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Genome-wide analysis in Hevea 
brasiliensis laticifers revealed 
species-specific post-transcriptional 
regulations of several redox-related 
genes
Yi Zhang1,2, Julie Leclercq1,2, Shuangyang Wu1,2,3,4, Enrique ortega-Abboud1,2, 
stéphanie pointet1,2, Chaorong tang5, Songnian Hu  3 & pascal Montoro1,2

MicroRNA-mediated post-transcriptional regulation has been reported on Ros production and 
scavenging systems. Although microRNAs first appeared highly conserved among plant species, several 
aspects of biogenesis, function and evolution of microRNAs were shown to differ. High throughput 
transcriptome and degradome analyses enable to identify small RNAs and their mRNA targets. A non-
photosynthetic tissue particularly prone to redox reactions, laticifers from Hevea brasiliensis, revealed 
species-specific post-transcriptional regulations. This paper sets out to identify the 407 genes of the 
thirty main redox-related gene families harboured by the Hevea genome. There are 161 redox-related 
genes expressed in latex. Thirteen of these redox-related genes were targeted by 11 microRNAs. To our 
knowledge, this is the first report on a mutation in the miR398 binding site of the cytosolic CuZnSOD. A 
working model was proposed for transcriptional and post-transcriptional regulation with respect to the 
predicted subcellular localization of deduced proteins.

Reactive oxygen species (ROS) are produced by redox reactions in plants, including aerobic respiration and pho-
tosynthesis. High levels of ROS such as 1O2 (singlet oxygen), O2°− (superoxide radical), °OH (hydroxyl radical) 
and H2O2 (hydrogen peroxide) are generated during abiotic and biotic stress, as well as some plant development 
processes. This oxidative stress triggers disturbances in the basal redox state1. Peroxides and free radicals damage 
all cellular components including proteins, lipids and nucleic acids. ROS are also described as secondary mes-
sengers that are perceivable and able to initiate adaptive mechanism2,3. In order to detoxify the harmful ROS and 
maintain the redox homeostasis, plant cells contain enzymatic and non-enzymatic scavenging systems.

MicroRNA-mediated post-transcriptional regulation has been reported on ROS production and scavenging 
systems. This control can occur by transcript cleavage of either redox-related genes4,5, or their upstream transcrip-
tion factors6, as well as indirectly through the repression of genes that induce hormone changes7 or a response to 
stress8. Although microRNAs first appeared highly conserved among plant species9, several aspects of biogenesis, 
function and evolution of microRNAs were shown to differ10. Non-conserved or species-specific microRNAs 
often expressed at very low levels could be detected using next-generation sequencing technology11,12. Besides 
microRNAs, little is known on the role of siRNAs on the expression of redox-related genes. Degradome anal-
ysis was first carried out in plant on Arabidopsis to facilitate the discovery and quantification of small RNAs 
cleaved targets13. Degradome sequencing experimentally confirmed several hundred targets in eucalyptus and 
populus14,15.

Hevea brasiliensis is the main commercial source of natural rubber, the cis-1,4-polyisoprene polymer, which 
is synthesized in the rubber particles of laticifers16. Latex is the cytoplasm of these articulated laticiferous vessels 
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arranged in concentric rings in the phloem tissue. Latex flows out after cutting the soft bark (tapping). The appli-
cation of ethephon, an ethylene releaser, to the bark stimulates latex flow and latex regeneration between two 
tappings17. ROS production takes place in laticifers in response to harvesting stress and consequent metabolic 
activity necessary for latex regeneration after tapping18. When ROS-scavenging systems cannot offset ROS accu-
mulation, cellular dysfunctions lead to the agglutination of rubber particles19,20. This physiological syndrome, 
called Tapping Panel Dryness (TPD), is responsible for major losses in natural rubber production21.

Besides the evidence of ROS involvement in TPD at biochemical level22, several recent transcriptomic analy-
ses reported that the expression of genes involved in the production and scavenging of ROS is regulated in latex. 
For instance, a comparison of two contrasting clones for latex yield showed that antioxidant-related genes are 
crucial in the regulation of latex regeneration and the duration of latex flow23. Juvenility was also found to be 
related to latex production. Latex from self-rooted juvenile clones created by somatic embryogenesis showed 
more differentially expressed genes (DEGs) related to the ROS-scavenging metabolism24. Transcriptomic anal-
ysis of a set of rubber clones showed that three and six overexpressed DEGs were involved in ROS production 
and ROS-scavenging, respectively25. Although all these genes were expressed in latex, several other studies did 
not report any significant changes in the expression of antioxidant genes in latex26–28. Post-transcriptional regu-
lation by microRNAs was observed for some redox-related genes. Sixty-eight families of microRNAs, conserved 
between species, were identified in Hevea, including 15 with their precursors, and 16 species-specific microR-
NAs11,29–33. Approximately 1,000 targets were predicted and only a few targets have been experimentally validated 
to date11,34. All these studies globally analysed gene expression but did not specifically check redox-related gene 
families.

Laticifers are particularly prone to redox reactions. The latex of this non-photosynthetic tissue represents 
an interesting model to study how important are transcriptional and post-transcriptional regulations related to 
redox-related genes. This paper sets out to identify all the members of the most important gene families involved 
in the production and scavenging of ROS and their expression in latex, based on the new complete reference 
genome sequence25 and a transcriptome for a TPD-susceptible clone26. Of the 161 redox-related genes expressed 
in latex, 27 genes were shown to be targeted by microRNAs using small RNAs and degradome analyses. A working 
model was proposed for transcriptional and post-transcriptional regulations with respect to the predicted subcel-
lular localization of deduced proteins. To our knowledge, this paper reports on the most complete classification 
of redox-related genes for a crop species, and reveals new insights into small RNA-mediated post-transcriptional 
regulations of ROS-scavenging systems.

Results
Identification and classification of redox-related genes in Hevea. Hevea redox-related genes were 
identified in the rubber tree genome sequence from clone Reyan 7-33-97 using Arabidopsis thaliana or Populus 
trichocarpa amino acid sequences from 30 gene families downloaded from the UniProt database according to 
the procedure described in Fig. 1. Hevea genes were compared to eight other species based on a bibliographical 
analysis (Table 1). This analysis revealed that the redox-related gene families identified mostly dealt with ROS 
production and scavenging and partial information is available for antioxidant biosynthesis. The number of genes 
for each species was extracted from several references (Supplemental Table 1).

Hevea has a much larger number of redox-related genes (407) compared to Arabidopsis (306). This is mainly 
explained by the absence of genes encoding polyphenol oxidase in Arabidopsis when Hevea genome harboured 
6 genes, and by a smaller number of genes encoding glutaredoxin (43), glutathione S-transferase (51) and perox-
idase (73) in Arabidopsis compared to Hevea (51, 77 and 114, respectively). A phylogenetic analysis was carried 
for gene families involved in ROS production and scavenging (Supplemental Figs 1–17). This analysis revealed 
several gene duplications for Grx, GST and Px gene families (Supplemental Figs 7, 8 and 14).

Figure 1. Workflow diagram illustrating the main steps in the identification of redox-related genes in 
the Hevea reference genome sequence and transcriptome. Reference redox-related amino acid sequences 
were downloaded from the UniProt database. These sequences were blasted against the Hevea genome and 
transcriptome. Scaffolds harbouring Hevea redox-related genes were validated manually with ORF. Redox-
related contigs were also identified using blastx and GO annotations of the Hevea transcriptome. The two lists of 
contigs were merged and blasted against the Hevea genome to identify unique contigs. They were then manually 
annotated with ORF and genome mapping.

https://doi.org/10.1038/s41598-019-42197-8


3Scientific RepoRts |          (2019) 9:5701  | https://doi.org/10.1038/s41598-019-42197-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

Comparative analysis of published latex transcriptomes. In order to identify redox-related genes 
expressed in latex, contigs or unigenes annotated as redox-related genes were extracted from the Supplemental 
Table 2 of recently published latex transcriptome analyses obtained by RNA sequencing technology23–28. For each 
publication, redox-related contigs or unigenes were assigned to one of the 30 gene families using their initial 
blastx annotation (Table 2). A small number of contigs (28, 30 and 12) was counted for three studies23,24,28 com-
pared to the total gene number found in this work (Table 1) and other transcriptome analyses (912, 77, 231)25–27. 
The transcriptome published by Wei and collaborators had the largest number of redox-related contigs (234) but 
a lower coverage (0.37 Gb for all samples)27. This transcriptome was obtained from trees of rubber clone RRIM 
600 with long-term latex flow. For several gene families, the number of contigs was larger than the gene number 
counted in the reference genome. Tang and co-workers published transcriptome data for a mixture of several 
tissues including latex. Thus, the RNAseq dataset from clone PB 26026 was adopted for further analysis for the 
following reasons: high coverage (6 Gb per sample), largest number of redox-related contigs (912), representation 
of all gene families, good statistical design with the use of 3 biological replicates, and data from a comparison of 
latex from healthy and TPD-affected trees.

transcriptional regulation of redox-related genes and prediction of subcellular localization in 
laticifers. Of the 407 Hevea redox-related genes, 161 unique transcripts were found in latex (Supplemental 
Table 2). All transcripts were encoded by a unique gene, except for 3 transcripts encoded by two genes har-
boured by 2 different scaffolds, respectively: CL1895Contig4 (L-galactose dehydrogenase 1 (GDH1) and 
L-galactose dehydrogenase 2 (GDH2); CL3344Contig2 (glutathione S-transferase U8; GSTU8) and glutathione 
S-transferase U11 (GSTU11); and CL2806Contig1 (NADPH-dependent thioredoxin reductase 1; NTR1) and 
NADPH-dependent thioredoxin reductase 3; NTR3). NTR1 and NTR3 were located on scaffold0536_346249 
and scaffold0965_30248. GSTU8 and GSTU11 were located on scaffold0702_452766 and scaffold0702_454607. 

Function Gene family Arabidopsis Hevea Manihot Oryza Populus Ricinus Sorghum Vitis Zea

ROS production
Respiratory burst oxidase homolog 10 9 11 9 10 9 13 8 18

Polyphenol oxidase 0 6 1 2 11 1 8 4 6

ROS scavenging and 
regulation

Peroxidase 73 114 — 138 87 — 140 — —

Catalase 3 5 10 3 4 2 2 6 3

Superoxide dismutase 8 9 16 7 10 8 5 12 11

Ascorbate peroxidase 7 8 19 11 11 10 8 8 16

Glutathione peroxidase 8 10 7 6 7 5 6 5 5

Glutathione reductase 2 3 5 3 3 3 2 2 2

Monodehydroascorbate reductase 5 6 6 5 3 3 5 3 4

Dehydroascorbate reductase 4 3 3 2 4 4 2 3 2

Methionine sulfoxide reductase 14 9 — 7 9 — — — 6

Peroxiredoxin 10 10 9 11 12 7 6 9 6

NADPH-dependent thioredoxin reductase 3 3 — 3 3 — 3 2 —

Glutathione S-transferase 51 77 — 84 81 — 99 — 72

Glutaredoxin 43 51 — 49 38 — 32 25 —

Thioredoxin 38 54 — 46 45 — 29 32 23

Ascorbate biosynthesis

GDP-L-galactose phosphorylase 2 3 — 1 2 — — 2 1

GDP- mannose pyrophosphorylase 3 2 — 3 — — — 1 —

GDP-mannose-3′,5′ epimerase 1 2 — 2 2 — — 2 —

L-galactono-1,4-lactone dehydrogenase 1 1 — 2 1 — — 1 1

Inositol phosphate phosphatase 1 2 — 1 3 — — 1 1

L-galactose dehydrogenase 1 3 — 1 2 — — 2 1

L-gulonolactone oxidase 7 3 — — — — — 1 —

Myo-inositol oxygenase 5 3 — 1 — — — 2 —

Glutathione biosynthesis
Glutamate cysteine ligase 1 2 — 1 2 — — — 1

Glutathione synthetase 1 2 — — 2 — — — 1

Tocotrienol biosynthesis

Tocotrienol cyclase 1 1 — 1 — — — — —

Tocotrienol γ-methyltransferase 1 2 — 1 — — — — —

MPBQ/MSBQ methyltransferase 1 3 — 1 — — — — —

Homogentisate phytyltransferase 1 1 — 2 — — — — —

In total 306 407 >87 >403 >352 >52 >360 >131 >180

Table 1. Classification of main redox-related gene families in Hevea brasiliensis compared with several other 
species: Arabidopsis thaliana, Manihot esculenta, Oryza sativa, Populus trichocarpa, Ricinus communis, Sorghum 
bicolor, Vitis vinifera, Zea mays.
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GDH1 and GDH2 were located on scaffold1364_78602 and scaffold1364_29743. The phylogenetic analyses 
revealed a recent duplication of the genes (Supplemental Figs 4, 8 and 11).

Subcellular localization of redox-related genes was performed using WoLF PSORT, CELLO2GO 
and Plant-mPLoc. The largest number of proteins was predicted in chloroplast. Given that laticifers are 
non-photosynthetic tissues, chloroplast and plastid predictions were assigned as plastidic proteins. Subcellular 
localization of latex proteins was predicted as follows: 82 in plastids, 70 in cytosol, 12 in nucleus, 7 in mitochon-
dria, 2 in extracellular, 1 in vacuole, 2 in peroxisome and 7 non-predicted.

When exploring RNAseq data from latex26, sixty transcripts were abundant (>1000 reads), and twelve of them 
were very abundant (>5000 reads) for one or other of the conditions. Twenty-nine transcripts were induced 
and forty-eight repressed in response to ethephon in healthy trees. Nine transcripts were induced in response 
to ethephon in TPD-affected trees. Four of these genes (PPO2, PrxQ, TrxS12 and TrxS13) showed contrasting 
regulation: repressed in healthy and overexpressed in TPD-affected trees. For the clarity of this manuscript, gene 
expression data are presented in Fig. 2 (cf. discussion section).

small RNA-mediated post-transcriptional regulation of redox-related genes. Redox-related 
transcripts targeted by microRNAs and ta-siRNAs were searched using CLEAVELAND pipeline13 in the degra-
dome dataset obtained from various tissues (root, leaf, bark, latex, flowers and embryo) and the reference tran-
scriptome for rubber tree clone PB 260. The degradome analysis did not revealed post-transcriptional regulations 
by ta-siRNA (data not shown). Of the 407 redox-related genes, 13 were targeted by 11 different microRNAs 

Reference Chao 2015 Li 2015 Wei 2015 Li 2016 Tang 2016 Montoro 2018 This study

Topic Rubber yield Rubber yield Latex flow Rubber yield Genome TPD Redox

Technology Hiseq2000 Hiseq2000 Hiseq2500 Hiseq2000 Hiseq2000 Hiseq2000 —

Throughout 35 Mb 4.82 Gb 0.37 Gb 16.7Mbp 1.29 Gb 6 Gb —

Clone CATAS8-79 PR107 RRIM 600 RY 
7-20-59 RRIM 600 CATAS7-33-97 

HAIKEN 2 Reyan7-33-97 PB 260 PB 260

Tissue latex latex latex latex Mixed tissues Latex Latex

Gene family Number of contigs or unigenes

Respiratory burst oxidase homolog 1 1 4 0 1 26 2

Polyphenol oxidase 2 0 1 1 1 4 2

Peroxidase 6 2 18 2 5 145 7

Catalase 0 0 8 1 3 31 3

Superoxide dismutase 2 0 14 1 1 43 6

Ascorbate peroxidase 1 0 15 0 1 27 5

Glutathione peroxidase 0 1 10 0 1 45 7

Glutathione reductase 3 0 4 0 1 17 3

Monodehydroascorbate Reductase 1 1 5 0 2 26 5

Dehydroascorbate reductase 0 2 3 0 1 7 3

Methionine sulfoxide reductase 1 1 7 0 3 24 7

Peroxiredoxin 2 0 12 0 2 42 7

NADPH-dependent thioredoxin reductase 0 2 2 0 7 8 3

Glutathione S-transferase 5 6 44 3 16 93 23

Glutaredoxin 2 2 16 0 4 104 20

Thioredoxin 0 10 43 3 21 189 32

GDP-L-galactose phosphorylase 0 0 4 0 1 3 2

GDP- mannose pyrophosphorylase 0 0 0 0 0 3 2

GDP-mannose-3′,5′ epimerase 0 1 3 0 1 7 2

L-galactono-1,4-lactone dehydrogenase 0 0 3 0 0 7 1

Inositol phosphate phosphatase 0 0 0 0 0 7 2

L-galactose dehydrogenase 0 0 0 0 1 3 3

L-gulonolactone oxidase 0 0 2 0 0 16 1

Myo-inositol oxygenase 1 0 2 1 0 7 3

Glutamate cysteine ligase 1 0 2 0 0 5 2

Glutathione synthetase 0 0 1 0 0 4 2

Tocopherol cyclase 0 0 1 0 0 4 1

Tocopherol γ-methyltransferase 0 0 2 0 0 6 1

MPBQ/MSBQ methyltransferase 0 0 3 0 2 3 3

Homogentisate phytyltransferase 0 1 2 0 2 6 1

Total contigs or unigenes 28 30 231 12 77 912 161

Table 2. Annotation of Hevea latex redox-related genes from published latex transcriptomes.
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Figure 2. ROS production and scavenging systems, and antioxidant biosynthesis in the various latex cell 
compartments. The gene expression level is represented using RNAseq reads. The data in the three columns 
originate from heathy trees without ethephon treatment (WH), healthy trees with ethephon treatment 
(EH) and tapping panel dryness trees with ethephon treatment (ET), respectively. The red arrows represent 
ROS production or oxidation events. The green arrows represent ROS scavenging reactions or reduction 
events. Abbreviations are: superoxide radicals (O2

•−), hydrogen peroxide (H2O2), catalase (Cat), peroxidase 
(Px), ascorbate peroxidase (APx), glutathione peroxidase (GPx), peroxiredoxin (Prx), glutathione (GSH), 
monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase 
(GR), glutamate cysteine ligase (GCL), glutathione synthetase (GS), γ-glutamylcysteine (γ-EC), L-glutamate 
(Glu), cysteine (Cys), glycine (Gly), NADPH reductase (NTR), thioredoxin (Trx), methionine sulfoxide 
(MetO), methionine sulfoxide reductase (MSR), glutaredoxin (Grx), glutathione S-transferase (GST), myo-
inositol oxygenase (Miox), L-gulonolactone oxidase (GULO), myo-Inositol (Myo-I), D-Glucuronate (D-
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(Table 3). The degradome analysis revealed post-transcriptional regulation of these transcripts at spatial level 
(thanks to tissue-specific libraries) and cleaved transcript abundance level classified into degradome categories. 
The number of microRNA families was different for each tissue: 1 in roots, 7 in leaves, 7 in latex, 4 in bark and 2 in 
flowers. In latex, seven of these redox-related genes were targeted by 6 families of microRNAs. Three known fam-
ilies of microRNA (miR535, miR398b and miR394) targeted and cleaved transcripts from genes APX3 (ascorbate 
peroxidase 3), SOD2 (Cu/Zn superoxide dismutase 2), GR1 and GR2 (glutathione reductase 1 and 2), respectively. 
For transcripts from gene APX3, strong spatial regulation was observed with a greater abundance of miR535 in 
leaf (degradome category 0) compared to latex (degradome category 4). One transcript, encoding MPBQ/MSBQ 
methyltransferase 3 involved in tocotrienol biosynthesis, was also cleaved in bark and leaf by a new microRNA 
named miRNAn7. For miR398b, which cleaves chloroplastic Cu/Zn superoxide dismutase transcripts29, a low 
abundance of cleaved transcripts was found in latex (degradome category 3) and root (degradome category 4). 
Interestingly, the three cytosolic isoforms were not detected in the degradome libraries confirming the previous 
observation made by Gébelin and co-workers11. The miR398 binding site was further scanned and sequence 
variations were observed in the 5′ and 3′ seed regions but also between the very sensitive 10th and 11th nucleo-
tides of the microRNA sequence targeting HbCuZnSOD1 and at the 12th nucleotide in both HbCuZnSOD3 and 
HbCuZnSOD4 sequences (Table 4). Three microRNAs (miRNAn1 to 3), with cleavage activity in latex, were new 
microRNAs not yet annotated in the miRBase database (Table 3). Catalase 1, the unique cytoplasmic Cat gene 
showing the highest Cat expression in latex, was regulated by a new microRNA named miRNAn1. This mRNAn1 
also targeted peroxisomal catalase 2. Cytosolic glutathione reductase 1 and plastidic glutathione reductase 2 were 
highly expressed in latex and targeted by miR394.

The expression of the 13 post-transcriptionally regulated genes was recalculated using the reads covering the 
cleavage site only, in order to check if the level of expression assessed by the number of reads describes the real 
functionality of mRNAs (Supplemental Tables 3 and 4). The expression of 8 of the 13 targeted transcripts were sig-
nificantly affected by the new way of calculation. Significant fold changes observed in standard RNA sequencing 
for ethephon treatment or TPD occurrence disappeared for genes APX3, GR1, MDHAR2, Prx2C1, Px1, Px6 and 
VTE4 when using the number of reads covering the cleavage site to calculate the expression level. Finally, some 
effects of ethephon were maintained for GSTF1 and Prx2C1.

Discussion
Apart from plant model species, this study is the most complete genome-wide analysis of ROS production and 
scavenging systems and antioxidant biosynthesis in a perennial crop. The main 30 redox-related gene fami-
lies totalize 407 genes in Hevea. This is a larger number of genes compared to Arabidopsis especially due to the 
expansion of peroxidase genes in Hevea. Based on the RNAseq dataset, small RNA/target identification, and 
prediction of subcellular localization, a model of transcriptional and post-transcriptional regulations of the 161 
redox-related genes expressed in latex was attempted for a rubber clone particularly prone to oxidative stress 
(Fig. 2). The redox-related proteins were predominantly localized in plastids (82 proteins) and cytosol (70 pro-
teins). This comprehensive analysis highlighted critical steps of redox homeostasis in latex.

This study also revealed specific regulation of ROS-scavenging systems, which might be adapted to strong 
and steady ROS production in latex cells due to recurrent harvesting stress and latex regeneration between two 
tappings. Lutoids are polydispersed vacuoles with lysosomal properties. Previous biochemical studies revealed 
that NADPH oxidase is the main source of ROS in laticifer cytosol, especially under stress18. The present study 
revealed that this enzyme was mostly encoded by the Rboh2 gene in latex cells, and its expression was enhanced 
by ethephon application. These results suggest that Rboh2 encodes the main enzyme generating ROS at the outer 
surface of lutoid membrane in contact with cytosol.

This production of O2
− in cytosol requires a powerful detoxification system in this compartment. Superoxide 

dismutase is the enzyme involved in the first step of detoxification inducing the dismutation of the superoxide 
anions, produced by the lutoid NADPH oxidase, into hydrogen peroxide22. CuZnSOD1 transcripts were much 
more abundant compared to other genes encoding SOD. Unlike Arabidopsis, none of the Hevea cytosolic SOD 
isoforms was subjected to post-transcriptional regulation by miR398. A mutation in the binding site makes 
miR398 ineffective. The high expression of the CuZnSOD1 gene might then support the maintenance of SOD 
activity and a consequent high level of anion superoxide dismutation. To demonstrate the biological relevance of 
post-transcriptional regulations, the physiological context (type and duration of stress) in which the regulation 
occurs should be further identified case by case. For example, the cleavage of the chloroplastic CuZnSOD tran-
scripts was correlated with the upregulation of miRNA398 expression in response to a salt stress specifically in 
bark and root29.

The second step deals with the decomposition of H2O2 to H2O and O2 through five hydrogen peroxide scav-
enging pathways coexisting in cytosol (peroxidase, ascorbate peroxidase, glutathione peroxidase, peroxiredoxin 

Glu), L-Gulono-1, 4-lactone (L-GulL), GDP-D-mannose pyrophosphorylase (VTC1), GDP-L-galactose 
phosphorylase (VTC2), D-Mannose-1-P (D-M-P), GDP-D-Mannose (GDP-D-M), GDP-mannose 3, 
5-epimerase 1 (GME), GDP-D-M, GDP-L-Galactose (GDP-L-Gal), L-Galactose-1-P (L-Gal-P), inositol 
phosphate phosphatase (VTC4), L-Galactose (L-Gal), L-galactose dehydrogenase (GDH), L-Galactono-1, 
4-lactone (L-GalL), L-galactono-1, 4-lactone dehydrogenase (GLDH), isopentenyl diphosphate (IPP), 
geranylgeranyl diphosphate (GGDP), homogentisate phytyltransferase (VTE2), 6-Geranylgeranyl-2-
methylbenzene-1,4-diol (GG-MB-D), MPBQ/MSBQ methyltransferase (VTE3), 6-Geranylgeranyl-2, 
3-dimethylbenzene-1, 4-diol (GG-DMB-D), tocopherol cyclase (VTE1), tocopherol γ-methyltransferase 
(VTE4), glutamate cysteine ligase (GCL).
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and catalase). High and steady ROS production in latex cells requires Cat activity, which generally comes into play 
under stress. A decrease in Cat activity was recorded in TPD-affected trees enabling the general oxidative stress 
in latex cells35. Cat1 gene was highly expressed in latex and might be the main gene related to the Cat activity. 
Although post-transcriptional regulation was shown by microRNA miRn1, this microRNA did not efficiently 
cleave Cat1 transcripts in the tested biological conditions (low number of read ends at the cleavage site in degra-
dome data). For the genes encoding thioredoxins, TrxH5 had the highest level of expression out of the 161 genes 
expressed in latex. From our knowledge, there is no published information related to the potential role of Prx 
in latex and further characterization is required. The ascorbate/glutathione cycle, involving in its last lines APx 
and GPx, is essential in the reduction of H2O2 to H2O and O2. Regeneration of the ASA and GSH forms reduced 
by the ascorbate-glutathione cycle involved several enzymes encoded by MDHAR2, DHAR2, GR1 and GR2. The 
ethephon treatment did not transcriptionally activate genes involved in the glutathione/ascorbate cycle. Although 
some post-transcriptional regulations appeared in the degradome analysis showing that both the GR1 and GR2 
transcripts, miR394 did not significantly cleave GR transcripts. APx has a high affinity for H2O2 and can reduce 
it to H2O in chloroplasts, cytosol, mitochondria and peroxisomes, as well as in the apoplastic space. Of the three 
genes encoding a cytoplasmic ascorbate peroxidase, the HbAPx1 and HbAPx5 transcripts were the most abun-
dant. Considering the lower expression of these 3 APx genes compared to the plastidic APx4, the cytosolic ASA 
pathway might have a lower reducing capacity than the plastid pathway, which is obvious since the production of 
ROS is known to be high in plastids. Of the 23 Hevea genes encoding a GST, 21 were predicted as cytosolic GST. 
Among them, the GSTU3 and GSTF1 genes were actively expressed in latex cells. As GST plays a central role in 
the use of the reduction power of GSH to detoxify electrophiles, glutathione might be considered as the most 
important antioxidant in laticifers.

Glutathione, ascorbate and vitamin E isomers are the major antioxidants in latex22. The glutathione biosynthe-
sis pathway involves two ATP-dependent enzymes: γ–glutamate cysteine ligase (GCL) and glutathione synthetase 
(GS). Of the two GS and GCL genes identified in the rubber genome, only one of each was encoded protein pre-
dicted to be expressed in latex cytosol (GS1 and GCL2), one GS (GS2) and the two GCL (GCL1 and GCL2) being 
expressed in plastids. The genes encoding GS2 and GCL2 were significantly over-expressed in response to ethep-
hon. There are four routes for ASA biosynthesis in plant: the L-galactose pathway, the myo-inositol oxygenase 
pathway, the salvage pathway via L-galactonate, and the L-gulose-pathway. Of these four routes, L-galactose is the 
major pathway in many plants36,37. The L-galactono-1 4-lactone (L-GalL) biosynthesis pathway occurs in cytosol, 
which consists of five enzymes (VTC1, GME, VTC2, VTC4 and GDH). All genes encoding these enzymes have 
homologues expressed in latex cytosol.

There are 4 vitamin E isomers in latex: α-tocopherol, α-tocotrienol, γ-tocotrienol and δ-tocotrienol38,39. Genes 
involved in the biosynthesis of δ-tocotrienol (VTE1and VTE2) and γ-tocotrienol (VTE1, VTE31, VTE32 and 
VTE33) were expressed at moderate or high levels in latex. VTE33 had also a low level of expression related to 

Target Degradome MicroRNA

Enzyme Contig Library Category
miRNA 
accession miRBase annotation

Start 
position

Stop 
position

Cleavage 
site

Ascorbate peroxidase 3 CL1Contig1117
leaf 0 Pmature12390 miR535 53 73 64

latex 4 Pmature12390 miR535 53 73 64

Catalase 1 CL1Contig10534 latex 3 Pyoung21016 miRNAn1, in progress 588 608 599

Catalase 2 CL1Contig1382
latex 3 Pyoung21016 miRNAn1, in progress 421 441 432

latex 4 Pyoung160064 miRNAn2, in progress 422 442 433

Cu/Zn superoxide dismutase 2 CL1553Contig1
root 4 acc_420 miR398b 630 656 646

latex 3 acc_420 miR398b 630 656 646

Glutathione peroxidase 5 CL449Contig1
leaf 0 Pmature37668 miRNAn3, in progress 70 90 81

latex 4 Pmature37668 miRNAn3, in progress 70 90 81

Glutathione reductase 1 CL1Contig15684

bark 4 Pyoung83898 miR394 477 500 488

leaf 2 Pyoung83898 miR394 477 500 488

latex 2 Pyoung83898 miR394 477 500 488

Glutathione reductase 2 CL1Contig1556
leaf 2 Pyoung83898 miR394 560 583 571

latex 2 Pyoung83898 miR394 560 583 571

Methionine sulfoxide reductase A2 CL372Contig4
bark 2 health2164 miRNAn4, in progress 210 231 222

leaf 3 health2164 miRNAn4, in progress 210 231 222

Monodehydroascorbate reductase 1 CL1Contig7966 bark 2 Pmature18863 miRNAn5, in progress 149 170 161

Monodehydroascorbate reductase 3 CL1250Contig6 bark 2 Pyoung84691 miRNAn6, in progress 1181 1203 1194

MPBQ/MSBQ methyltransferase 3 CL5665Contig1
leaf 4 Pyoung169157 miRNAn7, in progress 951 973 962

flower 2 Pyoung169157 miRNAn7, in progress 951 973 962

Myo-inositol oxygenase 2 CL234Contig10 flower 2 Pyoung68471 miRNAn8, in progress 401 424 415

Peroxidase 6 CL1Contig8355 leaf 2 Pyoung84691 miRNAn6, in progress 970 990 982

Table 3. Degradome data analysis with CLEAVELAND pipeline using 161 ROS-related genes, 6 tissue-specific 
transcriptomes and newly annotated microRNAs.

https://doi.org/10.1038/s41598-019-42197-8


8Scientific RepoRts |          (2019) 9:5701  | https://doi.org/10.1038/s41598-019-42197-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

its targeting by miRNAn7. As γ-tocotrienol is the most abundant vitamin E isomer, its accumulation might be 
fostered by the weak capacity to produce α-tocotrienol and tocopherol.

To conclude, this study reveals new insights into small RNA-mediated post-transcriptional regulations of 
ROS-scavenging systems. To our knowledge, this is the first report on a mutation in the miR398 binding site of 
the CuZnSOD altering the post-transcriptional regulation described in model species. In addition, the literature 
mentioned microRNA-mediated post-transcriptional regulation on ROS production and scavenging systems. 
This work paves the way to the study of adaptive mechanisms. Besides, several genetic studies have revealed the 
involvement of antioxidant compounds in complex traits of several species40–43. In Hevea, the 161 redox-related 
genes expressed in latex represent candidate genes for the identification of allelic variability. The development of 
molecular markers and the analysis of genetic variability of antioxidants should support breeding programmes, 
especially for traits relative to environmental stress.

Methods
Identification and classification of redox-related genes in the Hevea brasiliensis genome and 
transcriptome. Redox-related genes were identified from both the Hevea reference genome and transcrip-
tome (Fig. 1). An amino acid sequence dataset was created by downloading sequences of thirty redox-related 
gene families from the UniProt database (http://www.uniprot.org/) using published accession numbers mostly 
from Arabidopsis, except for the polyphenol oxidase (PPO) family, which is absent in Arabidopsis. Sixteen families 
were selected for ROS production and scavenging (Table 1). In addition, protein sequences of genes involved in 
the biosynthesis of three major antioxidants in latex (ascorbate, glutathione, and tocotrienol) were collected. This 
dataset was blasted against the published Hevea genome25 and transcriptome26. Redox-related contigs were also 
identified using blastx and GO annotations of the Hevea transcriptome. The two lists of contigs were merged and 
blasted on the rubber genome to identify unique contigs. Redox-associated genes were classified for each gene 
family related to ROS production, ROS-scavenging and regulation, and antioxidant biosynthesis (ascorbate, glu-
tathione and tocotrienols).

phylogenetic analysis of redox-related genes. The full length amino acid sequences of Arabidopsis 
redox-related protein were aligned with the amino acid deduced sequences from Hevea clone Reyan 7-33-97 
genome. Identities of proteins are provided in Supplemental Table 5. The polyphenol oxidase family being absent 
in Arabidopsis, we used the Populus PPO gene family. This alignment was made by Muscle via Mega 644. Amino 
acid sequence of Arabidopsis actin 1 or Arabidopsis glutamate cysteine ligase was used as outgroup control. The 
phylogenetic trees were generated in Mega 6 by Bootstrap method with 500 replications after alignment.

prediction of the subcellular localization of redox-related proteins. The subcellular location of 
redox-related genes was predicted with translated sequences using WoLF PSORT (http://www.genscript.com/
wolf-psort.html), CELLO2GO (http://cello.life.nctu.edu.tw/cello2go/) and Plant-mPLoc (http://www.csbio.sjtu.
edu.cn/bioinf/plant-multi/). The 3 predictors were successfully tested on subcellular localization prediction45. 
The matching ratio between the prediction result and protein location was calculated according to Xiong’s 
Supplemental Table 2. The matching ratios from these 3 predictors ranged from 50% to 80%. The prediction of 
subcellular localization was considered as acceptable when the matching ratio of merged results was above 90%.

Identification of small RNA and target mRNA couples. Degradome data for several Hevea tissues 
(latex, leaves, male and female flowers, seeds, root, bark and somatic and zygotic embryos) were obtained accord-
ing to a protocol adapted from German46. Hevea microRNAs from small RNAseq data published by Gébelin and 
co-workers11,29 were annotated by MITP (https://sourceforge.net/projects/mitp/files/). This pipeline complies to 
the recommendations set by Axtell and coll47, looking from hairpin structures, producing miRNA and miRNA* 
with up to 3 bulges or 6 unpaired bases between miRNA and miRNA*. The prediction was done with sequences 

Gene name
Sub-cellular 
localization mfe kcal/mol Alignment

HbCuZnSOD1 cytosolic Non functional

HbCuZnSOD2 chloroplastic −37.3

HbCuZnSOD3 cytosolic Non functional

HbCuZnSOD4 cytosolic Non functional

Table 4. Comparison of HbmiR398 (acc_420) cleavage site between cytosolic and chloroplastic CuZnSOD 
isoforms. Arrow indicated the cleavage site observed experimentally for HbCuZnSOD2 by miR398 (Gébelin 
et al. 2012) and in the degradome analysis. Sequence variations in cytosolic isoforms sequences compared to 
HbCuZnSOD2 are in bold and highlighted character.
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of 20–22 nt in size from 5 distinct small-RNA-seq libraries as recommended and not based on prediction from 
genomic sequences only. Degradome data were then analysed using the CLEAVELAND pipeline developed by 
Addo-Quaye13. The degradome categories correspond to: category 4: just one read at this position; Category 
3: > 1 read, but below or equal to the average depth of coverage on the transcript; Category 2: > 1 read, equal to 
the average depth of coverage on the transcript; Category 1: > 1 read, equal to the maximum of the average depth 
of coverage on the transcript when there is >1 position at maximum value; Category 0: > 1 read, equal to the 
maximum of the average depth of coverage on the transcript when there is just one position at maximum value.

RNA-seq data mining of cleaved targets. Expression of cleaved transcripts related to redox genes were 
calculated from the same RNA-seq datasets, with the exact number of reads overlapping the sRNA binding site, 
by using BEDTOOLS program (2.24.0) to intersect bam files with sRNA binding site coordinates (between Tstart 
and Tstop) provided by CLEAVELAND outputs. Then, by using R package EdgeR, comprising an over-dispersed 
Poisson model taking into account both biological and technical variability, differential gene expression analyses 
of replicated count data were performed26. The experimental design allows side-by-side comparison to identify 
firstly, differentially expressed genes upon ethephon stimulation in the latex of healthy trees, and secondly, differ-
entially expressed genes in the latex of healthy and TPD-affected trees subjected to ethephon stimulation.
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