ε(gv)| ≤

20κ
C1

d(f)2.

�

8.6. Proofs of intermediate Lemmas.
8.6.1. Proof of Lemma 8.5 (page 51):

Let us write that the kernel kv is written as :

kv(xv,yv) =
∑
k

ωv,kφv,k(xv)φv,k(yv)

where (φv,k)∞k=1 is an orthonormal basis of L2(Pv), where Pv =
∏
a∈v Pa.

Let us consider the class of functions K(t) defined as

K(t) = {gv ∈ Hv, ‖gv‖Hv ≤ 2, ‖gv‖2 ≤ t} .

It comes that
gv =

∑
i

aiφv,i, with ‖gv‖2
Hv =

∑
i

a2
i

ωv,i
≤ 4, and ‖gv‖2

2 =
∑
i

a2
i ≤ t2

In the following, we set µk,v(t) = min
{
t2, ωk,v

}
. Hence

∑
k

a2
k

µk,v(t)
≤ 1
t2

∑
k

a2
k +

∑
k

a2
k

ωk,v
= 1
t2
‖gv‖2

2 + ‖gv‖2
Hv ≤ 5, (61)
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as soon as gv ∈ K(t).
Now, let us prove the lemma:

EX,εWn,2,v(t) = EX,ε sup
g∈K(t)

∣∣∣∣∣ 1n
n∑
i=1

εi
∑
`

a`φv,`(xv,i)

∣∣∣∣∣
= EX,ε sup

g∈K(t)

∣∣∣∣∣ 1n∑
`

a`√
µv,`(t)

n∑
i=1

εi

√
µv,`(t)φv,`(xv,i)

∣∣∣∣∣
≤
√

5

√√√√EX,ε
∑
`

(
1
n

n∑
i=1

εi

√
µv,`(t)φv,l(xv,i)

)2

.

The last inequality follows from the Cauchy-Schwartz inequality and Inequality (61). Now, simple calculation
leads to

EX,εWn,2,v(t) ≤
√

5
√

1
n

∑
`

µv,`(t).

�

8.6.2. Proof of Lemma 8.6 (page 51):

Using that
∣∣∣√a−√b∣∣∣ ≤√|a− b|, we get

|‖gv‖2 − ‖gv‖n| ≤
√
|‖gv‖2

2 − ‖gv‖2
n|.

Hence {
‖gv‖∞ ≤ b, |‖gv‖2 − ‖gv‖n| ≥

bt

2

}
⊂
{∣∣‖gv‖2

2 − ‖gv‖2
n

∣∣ ≥ b2t2

4

}
.

The centered process

∣∣‖gv‖2
2 − ‖gv‖2

n

∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

g2
v(Xv,i)− E(g2

v(Xv))

∣∣∣∣∣ ,
satisfies a concentration inequality given, for example, by Theorem 2.1 in Bartlett et al. [3] : if C is a class
of functions f such that ‖f‖∞ ≤ B and Ef(X) = 0, and if there exists γ > 0 such that for every f ∈ C,
Var f(X) ≤ γ2. Then for every x > 0, with probability at least 1− e−x,

sup
f∈C

1
n

∣∣∣∣∣∣
n∑
j=1

f(Xj)

∣∣∣∣∣∣ ≤ inf
α>0

2(1 + α)E

sup
f∈C

1
n

∣∣∣∣∣∣
n∑
j=1

f(Xj)

∣∣∣∣∣∣
+

√
2x
n
γ +B

(
1
3 + 1

α

)
x

n

 . (62)

For any t > 0, for G(t) defined by (45), let us consider the class of functions C(t) defined as follows

C(t) =
{
f such that f = g2

v − E(g2
v), with gv ∈ G(t)

}
.

Note that if f ∈ C(t), EXf(Xv) = 0 and ‖f‖∞ ≤ b2. We have to study

γ2(t) = sup
gv∈G(t)

EX
(
g2
v(X)− ‖gv‖2

2)
)2 and Γ(t) = EX

(
sup

gv∈G(t)

∣∣‖gv‖2
n − ‖gv‖2

2
∣∣) .
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It is easy to see that

γ2(t) ≤ b2 sup
gv∈G(t)

EX (gv(X) + ‖gv‖2)2 ≤ 4b2t2.

Let ζi be independent and identically random variables Rademacher distributed and let EX,ζ denotes the
expectation with respect to the law of (X, ζ). By a symmetrization argument,

Γ(t) ≤ 2EX,ζ sup
gv∈G(t)

∣∣∣∣∣ 1n
n∑
i=1

ζig
2
v(Xi)

∣∣∣∣∣ .
Since ‖gv‖∞ ≤ b, applying the contraction principal (see Ledoux-Talagrand [23]) we get that, for Qn,v(t)

defined by (11),

EX,ζ sup
gv∈G(t)

∣∣∣∣∣ 1n
n∑
i=1

ζig
2
v(Xi)

∣∣∣∣∣ ≤ 4bEX,ζ sup
gv∈G(t)

∣∣∣∣∣ 1n
n∑
i=1

ζigv(Xi)

∣∣∣∣∣
≤ 4bQn,v(t).

The last inequality was proved by Mendelson [28], Theorem 41 (see the proof of Lemma 8.5). Now, thanks
to (62) we get that for all x > 0, with probability greater than 1− e−x

sup
gv∈G(t)

∣∣‖gv‖2
n − ‖gv‖2

2
∣∣ ≤ inf

α>0

{
16(1 + α)bQn,v(t) +

√
2x
n

2bt+ b2
(

1
3 + 1

α

)
x

n

}
.

Taking x = c2nt
2, t ≥ νn, we have that with probability greater than 1− e−c2nt

2

sup
gv∈G(t)

∣∣‖gv‖2
n − ‖gv‖2

2
∣∣ ≤ inf

α>0
t2
{

16(1 + α)b∆ +
√

2c24b+ b2
(

1
3 + 1

α

)
c2

}
.

The infimum of the right hand side is reached in α =
√
c2b/16∆, and equals

b2c2

3 + 8
√

∆c2b
3/2 + 4(4∆ +

√
2c2)b.

The constants ∆ and c2 should satisfy that this infimum is strictly smaller than b2/4. For example, if 16∆ < b/8,
it remains to choose c2 small enough such that

b

(
c2

3 +
√

2c2

2

)
+ 4
√

2c2 <
b

8 .

�

8.6.3. Proof of Lemma 8.7 (page 51):
Let t > νn,v and h be defined as h = tgv/‖gv‖2. If gv satisfies the assumptions of the lemma, then h satisfies

‖h‖2 = t, ‖h‖H ≤ 2 and ‖h‖∞ ≤ b. Applying Lemma 8.6 (page 51) to the function h, we obtain that for
all t ≥ νn,v, with probability greater than 1 − exp(−c2nt

2), we have |t − ‖h‖n| ≤ bt/2 for all h ∈ G(t). This
concludes the proof of the lemma.



62 S. HUET AND M.L. TAUPIN

8.6.4. Proof of Lemma 8.8 (page 51):
The proof of Lemma 8.8 is based on an isoperimetric inequality for Gaussian processes (Borell [6] or Cirel’son

et al. [11]) as it is stated in Theorem (3.8), page 61 in Massart [26]. Let us recall this inequality:
Lemma 8.11. Let P be the Gaussian probability measure on Rn and let φ be a function from Rn to R, and
‖φ‖L its Lipschitz semi-norm:

‖φ‖L = sup
x 6=y

|φ(x)− φ(y)|√
n‖x− y‖n

.

Let Φ be the cumulative distribution of the standard Gaussian distribution. Then for any u,

P (|f − EP f | ≥ u ) ≤ 4Φ
(

u

‖φ‖L

)
. (63)

We apply Lemma 8.11 to φ(ε1, . . . , εn) = Wn,n,v(t). By Cauchy-Schwarz Inequality, ‖φ‖L = t/
√
n. It follows

that Lemma 8.8 is proved since

PX,ε (|Wn,n,v(t)− EεWn,n,v(t)| ≥ δt) ≤ 4 exp

− (δt)2

2
(

t√
n

)2

 ≤ 4 exp
(
−nδ

2

2

)
.

�

8.6.5. Proof of Lemma 8.9 (page 52):
We start with the proof of (48) in Lemma 8.9 by applying once again Lemma 8.11 given above, to the function

φ(ε) = φ(ε1, . . . , εn) = Wn,2,v(t). On the event Ωv,t defined by (46), we have ‖gv‖n ≤ bt/2 + ‖gv‖2. Besides if
‖gv‖Hv ≤ 2, then ‖gv‖∞ ≤ 2. Therefore applying Lemma 8.6 with b = 2, we get that if ‖gv‖2 ≤ t,

|φ(ε)− φ(ε′)| ≤ sup
‖gv‖n≤2t

‖gv‖n‖ε− ε′‖n ≤ 2t‖ε− ε′‖n,

leading to ‖φ‖L = 2t/
√
n. It follows that (48) in Lemma 8.9 is proved since

PX,ε
[
{|Wn,2,v(t)− EεWn,2,v(t)| ≥ δt} ∩ Ωcv,t

]
≤ 4 exp

− (δt)2

2
(

2t√
n

)2

 ≤ 4 exp
(
−nδ

2

8

)
.

We now come to the proof of (49) in Lemma 8.9 using a Poissonian inequality for self-bounded processes (see
Boucheron et al. [7]) and Theorem 5.6, p 158 in Massart [26]). Let us recall it in the particular case we are
interested in:
Theorem 8.1. Let X1, · · · , Xn be n iid variables. For i ∈ {1, · · · , n} let X(−i) = (X1, . . . , Xi−1, Xi+1, . . . , Xn).
Let Z be a nonnegative and bounded measurable function of X = (X1, · · · , Xn). Assume that for all i ∈
{1, · · · , n}, there exists a measurable function Zi of X(−i) such that 0 < Z − Zi ≤ 1, and

∑n
i=1(Z − Zi) ≤ Z.

Then, for all x > 0, we have P{Z ≥ E(Z) + x} ≤ exp
(
−x2/2E(Z)

)
.

We apply this result to Z defined as

Z = Z(X1, · · · ,Xn) = nEεWn,2,v(t) = nEε sup {|Vn,ε(gv)|, ‖gv‖2 ≤ t, ‖gv‖Hv ≤ 2} .

The variable Z is positive, and because the distribution of (ε1, . . . , εn) is symmetric, we have that

Z = Eε sup {nVn,ε(gv), ‖gv‖2 ≤ t, ‖gv‖Hv ≤ 2} .
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Let τ be the function in Hv such that Z = EεnVn,ε(τ) (note that τ depends on (X1, . . . ,Xn) and on
(ε1, . . . , εn)), and let

Zi = Eε sup
gv

∑
j 6=i

εjgv(Xj).

We show that Z and Zi satisfy the assumptions of Theorem 8.1:

Z − Zi = Eε

εiτ(Xi) +
∑
j 6=i

εjτ(Xj)− sup
gv

∑
j 6=i

εjgv(Xj)


≤ Eεεiτ(Xi) ≤

1√
2π
Eε sup

x∈X
|τ(X)| ≤

√
2
π
,

where the last inequality comes from the fact that supx∈X |τ(X)| ≤ ‖τ‖Hv ≤ 2. Moreover Z − Zi ≥ 0 since

Z = Eε sup
gv

n∑
j=1

εjgv(Xj) = Eε

Eεi sup
gv

n∑
j=1

εjgv(Xj)


≥ Eε

sup
gv

Eεi

n∑
j=1

εjgv(Xj)

 = Zi.

Finally we have:

∑
i

(Z − Zi) =
n∑
i=1

Eε

εiτ(Xi) +
n∑
j 6=i

εjτ(Xj)− sup
g−v

n∑
j 6=i

εjgv(Xj)

 ≤ n∑
i=1

Eεεiτ(Xi) = Z.

Therefore, following Theorem 8.1, we get that for all postive u

PX,ε

[
EεWn,2,v(t)− EX,εWn,2,v(t) ≤

u

n

]
≤ exp

[
− u2

EX,εWn,2,v(t)

]
.

As EX,εWn,2,v(t) ≤ Qn,v(t), see Lemma 8.5 page 51, we get the expected result since for all positive x

PX [EεWn,2,v(t) ≥ EX,εWn,2,v(t) + x] ≤ exp
[
− nx2

Qn,v(t)

]
.

�

8.6.6. Proof of Lemma 8.10 (page 52):
From Lemma 8.8, page 51 with t = λn,v = δ, we get that with probability greater than 1− 4 exp(−nλ2

n,v/2),

EεWn,n,v(λn,v) ≤ λ2
n,v +Wn,n,v(λn,v).

The next step consists in comparing Wn,n,v(λn,v) and Wn,2,v(2λn,v). Recall that λn,v ≥ νn,v, see (13). Let
gv such that ‖gv‖n ≤ λn,v.

• When ‖gv‖2 ≤ λn,v, according to Lemma 8.6 (page 51), taking b = 2 , since since ‖gv‖n ≤ λn,v, we get
that with probability greater than 1− exp(−c2nλ

2
n,v),

‖gv‖n − λn,v ≤ ‖gv‖2 ≤ ‖gv‖n + λn,v ≤ 2λn,v.
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• When ‖gv‖2 ≥ t, we apply Lemma 8.7 (page 51) with b = 2. For any function gv such that ‖gv‖∞ ≤ 2,
and ‖gv‖2 ≥ λn,v, we have ‖gv‖2 ≤ 2‖gv‖n ≤ 2λn,v.

This implies that, with probability greater than 1− exp(−c2nλ
2
n,v) we have

Wn,n,v(λn,v) ≤Wn,2,v(2λn,v).

We now study the process Wn,2,v(λn,v). By applying (48) in Lemma 8.9, page 52, with δ = t = λn,v we get
that with probability greater than 1− 4 exp(−nλ2

n,v/8)

Wn,2,v(λn,v) ≤ λ2
n,v + Eε(Wn,2,v(λn,v)).

It follows that

EεWn,n,v(λn,v) ≤ λ2
n,v +Wn,n,v(λn,v))

≤ λ2
n,v +Wn,2,v(2λn,v))

≤ 5λ2
n,v + Eε(Wn,2,v(2λn,v)).

Next, we apply (49) in Lemma 8.9, with t = 2λn,v and x = 4λ2
n,v. We get that

EεWn,2,v(2λn,v) ≤ 4λ2
n,v + EX,ε(Wn,2,v(2λn,v)),

with probability greater than

1− 2 exp
(
−16

nλ4
n,v

Qn,v(2λn,v)

)
≥ 1− 2 exp

(
−

4nλ2
n,v

∆

)
.

The last inequality comes from the definition of νn,v, see (12), and from the fact that λn,v ≥ νn,v, see (13).
Putting everything together, we get that with probability greater than 1−c1 exp(−c2nλ

2
n,v) for some positive

constants c1, c2,

EεWn,n,v(λn,v) ≤ 9λ2
n,v + EX,ε(Wn,2,v(2λn,v))

≤ 9λ2
n,v +Qn,v(2λn,v), thanks to Lemma 8.5, page 51,

≤ 9λ2
n,v + 4∆λ2

n,v.

Applying once again Lemma 8.8, page 51, we get that

Wn,n,v(λn,v) ≤ EεWn,n,v(λn,v) + λ2
n,v ≤

(
10 + 4∆

)
λ2
n,v.

This ends the proof of the lemma by taking κ = 10 + 4∆.
�

8.7. Algorithm: Propositions 8.1-8.4
We consider the minimization of C ′(f0,θ) given at Equation (18). Because C ′(f0,θ) is convex and separable,

we use a block coordinate descent algorithm, group v by group v. We refer to Bubeck [9] for a review on convex
optimization.

In what follows, the group v is fixed, and for given values of f0 and θw, w 6= v, we look for the minimizer of
C ′ with respect to θv: Setting

Rv = Y− f0 −
∑
w 6=v

Kwθw,
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we aim at minimizing with respect to θv

Q(θv) = ‖Rv −Kvθv‖2 + γ
′

v‖Kvθv‖+ µ
′

v‖K1/2
v θv‖.

If γ′v = µ′v = 0, then θv = K−1
v Rv is the solution. In what follows we consider the case where at least one of

both is non zero.
If ∂Qv denotes the subdifferential of Q(θv) with respect to θv, we need to solve 0 ∈ ∂Qv. Let us recall that

for all v ∈ P the matrices Kv are symmetric and strictly definite positive.
Let us begin with the calculation of the subdifferential of ‖Kvθv‖ with respect to θv: if θv 6= 0, we have

∂‖Kvθv‖
∂θv

= K2
vθv

‖Kvθv‖
,

and if θv = 0 the subdifferential is the set of x ∈ Rn such that ‖K−1
v x‖ ≤ 1.

Therefore if θv 6= 0,

∂Qv = −2KvRv + 2K2
vθv + γ′v

K2
vθv

‖Kvθv‖
+ µ′v

Kvθv

‖K1/2
v θv‖

,

while if θv = 0,

∂Qv =
{
−2KvRv + γ′vt+ µ′vs where t, s ∈ Rn such that ‖K−1

v t‖ ≤ 1, ‖K−1/2
v s‖ ≤ 1

}
.

Let us begin with the case µ′v = 0.

Proposition 8.1. Let (ρ)+ denotes the positive part of ρ ∈ R. If µ′v = 0,

θv =
(

1− γ′v
‖2Rv‖

)
+
K−1
v Rv.

Proof of Proposition 8.1. The problem comes to minimize

U(βv) = ‖Rv − βv‖2 + γ
′

v‖βv‖

and to take θv = K−1
v βv. The subdifferential of U is given by

∂Uv(βv) = −2Rv + 2βv + γ′v
βv
‖βv‖

if βv 6= 0

∂Uv(0) = {−2Rv + γ′vt where ‖t‖ ≤ 1} .

We get

βv =
(

1− γ′v
‖2Rv‖

)
+

Rv.

�
Let µ′v > 0, the following proposition gives a necessary and sufficient condition for θv = 0 to be the minimizer

of Q. For the sake of clarity let us recall the definitions of J and J∗ given in Section 5.1: For all x ∈ Rn

J(x) = ‖2Rv − µ′vK−1
v x‖2, and J∗ = min

{
J(x), for x such that ‖K−1/2

v x‖ ≤ 1
}
.

Proposition 8.2. The minimizer of Q(θv) is θv = 0 if and only if J∗ ≤ γ′2v .
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Proof of Proposition 8.2.
(1) Let us assume that θv = 0 is the minimizer of Q(θv). Then 0 ∈ ∂Q implies that there exists t∗ and s∗

such that ‖K−1
v t∗‖ ≤ 1 and ‖K−1/2

v s∗‖ ≤ 1 and such that γ′vt∗ + µ′vs
∗ = 2KvRv.

If γ′v > 0, then

K−1
v t∗ = 1

γ′v

(
2Rv − µ′vK−1

v s∗
)
, and ‖K−1

v t∗‖ = 1
γ′v

√
J(s∗).

Because J∗ ≤ J(s∗) and ‖K−1
v t∗‖ ≤ 1, we get that J∗ ≤ γ′2v .

If γ′v = 0, then µ′vs∗ = 2KvRv and J(s∗) = J∗ = 0.
(2) Let us now assume that J∗ ≤ γ′2v . Note that minimizing the convex function J(s) over the convex set
‖K−1/2

v s‖ ≤ 1 has always a solution. Let us denote this solution by s∗.
If γ′v > 0, let t∗ = (2KvRv−µ′vs∗)/γ

′

v. Then −2KvRv+γ′vt∗+µ′vs∗ = 0, and −2KvRv+γ′vt∗+µ′vs∗ ∈
∂Q(0) since ‖K−1/2

v s∗‖ ≤ 1, and ‖K−1
v t∗‖ = J(s∗)/γ′v ≤ 1. Therefore θv = 0 is the minimizer of Q.

If γ′v = 0, and J∗ = 0, then −2KvRv + µ′vs
∗ = 0, and ‖K−1/2

v s∗‖ ≤ 1. Therefore θv = 0 is the
minimizer of Q.

�

Proposition 8.3. Let µ′v > 0 and θv be the minimizer of Q.
(1) If ‖2K1/2

v Rv‖ ≤ µ′v, then θv = 0
(2) If not, for ρ > 0, let

θ(ρ) = 2µ′v
(
µ′2v K

−1
v + ρIn

)−1
K−1/2
v Rv,

and let ρ∗ defined as ‖θ(ρ∗)‖ = 1. Then J(θ(ρ∗)) ≤ γ′2v if and only if θv = 0,

Proof of Proposition 8.3. Minimizing J(x) under the constraint ‖K−1/2
v x‖ ≤ 1 is equivalent to minimizing

K(β) = ‖2Rv − µ′vK
−1/2
v β‖2 under the constraint ‖β‖2 ≤ 1. Let β∗ = 2K1/2

v Rv/µ
′
v. Then K(β∗) = 0, which

is smaller than γ′2v , and if ‖β∗‖ ≤ 1, following Proposition 8.2, we get θv = 0.
If ‖β∗‖ > 1, we have to solve a ridge regression problem by minimizingK(β)+ρ‖β‖2 for some positive ρ. The

solution is given by θ(ρ). Let us note that ‖θ(ρ)‖ decreases to 0 when ρ tends to infinity and that its maximum
is ‖θ(0)‖ = ‖β∗‖. Therefore if ‖β∗‖ > 1, there exists ρ∗ such that ‖θ(ρ∗)‖ = 1. Following Proposition 8.2,
Proposition 8.3 is proved. A numerical procedure can be used for calculating this ρ∗. �

Let us now consider the case where θv is non zero. It should satisfy the subgradient condition ∂Qv = 0 which
leads to

θv =
(

2K2
v + γ′v

K2
v

‖Kvθv‖
+ µ′v

Kv

‖K1/2
v θv‖

)−1

2KvRv

which is equivalent to Equation (22).

Proposition 8.4. For all ρ1, ρ2 > 0 let

θ(ρ1, ρ2) = (Kv + ρ1Kv + ρ2In)−1 Rv.

If µ′v > 0, there exists a non zero solution to Equation (22) if and only if there exists ρ1, ρ2 > 0 such that

γ′v = 2ρ1‖Kvθ(ρ1, ρ2)‖
µ′v = 2ρ2‖K1/2

v θ(ρ1, ρ2)‖

}
(64)

Then θv = θ(ρ1, ρ2).
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Proof of Proposition 8.4. If there exists a non zero solution to Equation (22) then ‖Kvθv‖ and ‖K1/2
v θv‖ are

non zero because Kv is definite positive. Let ρ1 = γ′v/2‖Kvθv‖ and ρ2 = µ′v/2‖K
1/2
v θv‖, then

θ(ρ1, ρ2) =
(
Kv + γ′v

2‖Kvθv‖
Kv + µ′v

2‖K1/2
v θv‖

In

)−1

Rv = θv,

and, for such ρ1, ρ2, Equation (64) is satisfied.
Conversely, if there exist ρ1, ρ2 such that Equation (64) is satisfied, then necessarily ‖Kvθ(ρ1, ρ2))‖ and

‖K1/2
v θ(ρ1, ρ2))‖ are non zero and ρ1 = γ′v/2‖Kvθ(ρ1, ρ2)‖ and ρ2 = µ′v/2‖K

1/2
v θ(ρ1, ρ2)‖. Then

θ(ρ1, ρ2) =
(
Kv + γ′v

2‖Kvθ(ρ1, ρ2)‖Kv + µ′v

2‖K1/2
v θ(ρ1, ρ2)‖

In

)−1

Rv,

which is exactly Equation (22) calculated in θv = θ(ρ1, ρ2). �

Taking into account that ‖Kv1/2θv‖ ≤ rv. As already mentionned in Section 5, one may want to minimize
C(f0,θ) under the additional constraint that ‖Kv1/2θv‖ ≤ rv for some positive constant rv, v ∈ P.

For each group v, we have thus to minimize Q(θv) under the constraint ‖Kv1/2θv‖ ≤ rv. We know that this
problem is equivalent to minimize

Q(θv) + λ‖K1/2
v θv‖ = ‖Rv −Kvθv‖2 + γ

′

v‖Kvθv‖+ (µ
′

v + λ)‖K1/2
v θv‖.

for some λ that depends on rv.
Let us first remark that, for a fixed γ′v, and λ ≥ 0, if θ̂v(µ

′

v + λ) minimizes Q(θv) + λ‖K1/2
v θv‖ with respect

to θv, then ‖K1/2
v θ̂v(µ

′

v + λ)‖ ≤ ‖K1/2
v θ̂v(µ

′

v)‖. It can be easily proved by writing

Q
(
θ̂v(µ

′

v + λ)
)

+ λ‖K1/2
v θ̂v(µ

′

v + λ)‖ ≤ Q
(
θ̂v(µ

′

v)
)

+ λ‖K1/2
v θ̂v(µ

′

v)‖

≤ Q
(
θ̂v(µ

′

v + λ)
)

+ λ‖K1/2
v θ̂v(µ

′

v)‖.

Therefore, one can proceed as follows: calculate θ̂v for λ = 0. If ‖K1/2
v θ̂v‖ ≤ rv, then one go to the next

step of the algorithm. If ‖K1/2
v θ̂v‖ > rv, one increases λ untill ‖K1/2

v θ̂v‖ = rv.
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