M. Reynolds, D. Bonnett, S. C. Chapman, R. T. Furbank, Y. Manés et al., Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies, J Exp Bot, vol.62, issue.2, pp.439-52, 2011.

M. Reynolds, J. Foulkes, R. Furbank, S. Griffiths, J. King et al., Achieving yield gains in wheat, Plant Cell Environ, vol.35, issue.10, pp.1799-823, 2012.

J. Brinton, J. Simmonds, F. Minter, M. Leverington-waite, J. Snape et al., Increased pericarp cell length underlies a major quantitative trait locus for grain weight in hexaploid wheat, New Phytol, vol.215, issue.3, pp.1026-1064, 2017.

D. F. Calderini, R. Savin, L. G. Abeledo, M. P. Reynolds, and G. A. Slafer, The importance of the period immediately preceding anthesis for grain weight determination in wheat, Euphytica, vol.119, issue.1, pp.199-204, 2001.

A. K. Hasan, J. Herrera, C. Lizana, and D. F. Calderini, Carpel weight, grain length and stabilized grain water content are physiological drivers of grain weight determination of wheat, Field Crops Res, vol.123, issue.3, pp.241-248, 2011.

Q. Xie, S. Mayes, and D. L. Sparkes, Carpel size, grain filling, and morphology determine individual grain weight in wheat, J Exp Bot, vol.66, issue.21, pp.6715-6745, 2015.

D. F. Calderini, L. G. Abeledo, R. Savin, and G. A. Slafer, Effect of temperature and carpel size during pre-anthesis on potential grain weight in wheat, J Agric Sci, vol.132, issue.4, pp.453-462, 1999.

D. F. Calderini and I. Ortiz-monasterio, Grain position affects grain macronutrient and micronutrient concentrations in wheat, Crop Sci, vol.43, p.1, 2003.

Y. Li, Z. Cui, Y. Ni, M. Zheng, D. Yang et al., Plant density effect on grain number and weight of two winter wheat cultivars at different spikelet and grain positions, PLoS ONE, vol.11, issue.5, pp.1-15, 2016.

E. Millet and M. J. Pinthus, The association between grain volume and grain weight in wheat, J Cereal Sci, vol.2, issue.1, pp.31-36, 1984.

X. C. Lizana, R. Riegel, L. D. Gomez, J. Herrera, A. Isla et al., Expansins expression is associated with grain size dynamics in wheat (Triticum aestivum L.), J Exp Bot, vol.61, issue.4, pp.1147-57, 2010.

V. C. Gegas, A. Nazari, S. Griffiths, J. Simmonds, L. Fish et al., A genetic framework for grain size and shape variation in wheat, Plant Cell, vol.22, issue.4, pp.1046-56, 2010.

D. Dziki and J. Laskowski, Lublin: Institute of Agrophysics, Polish Academy of Sciences, Acta agrophysica, vol.6, pp.59-71, 2005.

F. Xiong, X. R. Yu, L. Zhou, F. Wang, and A. S. Xiong, Structural and physiological characterization during wheat pericarp development, Plant Cell Rep, vol.32, issue.8, pp.1309-1329, 2013.

P. A. Sabelli and B. A. Larkins, The development of endosperm in grasses, Plant Physiol, vol.149, issue.1, pp.14-26, 2009.

I. Nadaud, C. Girousse, C. Debiton, C. Chambon, M. F. Bouzidi et al., Proteomic and morphological analysis of early stages of wheat grain development, Proteomics, vol.10, issue.16, pp.2901-2911, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00964356

I. N. Morrison, The structure of the chlorophyll-containing cross cells and tube cells of the inner pericarp of wheat during grain development, Bot Gaz, vol.137, issue.1, pp.85-93, 1976.

A. L. Chateigner-boutin, B. Bouchet, C. Alvarado, B. Bakan, and F. Guillon, The wheat grain contains pectic domains exhibiting specific spatial and development-associated distribution, PLoS ONE, vol.9, issue.2, pp.1-13, 2014.

A. L. Chateigner-boutin, J. J. Ordaz-ortiz, C. Alvarado, B. Bouchet, S. Durand et al., Developing pericarp of maize: a model to study arabinoxylan synthesis and feruloylation, Front Plant Sci, vol.7, p.1476, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01546427

A. L. Chateigner-boutin, C. Lapierre, C. Alvarado, A. Yoshinaga, C. Barron et al., Ferulate and lignin cross-links increase in cell walls of wheat grain outer layers during late development, Plant Sci, vol.276, pp.199-207, 2018.

M. Peukert, J. Thiel, D. Peshev, W. Weschke, W. Van-den-ende et al., Spatio-temporal dynamics of Fructan metabolism in developing barley grains, Plant Cell, vol.26, issue.9, pp.3728-3772, 2014.

C. Y. Li, R. Q. Zhang, K. Y. Fu, C. Li, and C. Li, Effects of high temperature on starch morphology and the expression of genes related to starch biosynthesis and degradation, J Cereal Sci, vol.73, pp.25-32, 2017.

S. Gubatz, V. J. Dercksen, C. Brüß, W. Weschke, and U. Wobus, Analysis of barley (Hordeum vulgare) grain development using three-dimensional digital models, Plant J, vol.52, issue.4, pp.779-90, 2007.

S. Van-malderen, B. Laforce, T. Van-acker, L. Vincze, and F. Vanhaecke, Imaging the 3D trace metal and metalloid distribution in mature wheat and rye grains via laser ablation-ICP-mass spectrometry and micro-X-ray fluorescence spectrometry, J Anal Atomic Spectrom, vol.32, pp.289-98, 2017.

M. Fanuel, D. Ropartz, F. Guillon, L. Saulnier, and H. Rogniaux, Distribution of cell wall hemicelluloses in the wheat grain endosperm: a 3D perspective, Planta, vol.248, issue.6, pp.1505-1518, 2018.

D. Rousseau, T. Widiez, D. Tommaso, S. Rositi, H. et al., Fast virtual histology using X-ray in-line phase tomography: application to the 3D anatomy of maize developing seeds, Plant Methods, vol.11, issue.1, p.55, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01538205

L. Salvo, M. Suéry, A. Marmottant, N. Limodin, and D. Bernard, 3D imaging in material science: application of X-ray tomography, Interactions between radiofrequency signals and living organisms), vol.11, pp.641-650, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00569350

J. Lammertyn, T. Dresselaers, P. V. Hecke, P. Jancsók, M. Wevers et al., MRI and x-ray CT study of spatial distribution of core breakdown in 'Conference' pears, Magn Reson Imaging, vol.21, issue.7, pp.805-820, 2003.

L. Schoeman, P. Williams, A. Du-plessis, and M. Manley, X-ray micro-computed tomography (micro-CT) for non-destructive characterisation of food microstructure, Trends Food Sci Technol, vol.47, pp.10-24, 2016.

. Mohori, F. Vergeldt, E. Gerkema, G. Van-dalen, L. R. Van-den-doel et al., The effect of rice kernel microstructure on cooking behaviour: a combined µ-CT and MRI study, Food Chem, vol.115, issue.4, pp.1491-1500, 2009.

R. Metzner, A. Eggert, D. Van-dusschoten, D. Pflugfelder, S. Gerth et al., Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: potential and challenges for root trait quantification, Plant Methods, vol.11, issue.1, p.17, 2015.

A. W. Mathers, C. Hepworth, A. L. Baillie, J. Sloan, H. Jones et al., Investigating the microstructure of plant leaves in 3D with lab-based X-ray computed tomography, Plant Methods, vol.14, issue.1, p.99, 2018.

E. N. Landis, D. T. Keane, and . X-ray-microtomography, Mater Charact, vol.61, issue.12, pp.1305-1321, 2010.

W. H. Stuppy, J. A. Maisano, M. W. Colbert, P. J. Rudall, and T. B. Rowe, Three-dimensional analysis of plant structure using high-resolution X-ray computed tomography, Trends Plant Sci, vol.8, issue.1, pp.2-6, 2003.

F. Mendoza, P. Verboven, Q. T. Ho, G. Kerckhofs, M. Wevers et al., Multifractal properties of pore-size distribution in apple tissue using X-ray imaging, J Food Eng, vol.99, issue.2, pp.206-221, 2010.

H. Cochard, S. Delzon, and E. Badel, X-ray microtomography (micro-CT): a reference technology for high-resolution quantification of xylem embolism in trees, Plant Cell Environ, vol.38, issue.1, pp.201-207, 2015.

H. Lusic and M. W. Grinstaff, X-ray-computed tomography contrast agents, Chem Rev, vol.113, issue.3, pp.1641-66, 2013.

S. Dhondt, H. Vanhaeren, D. V. Loo, V. Cnudde, and D. Inzé, Plant structure visualization by high-resolution X-ray computed tomography, Trends Plant Sci, vol.15, issue.8, pp.419-441, 2010.

Y. M. Staedler, D. Masson, and J. Schönenberger, Plant tissues in 3D via X-ray tomography: simple contrasting methods allow high resolution imaging, PLoS ONE, vol.8, issue.9, pp.1-10, 2013.

L. Schoeman, A. Du-plessis, and M. Manley, Non-destructive characterisation and quantification of the effect of conventional oven and forced convection continuous tumble (FCCT) roasting on the three-dimensional microstructure of whole wheat kernels using X-ray micro-computed tomography (micro-CT), J Food Eng, vol.187, pp.1-13, 2016.

A. Suresh and S. Neethirajan, Real-time 3D visualization and quantitative analysis of internal structure of wheat kernels, J Cereal Sci, vol.63, pp.81-88, 2015.

H. Strange, R. Zwiggelaar, C. Sturrock, S. J. Mooney, and J. H. Doonan, Automatic estimation of wheat grain morphometry from computed tomography data, Funct Plant Biol, vol.42, issue.5, pp.452-461, 2014.

N. Hughes, K. Askew, C. P. Scotson, K. Williams, C. Sauze et al., Nondestructive, high-content analysis of wheat grain traits using X-ray micro computed tomography, Plant Methods, vol.13, issue.1, p.76, 2017.

I. M. Saiyed, P. R. Bullock, H. D. Sapirstein, G. J. Finlay, and C. K. Jarvis, Thermal time models for estimating wheat phenological development and weatherbased relationships to wheat quality, Can J Plant Sci, vol.89, issue.3, pp.429-468, 2009.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an open-source platform for biological-image analysis, Nat Methods, vol.9, issue.7, pp.676-82, 2012.

P. Soille, Morphological image analysis: principles and applications, 2004.

J. C. Russ and F. B. Neal, The image processing handbook, 2015.

M. Awrangjeb, G. Lu, C. S. Fraser, and M. Ravanbakhsh, A fast corner detector based on the chord-to-point distance accumulation technique, 2009 digital image computing: techniques and applications, pp.519-544, 2009.

J. Canny, A computational approach to edge detection, IEEE Trans Pattern Anal Mach Intell, vol.8, issue.6, pp.679-98, 1986.

D. Legland, M. F. Devaux, and F. Guillon, Quantitative imaging of plants: multiscale data for better plant anatomy, J Exp Bot, vol.69, issue.3, pp.343-350, 2018.

D. Rousseau, Y. Chéné, E. Belin, G. Semaan, G. Trigui et al., Multiscale imaging of plants: current approaches and challenges, Plant Methods, vol.11, issue.1, p.6, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392050

V. Radchuk, D. Weier, R. Radchuk, W. Weschke, and H. Weber, Development of maternal seed tissue in barley is mediated by regulated cell expansion and cell disintegration and coordinated with endosperm growth, J Exp Bot, vol.62, issue.3, pp.1217-1244, 2011.

L. C. Ho and R. M. Gifford, Accumulation and conversion of sugars by developing wheat grains: V. The endosperm apoplast and apoplastic transport, J Exp Bot, vol.35, issue.150, pp.58-73, 1984.

J. Sun, J. Huang, W. X. Li, L. J. Wang, A. X. Wang et al., Effects of wheat flour fortified with different iron fortificants on iron status and anemia ? fast, convenient online submission ? thorough peer review by experienced researchers in your field ? rapid publication on acceptance ? support for research data, including large and complex data types ? gold Open Access which fosters wider collaboration and increased citations maximum visibility for your research

, Ready to submit your research ? Choose BMC and benefit from: prevalence in iron deficient anemic students in northern china, Asia Pac J Clin Nutr, vol.16, issue.1, pp.116-137, 2007.

F. Mabille and J. Abecassis, Parametric modelling of wheat grain morphology: a new perspective, J Cereal Sci, vol.37, issue.1, pp.43-53, 2003.

A. Sehgal, K. Sita, K. Siddique, R. Kumar, S. Bhogireddy et al., Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality, Front Plant Sci, vol.9, p.1705, 2018.

, Publisher's Note

, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations