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Abstract Detecting a Quantitative Trait Locus, so-called QTL (a gene influencing a
quantitative trait which is able to be measured), on a given chromosome is a major
problem in Genetics. We study a population structured in families and we assume
that the QTL location is the same for all the families. We consider the likelihood
ratio test (LRT) process related to the test of the absence of QTL on the interval
[0,T ] representing a chromosome. We give the asymptotic distribution of the LRT
process under the null hypothesis that there is no QTL in any families and under local
alternative with a QTL at t? ∈ [0,T ] in at least one family. We show that the LRT is
asymptotically the supremum of the sum of the square of independent interpolated
Gaussian processes. The number of processes corresponds to the number of families.
We propose several new methods to compute critical values for QTL detection. Since
all these methods rely on asymptotic results, the validity of the asymptotic assumption
is checked using simulated data. Finally we show how to optimize the QTL detecting
process.
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1 Introduction

Detecting a Quantitative Trait Locus, so-called QTL (a gene influencing a quantitative
trait which is able to be measured), on a given chromosome is a major problem in
Genetics. For example, [Li et al. 2006] detected QTL responsible for reduction of
grain shattering in cultivated rice, [Frary et al. 2000] highlighted the presence of a
QTL responsible for tomato fruit size, [Silva et al. 2011a] and [Silva et al. 2011b]
looked for QTL affecting lactose in Brazilian Gir dairy cattle. In this paper, we study
a population structured in families and we assume that the QTL location is the same
for all the families. Each family is a set of offsprings from one sire. The problem
is that a QTL can be detected in one family if and only if the sire is heterozygous
at the QTL. As a result, geneticists focus on a few families. The individual belongs
to a family labeled by i ∈ {1, ..., I} and its random label C ∈ {1, ..., I} is distributed
according to a multivariate distribution, i.e.{

P(C = i) = πi, i = 1, ..., I;
I

∑
i=1

πi = 1

}
.

The chromosome will be represented by the segment [0,T ]. The distance on [0,T ] is
called the genetic distance, it is measured in Morgans. A so-called “genome informa-
tion” at location t is denoted X(t) which takes values in {−1,1}. The admitted model
for the stochastic structure of X(.) is due to [Haldane 1919] which states that :

X(0)∼ 1
2
(δ+1 +δ−1), X(t) = X(0)(−1)N(t)

where for any a ∈ R, δa denotes the point mass at a and N(.) is a standard Poisson
process on the interval [0,T ]. In a more practical point of view, this model assumes no
crossover interference and the Poisson process represents the number of crossovers
on [0,T ] which happen during meiosis.
Let us denote by Y , the so-called Quantitative Trait random variable. The stochastic
model, associated to Y is defined by

Y = µi + X(t?) qi + σε , if C = i , (1)

where µi and qi are respectively the polygenic and QTL effects within family i, and
ε is a standard normal random variable. t? is the true location of the QTL. Recall that
the location t? of the QTL is the same for all the families.
In fact the “genome information” will be available only at certain fixed locations
called “markers” t1 = 0 < t2 < ... < tK = T and the observation will be

(Y, X(t1), ..., X(tK), C) .

Our dataset (Yj, X j(t1), ..., X j(tK), C) j=1,...,n is supposed to be obtained by collect-
ing n independent and identically distributed observations (i.i.d.) copies of the ran-
dom vector (Y, X(t1), ..., X(tK), C). A so-called Haldane’s function denoted by r is
considered. This function, from [0,T ]2 into [0,1/2] is defined as follows:

r(t, t ′) = P(X(t)X(t ′) =−1) = P(
∣∣N(t)−N(t ′)

∣∣ odd) =
1
2
(1− e−2|t−t ′|),
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with the convention r̄(t, t ′) = 1− r(t, t ′). For each (t, t ′) ∈ [0,T ]2 the quantity r(t, t ′)
represents the probability of recombination of two loci located at t and t ′.
It can be proved that, conditionally on X(t1), . . . ,X(tK) and C, Y obeys to the follow-
ing mixture model with known weights :

p(t?) f(µi+qi,σ)(.)+{1− p(t?)} f(µi−qi,σ)(.) , if C = i , (2)

where f(m,σ) is the Gaussian density with parameters (m,σ) and where the function
p(t?) is the probability that X(t?) = 1 conditionally on the flanking markers. It can
be expressed from the functions r and r, see Sections 2 and 3.
Λn(t) will denote the likelihood ratio test (LRT) statistic, at location t (see Section
2 for a precise definition) of the null hypothesis {qi = 0, i = 1, ..., I} (i.e. no QTL in
any family). The challenge is that the true location t? is not known. As a result, at
each location t ∈ [0,T ], the presence of a QTL is tested and considering the maxi-
mum of Λn(.) gives the LRT of {qi = 0, i = 1, ..., I} on the full chromosome. Note
that argsupΛn(t) is a natural estimator for the QTL location.
Some theoretical results about the LRT process and using approximations, are present,
in [Rebaı̈ et al. 1995], [Rebaı̈ et al. 1994], [Cierco 1998], [Azaı̈s and Cierco-Ayrolles 2002],
[Azaı̈s and Wschebor 2009], [Chang et al. 2009]. In [Azaı̈s et al. 2014], the focus is
on the exact model. However these papers deal with only one family (I = 1). In
practice, geneticists look for the QTL not in one family but simultaneously in sev-
eral families, each of them defined by a different sire. This design is called daugh-
ter design [Weller et al. 1990]. Since a QTL can be detected in one family if and
only if the sire is heterozygous at the QTL, considering a few families increases the
chances to study families whose sires are heterozygous at the QTL. As a result, in
this paper, we address the problem of the asymptotic distribution of the LRT pro-
cess when a few families are considered (I > 1). Our main result (Theorem 1 and
2) is that the distribution of the LRT statistic is asymptotically that of the maximum
of the square of I independent and “non linear interpolated Gaussian processes”.
Then, using our theoretical results, we are able to propose methods, as a function
of the genetic map, to compute thresholds (i.e. critical values) for QTL detection.
Since all these methods rely on asymptotic results, the validity of the asymptotic as-
sumption is checked using simulated data. Moreover, we show how to optimize the
detecting process by comparing performances of a global test and a multiple testing
procedure. Our methods are available in a Matlab package with graphical user inter-
face : “imfamily.zip”. It can be downloaded at http://charles-elie.rabier.pagesperso-
orange.fr/doc/articles.html . These methods are alternatives to permutation methods
(e.g. [Jung et al. 2007]), generally used in genetics, that enable to compute empiri-
cally the distribution of the maximum of the process ([Churchill and Doerge 1994]).
Our methods present the advantage to be largely faster than permutation methods. We
will also show on simulated data that the mixture model approach is more rewarding
than the linearized likelihood approach [Haley 1992] which is very popular in our
research field.
We refer to the book of [Van der Vaart 1998] for elements of asymptotic statistics
used in proofs. We also refer to [Weller et al. 1990], [Siegmund and Yakir 2007],
[Wu et al. 2007] for some genetic background and to [Ron et al. 2001], [Chen et al. 2006],
[Weller et al. 2008] for the application field of our study. Typically, the study of
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[Silva et al. 2011a], [Silva et al. 2011b] on QTL affecting lactose in Brazilian Gir
dairy cattle is an example of application (K = 27, I = 14, n = 657, maxπi = 0.19),
based on a permutation threshold and on a linearized likelihood.

Our paper ends with an illustration inspired from human real data (Phase 3 release
2 of the HapMap Project). Although the daughter design is not realistic in humans,
it is always interesting to use patterns from real data. For instance, as in animal data,
human data present the problem of informativeness of genetic markers. These human
data, which present a high density of markers (K=75,245), can be analyzed easily,
with the help of our interpolation described in Theorems 1 and 2. Besides, we were
able to recover, on simulated data, the QTL linked to human height on chromosome 7,
highlighted by [Gudbjartsson 2008] in a Genome-Wide Association Study (GWAS).

2 Main results: two genetic markers

To begin, we suppose that there are only two markers (K = 2) located at 0 and T :
0 = t1 < t2 = T . For t ∈ [t1, t2] we define

p(t) = P
{

X(t) = 1
∣∣X(t1),X(t2)

}
and

x(t) = E
{

X(t)
∣∣X(t1),X(t2)

}
= 2p(t)−1.

It is clear that p(t?) is the probability appearing in (2). An application of the rule of
total probabilities leads to

p(t) = Q1,1
t 1X(t1)=11X(t2)=1 + Q1,−1

t 1X(t1)=11X(t2)=−1

+ Q−1,1
t 1X(t1)=−11X(t2)=1 + Q−1,−1

t 1X(t1)=−11X(t2)=−1 (3)

where

Q1,1
t =

r̄(t1, t) r̄(t, t2)
r̄(t1, t2)

, Q1,−1
t =

r̄(t1, t) r(t, t2)
r(t1, t2)

Q−1,1
t =

r(t1, t) r̄(t, t2)
r(t1, t2)

, Q−1,−1
t =

r(t1, t) r(t, t2)
r̄(t1, t2)

.

We can remark that we have

Q−1,−1
t = 1−Q1,1

t and Q−1,1
t = 1−Q1,−1

t .

Let θ = (q1, ..., qI , µ1, ..., µI , σ) be the parameter of the model at t fixed and θ0 =
(0, ..., 0, µ1, ..., µI , σ) the true value of the parameter under H0. The likelihood of
the triplet (Y, X(t1), X(t2), C) with respect to the measure λ ⊗N⊗N⊗N, λ being
the Lebesgue measure, N the county measure on N, is at a position t :

Lt(θ) =
I

∑
i=1

[
p(t) f(µi+qi,σ)(Y )+{1− p(t)} f(µi−qi,σ)(Y )

]
1C=i gi(t)
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where

gi(t) =
πi

2
{

r̄(t1, t2) 1X(t1)=11X(t2)=1 + r(t1, t2) 1X(t1)=11X(t2)=−1
}

+
πi

2
{

r(t1, t2) 1X(t1)=−11X(t2)=1 + r̄(t1, t2) 1X(t1)=−11X(t2)=−1
}

.

Note that the notation gi(t) will be useful in the generalization to several markers
(Section 3). In what follows, lt(θ) will be the loglikelihood. We first compute the
Fisher information at a point θ0 that belongs to H0 :

∂ lt
∂qi

∣∣∣∣
θ0

=
Y −µi

σ2 x(t) 1C=i , (4)

∂ lt
∂ µi

∣∣∣∣
θ0

=
Y −µi

σ2 1C=i ,
∂ lt
∂σ

∣∣∣∣
θ0

=− 1
σ

+
I

∑
i=1

(Y −µi)
2

σ3 .

After some calculations, we find

Iθ0 = Diag
[

π1

σ2 E
{

x2(t)
}
, ...,

πI

σ2 E
{

x2(t)
}
,

π1

σ2 , ... ,
πI

σ2 ,
2

σ2

]
. (5)

Before introducing our main theorem, let us define the LRT statistic and the al-
ternative hypothesis. The LRT at t, for n independent observations, will be defined
as

Λn(t) = 2
{

ln
t (θ̂)− ln

t (θ̂|H0)
}

,

where θ̂ is the maximum likelihood estimator (MLE), and θ̂|H0 the MLE under H0.
On the other hand, in order to define the alternative hypothesis (so-called Hλ t? ), the
location t? of the QTL has to be added in the definition. The alternative hypothesis
will be the following :

Hλ t? : “there is a QTL at the position t? in at least one family”.

Besides, in order to deal with Le Cam (1986)’s theory, we will consider local alter-
natives.

Theorem 1 Suppose that the parameters (q1, ..., qI , µ1, ..., µI , σ) vary in a com-
pact and that σ is bounded away from zero. Let H0 be the null hypothesis {qi = 0, i = 1, ..., I}
and define the following local alternative

Hλ t? : “there is at least one qi = λi/
√

n, with λi ∈ R?, at the position t?”.

With the previous defined notations,

Λn(.)
F.d.−→

I

∑
i=1

{
Zi(.)

}2
, supΛn(.)

L−→ sup
I

∑
i=1

{
Zi(.)

}2

as n tends to infinity, under H0 and Hλ t? where :
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• F.d.→ is the convergence of finite-dimensional distributions, L−→ is the convergence
in distribution

• the Zi(.) are independent Gaussian processes with unit variance
• Zi(.) is the the continuous and the non linear interpolated process such as :

Zi(t) =
α(t)Zi(t1)+β (t)Zi(t2)√
V{α(t)Zi(t1)+β (t)Zi(t2)}

(6)

where

Cov
{

Zi(t1),Zi(t2)
}
= ρ(t1, t2) , ρ(t1, t2) = exp(−2|t1− t2|) ,

α(t) = Q1,1
t −Q−1,1

t , β (t) = Q1,1
t −Q1,−1

t

and with expectation :

• under H0, m(t) = 0
• under Hλ t?

mi
t?(t) =

α(t) mi
t?(t1)+β (t) mi

t?(t2)√
V{α(t)Zi(t1)+β (t)Zi(t2)}

where

mi
t?(t1) =

λi
√

πi ρ(t1, t?)
σ

, mi
t?(t2) =

λi
√

πi ρ(t?, t2)
σ

.

The proof of Theorem 1 is given in Appendix 1. Let us recall the definition of a
Chi-square process from [Davies1987].

Definition 1 A Chi-square process W (.) with d degrees of freedom is a process such
as:

W (t) =V1(t)2 + · · ·+Vd(t)2 (7)

where the Vi(t) are independent for each t and distributed as a standardized Normal
under the null hypothesis.

As a consequence, the limiting process ∑
I
i=1
{

Zi(.)
}2 of Theorem 1 is a Chi-Square

process with I degrees of freedom where the Zi(.) are independent and identically
distributed (a particular case of formula 7).

Note that Theorem 1 could easily be generalized to selective genotyping experi-
ments, that allow to reduce genotyping costs, by genotyping only extreme individu-
als. In other words, under selective genotyping, the genome information at markers
X(t1), ...,X(tK) is available for one individual, if and only if Y > S+ or Y 6 S−, where
S+ and S− denote two real thresholds (constant). Typically, an additional factor would
appear in the mean function mi

t?(.) of the processes Zi(.) introduced in Theorem 1
(see [Rabier 2015] for more details).

On the other hand, Theorem 1 could also be adapted to the interference model,
where contrary to Haldane, crossovers do not occur independently from each others.
In that case, the functions α(.) and β (.) would be linear functions (see [Rabier 2014]).
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3 Several markers : the “Interval Mapping” of [Lander and Botstein 1989]

In that case suppose that there are K markers 0 = t1 < t2 < ... < tK = T . We consider
values t, t ′ or t? of the parameters that are distinct of the markers positions, and the
result will be prolonged by continuity at the markers positions. For t ∈ [t1, tK ]\TK
where TK = {t1, ..., tK}, we define t` and tr as :

t` = sup{tk ∈ TK : tk < t} , tr = inf{tk ∈ TK : t < tk} .

In other words, t belongs to the “Marker interval” (t`, tr).

Theorem 2 We have the same result as in Theorem 1, provided that we make some
adjustments and that we redefine each process Zi(.) in the following way :

• in the definition of α(t) and β (t), t1 becomes t` and t2 becomes tr

• under the null hypothesis, the process Zi(.) considered at marker positions is the
”squeleton” of an Ornstein-Uhlenbeck process: the stationary Gaussian process
with covariance ρ(tk, tk′) = exp(−2|tk− tk′ |)

• at the other positions, Zi(.) is obtained from Zi(t`) and Zi(tr) by interpolation
and normalization using the functions α(t) and β (t)

• at the marker positions, the expectation is such as mi
t?(tk) = λi

√
πi ρ(tk, t?)/σ

• at other positions, the expection is obtained from mi
t?(t

`) and mi
t?(t

r) by interpo-
lation and normalization using the functions α(t) and β (t).

A proof is given in Appendix 2. Note that when the number of genetic markers is in-
finite, each process Zi(.) is an Ornstein-Uhlenbeck process. As a consequence, when
the number of genetic markers is infinite, ∑

I
i=1
{

Zi(.)
}2 is an Ornstein-Uhlenbeck

Chi-Square process with I degrees of freedom (OUCS(I)) since the processes Zi(.)
are independent.

In Figure 1, we consider a chromosome of length T = 60cM and 3 families (i.e.
I = 3). We focus on two genetic maps :

• an infinite number of genetic markers
• only 4 markers located every 20cM.

One path of each asymptotic process is presented in this figure. We can notice that
the path of the OUCS(3) is very jerky whereas the path of the process corresponding
to the sparse map is smooth due to the interpolation between markers.

4 Different methods to obtain thresholds as a function of the map considered

4.1 Introducing the methods

We propose several new methods, as a function of the map considered, to compute
thresholds for the supremum of the LRT process under H0. In particular, two kinds of
maps are studied :
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• a sparse map : a few markers covering the chromosome
• a dense map : a high density of markers pretty close to each other.

We will assume that when the map is dense, tests are performed only on markers,
whereas when the map is sparse, tests are also performed between markers (cf. ex-
emple 11.3 p. 248 of [Wu et al. 2007]).
Under a sparse map, thresholds can be obtained according to the most appropriate
method which depends on the number of families I :

• for I = 1, the problem is the same as computing the distribution of the maximum,
i-absolute, value of a Gaussian vector. This can be done by a Discrete Monte-
Carlo Quasi Monte-Carlo method (DMCQMC). In particular, the method for nu-
merical computation of a multivariate normal probability ([Genz 1992]) can be
considered. It uses a transformation that simplifies the problem and places it into
a form that allows efficient calculation using MCQMC methods. A simple MC
method using N points has errors that are typically O(1/

√
N) whereas a MC-

QMC method has errors approximatively O(1/N), that’s why the focus here is on
MCQMC.

• for I > 1, a Discrete Monte-Carlo (DMC) method can be performed. According
to Theorem 2, when we test only on markers, the asymptotic process is a Discrete
Ornstein-Uhlenbeck Chi-Square process with I degrees of freedoms (DOUCS(I)).
In this case, the processes Zi(.) are simply AR(1) processes. Then, in order to
obtain values between markers, we can complete by interpolation using formula
(6). As a result, the threshold is easily obtained by a DMC method based on a
large number of sample paths (denoted nspaths) of the asymptotic process.

Under a dense map, we propose theoretical methods to obtain the thresholds. As
mentioned previously, when the number of genetic markers is infinite, the LRT pro-
cess is asymptotically an OUCS(I) process. In [Rabier and Genz 2014], we propose
an approximative formula (named DF here) for the threshold of the supremum of
the OUCS(I) process. It is based on [Delong 1981]’s work on Brownian motion. This
formula is suitable when I and the threshold are large. Besides, statistical tables given
by [Estrella 2003], for the threshold of the supremum of the OUCS(I), are also avail-
able. Note that, in order to obtain its exact tables, Estrella improved Delong’s work on
hypergeometrics functions. In the following, Estrella’s method will be denoted ET.

Table 1 is a summary of the different methods.

4.2 Applications under the null hypothesis

In this section, the focus is on thresholds corresponding to the 95% quantile of the
supremum of the LRT process under H0. In order to illustrate the different methods,
a sparse map and a dense map are considered. Since all the methods are based on
asymptotic results (cf. Theorem 1 and 2), populations of different sizes have been
simulated in order to check when the asymptotic regime is reached. In what follows,
npop will denote the number of populations whereas n is the size of a population.

Sparse map
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The sparse map consists of a chromosome of length T = 60cM with 4 genetic markers
equally spaced every 20cM. The presence of a QTL is tested every 5cM.

In Table 2, thresholds are presented as a function of I. In Table 3, the focus is on
the number of false positives (NFP) as a function of the number of individuals n
(thresholds given in Table 2). Using the Binomial distribution, a 95% confidence
interval is computed (in brackets in the tables) for the true percentage of the number
of false positives.

According to Table 3, when there are on average 200 individuals per family (i.e.
n = 200 I), NFP is not significantly different from 5%. When n = 50 I, we can con-
sider that NFP is still fair (even if it is significantly different from 5%) whereas when
n = 30 I, NFP is not so nominal.

Dense map
The dense map consists of a chromosome of length T = 50cM with 501 genetic mark-
ers equally spaced every 0.1cM.

The thresholds and the NFP are respectively compared in Tables 4 and 5. This aspect
suggests fast convergence to the asymptotic regime.

4.3 Remark

ET is not appropriate for the sparse map for two reasons :

• ET is based on Ornstein-Uhlenbeck (OU) process which is much more irregular
than the process Z1(.) (OU can be viewed as a stationary version of the Brown-
ian motion). When I = 1, this can be formalized by the use of Slepian type in-
equalities, specially lemma 2.1 in [Azaı̈s and Wschebor 2009] which comes from
[Plackett 1984]. It can be proved that the covariances are smaller in the case of
OU process than for the process Z1(.). It implies that the maximum of OU is
stochastically greater than the maximum of Z1(.). Since P

(
sup
∣∣Z1(.)

∣∣> u
)
≈

2P
(
supZ1(.)> u

)
, this argument can be approximatively extended to the abso-

lute value.
• for the sparse map, the focus is not on the continuous process but on the dicrete

process : the maximum of a continuous process is always greater than the discrete
one.

To sum up, ET will give too large thresholds.

5 Optimization of the QTL detecting process

5.1 Motivation

A few sires are heterozygous at the QTL and others are homozygous. As mentioned
previously, a QTL can only be detected in a family defined by an heterozygous sire.
Thus, two questions arise :

• is it always profitable to include all the families in the analysis ?
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• do we have to analyze families all together or separately ?

We consider here, the sparse map of Section 4.2. As previously, tests are performed
every 5 cM. We will consider tests at the 5% significance level.

5.2 About the QTL effects

When we deal with I families, since the total number of individuals is n, the expected
number of individuals in family i is only nπi. Hence, in order to study the evolution
of the power of the Interval Mapping with the number of families, we will consider
λi =

λ√
πi

(note that when I = 1, we have λ1 = λ since π1 = 1). As a consequence, the

mean function, mi
t?(t), of the asymptotic process Zi(.), is proportional to λ and does

not depend on i (cf. Theorem 1 and 2).

5.3 How to optimize the QTL detecting process

Only asymptotic results are studied here (cf. Theorem 1 and 2). Figures 2, 3, 4 are
related to question 1 whereas Figures 5, 6, 7 are related to question 2.
In Figures 2, 3, 4, the power is represented as a function of the QTL location, the
number of families and the QTL effects. In Figures 5, 6, 7, we compare the power
of the approach which consists in analyzing all families together (as previously), and
the power of the approach which consists in analyzing families separately. Note that
we used a discretization for the QTL location t? (every 5cM).

Figures 2, 3, 4
As expected, when all the sires are heterozygous, the power increases with the num-
ber of families (cf. Figure 2 for λ = 2). Besides, for a given number of families, the
power increases with the proportion of heterozygous sires (cf. Figure 3 for I = 5,
λ = 2 and various number number nz of non zeros λi’s).
According to Figure 4, it is almost as powerful to consider only one family whose sire
is heterozygous (cf. curve I = 1 with nz = 1), as to consider 5 families with only two
heterozygous sires (cf. curve I = 5 with nz = 2). As a result, it is much more powerful
to consider one family of an heterozygous sire (cf. curve I = 1 with nz = 1) as to con-
sider 5 families with only one heterozygous sire (cf. curve I = 5 with nz = 1). Hence,
if the families could be sorted in advance, it would be more powerful to concentrate
the analysis on the families with a segregating QTL (i.e. families of heterozygous
sires). Furthermore, once the families targeted, it would be more powerful to remove
the families with very small QTL effects (not illustrated here). Indeed, these families
are a source of noise to our model.

Figures 5, 6, 7
In practice, the segregating families are not known before the statistical analysis and
the true question is : do we have to analyze all the families together (so-called “global
approach”) or analyze families separately (so-called “Bonferroni approach”) ? In-
deed, since our results are asymptotic, the variance is not better estimated when the



Chi-square processes for gene mapping 11

global approach is considered.

Figures 5, 6, 7 are related to these two approaches. When the global approach is con-
sidered and when H0 is rejected, it only comes out that there is a QTL in at least one
family (i.e. at least one sire is heterozygous), but this family is not known. As a result,
in order to answer the same question, we define, for the Bonferroni approach, the test
statistic U and the critical region CR, which results from a Bonferroni correction :

U =
(

sup
{

Z1(.)
}2

, ..., sup
{

ZI(.)
}2
)

,

CR =
{

u = (u1, ...,uI) ∈ RI such as there is at least one ui verifying ui > c
}

,

where c is the threshold such as P
(

sup
{

Z1
0(.)
}2

> c
)
= 0.05

I .

Z1
0(.) is the analogue of the Gaussian process Z1(.) under the null hypothesis.

The Bonferroni correction allows to have PH0 (U ∈CR)6 0.05. Obviously, the power
of the Bonferroni approach is PHλ t? (U ∈CR). Note that we could have considered
other multiple testing procedures (e.g. [Benjamini and Hochberg 1995], [Didelez et al. 2006]).
In Figure 5, the focus is on the particular case for which there is only a QTL in family
1. The power of the two approaches is represented as a function of the QTL location
t? and the number of families. We can notice that the Bonferroni approach is more
powerful than the global approach. In Figure 6, the focus is on the particular case for
which there is a QTL in each family. In that case, the Bonferroni approach is outper-
formed by the global approach.
Figure 7 represents the mean power of the two approaches. Every alternative hy-
potheses have been considered (i.e. for a given I, we have considered nz = 1, ..., I).
Equiprobability concerning all these hypotheses has been supposed. According to the
figure, for a given number of families, there is a mean increase in terms of power of
at least 15% when the global approach is considered.

5.4 Conclusion

It comes out from this study that in order to optimize the QTL detecting process, it is
required: :

• to target, whenever possible, families with the largest QTL effects and then, to
analyze all these families together.

• when it is not possible to target families, to analyze all the families together.

6 Comparison between different global tests

6.1 Mixture model vs linearized likelihood

Tables 6 and 7 compare on the sparse map, two approaches regarding the data anal-
ysis. Note that different number of families have been considered assuming that all
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the sires were heterozygous (λ = 2, πi = 1/I). The first approach is the one theoret-
ically studied in this paper. It relies on the mixture model and MLE are computed
every 5cM, with the help of the EM algorithm. The thresholds used are the same as
in Table 2. The second approach is the linearized likelihood method [Haley 1992]. It
consists in approximating the mixture of formula (2) by only one distribution:

f(µi+{2p(t?)−1}qi,σ)(.) , if C = i .

As a consequence, when this approximation is used, analytical formulas (as in a lin-
ear model) are available regarding the different estimators. Besides, thresholds are
usually obtained from permutation tests, that enable to compute empirically the dis-
tribution of the maximum of the process [Churchill and Doerge 1994].

According to Tables 6 and 7, the method based on the mixture model is more
powerful in all cases. The largest difference of power is observed for n = 30I (ap-
proximately 6%). Note that for n = 200I, the approach relying on the mixture model
is still slightly more interesting. We will show in Section 8 that a major drawback of
the permutation method is that it requires a large amount of time to get computed,
which is not the case of our proposed methods.

Last, let us focus on the method based on mixture model: we can notice in Tables
6 and 7 that the Theoretical Power is always located, whatever the value of n, in the
95% confidence interval for the true value of the power. It validates our asymptotic
results.

6.2 Interpolated process vs discrete process

We propose to compare here the powers of two statistical tests. The first one is the
LRT studied in details in this paper. Recall that it is based on the test statistic:

sup
t∈[0,T ]

I

∑
i=1

{
Zi(t)

}2

where Zi(.) is the interpolated Gaussian process obtained in Theorems 1 and 2. The
second one relies on the test statistic:

max
k∈{1,··· ,K}

I

∑
i=1

{
Zi(tk)

}2

where t1, · · · , tK are the markers positions. The aim of this comparison is to quantify
the usefulness of the interpolated process in the QTL detection.

We consider a chromosome of size T = 1M and two different genetic maps:

• map 1 consists in 6 markers equally spaced every 20cM
• map 2 consists in 51 markers equally spaced every 2cM.

One QTL is present on the chromosome at t? = 0.4M (on a marker) or t? = 0.5M
(between two markers) for map 1 and at t? = 0.4M (on a marker) or t? = 0.51M
(between two markers) for map 2. For each test statistic, threshold and power are
based on 100,000 paths of the corresponding process under the null hypothesis and
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under the alternative of one QTL located at t? in all families (λ = 2, πi = 1/I). The
power gain is defined as the difference between the power of the LRT and the power
of the test relying only on marker locations. A confidence interval for the power gain
is given based on 30 simulations of 100,000 paths. According to Table 8, when the
QTL is located on a marker, there is no need to use the interpolation results to test
for a QTL: the power gain is too low or even slightly negative in some cases. When
the QTL is located between the markers, the power gain is all the more important as
the map is more sparse; furthermore, when we increase the intensity of the Poisson
process (modelling the number of recombinations), we decorrelate the markers and
the power gain is more important using the interpolation results.

7 Behavior of the LRT when the main assumptions are violated

The proposed LRT is based on two main assumptions. First, we consider that the QTL
location is the same for all the families. Secondly, we assume that there is only one
QTL located on [0,T ]. In this section, we investigate the behavior of the LRT when
these assumptions are violated.

7.1 QTL locations are different across families

Let us consider the case where the true QTL location is different across families. In
what follows, t?i will denote the QTL location for family i. In this context, the mean
function of the process Zi(.) is still an interpolated function relying on the functions
α(t) and β (t), except that the quantities mi

t?(t1) and mi
t?(t2), from Theorem 1, are

now replaced by the quantities mi
t?i
(t1) and mi

t?i
(t2) defined in the following way:

mi
t?i
(t1) =

λi
√

πi ρ(t1, t?i )
σ

, mi
t?i
(t2) =

λi
√

πi ρ(t?i , t2)
σ

.

The proof is the same as the proof of Theorem 1, provided that we replace X(t?) by
X(t?i ) in formula (14). In presence of several markers, it can be seen easily that the
formula becomes

mi
t?i
(t`) =

λi
√

πi ρ(t`, t?i )
σ

, mi
t?i
(tr) =

λi
√

πi ρ(t?i , t
r)

σ
.

Tables 9 and 10 focus on the cases I = 3 and I = 5 respectively. The genetic map
considered is the sparse map (introduced in Section 4.2). Table 9 investigates two
different scenarios:

1. the QTLs present in the first two families, are located on the same genetic marker
(t?1 = t?2 = 0.2)

2. the QTLs present in the first two families, are located at the middle of a marker
interval (t?1 = t?2 = 0.5)
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Note that for both scenarios, the location t?3 of the QTL in the third family is allowed
to vary along the genome. According to Table 9, for scenario 1, the Theoretical power
reaches its maximum when t?3 takes the same value as t?1 and t?2 . In other words, the
QTLs have to be located on the same genetic marker, for the three families. However,
under scenario 2, the maximum power is reached when t?3 is equal to 0.4, which is
a different location from the QTL locations in the first two families. This surprising
result is due to the fact that the signal is maximum when the QTL is located on a
genetic marker, whereas there is a loss of power when the QTL is not located on a
genetic marker. Figure 8 illustrates these two scenarios in a noiseless setting (i.e. ideal
situation). As expected, for scenario 1, the signal is maximum when t?1 = t?2 = t?3 =
0.2. Under scenario 2, we can observe that it is maximum for t?3 = 0.4 and t?3 = 0.6.
As a result, it is more rewarding to have a QTL located on one genetic marker in
one family, than all QTLs located at the middle of a marker interval. Recall that
the Theoretical power, computed in Table 9, was obtained by Monte Carlo and in
presence of noise in the model. It was maximum for t?3 = 0.4 under scenario 2.

Last, we obtain the same kind of conclusions when we deal with 5 families (cf.
Table 10).

7.2 Several QTLs are lying on the genome

Let us consider now that m QTLs lie on the genome, at locations t?(1) < t?(2) < .. . <
t?(m). In order to make the reading easier, we will assume that the QTLs are located at
the same location across families. Let qs,i denote the effect of the s-th QTL in family
i and let λs,i denote the constant such as qs,i = λs,i/

√
n.

In this context, the mean function of the process Zi(.) is still an interpolated func-
tion relying on the functions α(t) and β (t), except that mi

t?(t1) and mi
t?(t2) are now

replaced by the quantities mi
t̄?(t1) and mi

t̄?(t2) defined in the following way:

mi
t̄?(t1) =

∑
m
s=1 λs,i

√
πi ρ(t1, t?(s))
σ

, mi
t̄?(t2) =

∑
m
s=1 λs,i

√
πi ρ(t?(s), t2)
σ

(8)

The proof relies heavily on the proof of Theorem 1, provided that we replace
formula (13) by the following formula:

Sn(t, i) = S0
n(t, i) +

m

∑
s=1

n

∑
j=1

λs,i

n σ
√

πi
1C j=i X j(t?(s)) h j(t)

where S0
n(., i) is the process obtained under H0.

In presence of several markers, it can be seen easily that formula (8) becomes

mi
t̄?(t

`) =
∑

m
s=1 λs,i

√
πi ρ(t`, t?(s))
σ

, mi
t̄?i
(tr) =

∑
m
s=1 λs,i

√
πi ρ(t?(s), tr)

σ
.

Table 11 focuses on the sparse map and investigates the power of the LRT when
either 1, either 2 or 3 QTLs lie on the genome. We studied in particular the following
configurations:

• m = 1, t?(1) = 0.20
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• m = 2, t?(1) = 0.20, t?(2) = 0.40
• m = 2, t?(1) = 0.20, t?(2) = 0.60
• m = 3, t?(1) = 0.20, t?(2) = 0.40, t?(3) = 0.60.

Note also that the power is reported as a function of the QTL effect signs. For
all cases, the absolute value of the constant linked to the QTL effect was equal to 2
(i.e. ∀(s, i), |λs,i

√
πi| = 2), in order to deal with small QTL effects. The Theoretical

power was obtained by generating 100,000 paths of the asymptotic process, whereas
1,000 samples of size n were considered regarding the empirical power. We studied
the cases I = 1, I = 2, I = 3, and a sample of size n = 200I, n = 50I, or n = 30I.

According to Table 11, there is a good agreement between the Empirical power
and the Theoretical Power for n= 200I. Besides, the power increases with the number
of families whatever the scenario studied. As expected, the power associated to the
usual case m = 1 is fair in all cases, in particular for I = 3,5. However, when the
number of QTLs increases (m = 2 or m = 3), the power higly depends on the QTL
effect signs and the distance between QTLs. For instance, for m = 2, we observe
a large decrease when the 2 QTLs of opposite signs become closer from each other.
Last, we can notice that using the LRT under a 3 QTLs scenario can be more powerful
than when only 1 QTL lie on the genome. To conclude, the use of the test statistic
supΛn(.) is appropriate for testing and localizing one QTL on [0,T ], but it is not so
reliable when more than one QTL (i.e. m > 1) lie on [0,T ] : it highly depends on the
parameter values.

8 Illustration on human data

To conclude this study, we propose to give an illustration inspired from human real
data. Although the daughter design is not realistic in humans, it is always interesting
to use patterns from real data.

According to its dedicated website at http://hapmap.ncbi.nlm.nih.gov, “the In-
ternational HapMap Project is a multi-country effort to identify and catalog genetic
similarities and differences in human beings. The Project is a collaboration among
scientists and funding agencies from Japan, the United Kingdom, Canada, China,
Nigeria, and the United States. The goal of the International HapMap Project is to
compare the genetic sequences of different individuals to identify chromosomal re-
gions where genetic variants are shared.”

In this context, we downloaded data from Phase 3 release 2 of the HapMap
Project. We focused on phased haplotype data of the following populations :

• Utah residents with Northern and Western European ancestry from the CEPH
collection (CEU)

• Chinese in Metropolitan Denver, Colorado (CHD)
• Han Chinese in Beijing, China (CHB)
• Japanese in Tokyo, Japan (JPT)
• Mexican ancestry in Los Angeles, California (MEX)
• Toscans in Italy (TSI).
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We investigated the presence of a QTL linked to human height on chromosome 7
in humans. In a previous Genome-Wide Association Study (GWAS), [Gudbjartsson 2008]
highlighted the presence of a QTL located on a marker called “rs798544”. As a con-
sequence, our goal here is to check, with the help of simulated data, if we are able to
recover this QTL using our global test.

To begin with, let us introduce the notion of marker informativity. At a given
marker k, in order to know the genome information X(tk) of the offspring of one sire,
the sire has to be heterozygous at this genetic marker, otherwise the marker is consid-
ered as uninformative. As a consequence, the “genome information” is available only
at certain fixed locations called “informative markers”, instead of “markers”. These
“informative markers” depend obviously on the family (i.e. on the sire) : one given
marker can be informative in one given family, and uninformative in other families.
In what follows, 0 6 t i

1 < t i
2 < ... < t i

Ki 6 T will denote the locations of informative
markers in family i. Note that Ki refers to the number of informative markers in this
family. As a result, an observation is now(

Y, X(tC
1 ), ..., X(tC

KC), C
)
.

Let Ti
Ki be the quantity such as Ti

Ki =
{

t i
1, ..., t

i
Ki

}
. In this context, it is straightforward

to show that the asymptotic process Zi(.) verifies now ∀t ∈ [t i
1, t

i
Ki ]\Ti

Ki :

Zi(t) =
αi(t)Zi(t`,i)+βi(t)Zi(tr,i)√
V{αi(t)Zi(t`,i)+βi(t)Zi(tr,i)}

where

t`,i = sup
{

t i
k ∈ Ti

Ki : t i
k < t

}
, tr,i = inf

{
t i
k ∈ Ti

Ki : t < t i
k
}

and the αi(t) and βi(t) are the analogue of α(t) and β (t), relying now on the informa-
tive markers of family i. A proof is given in Section 8. The mean function of Zi(.) is
still an interpolated function, based now on αi(t) and βi(t). Last, the limiting process
∑

I
i=1
{

Zi(.)
}2 is a Chi-Square process with I degrees of freedom where the Zi(.) are

independent and not identically distributed. Note that the cases t i
1 6= 0 and t i

Ki 6= T are
discussed in the proof in Section 8 (see also below).

According to Hapmap data, chromosome 7 is of length T = 1.86M. A total of
75,245 markers are available and the locations of these markers are perfectly known.
We considered a maximum of 14 families, and only 63,112 markers were found to be
informative in at least one family. Table 12 gives the number of informative markers
in each family. We can notice that the number of informative markers varies from
19,016 to 22,137: a large decrease in terms of marker density is observed, after filter-
ing. In the same way as what has been done before, we focused on different number
of families: I = 6, 10, 14. The set of chosen families was {1,4,6,8,10,12} for I = 6,
and {1,2,4,6,8,9,10,11,12,13} for I = 10 (cf. Table 12), ensuring the presence of
all the different kinds of populations (CEU, CHB, ...). The number of informative
markers in at least one family was equal to 54,420 for I = 6, and equal to 60,819 for
I = 10. In what follows, we will describe our simulation framework only for the case
I = 14. Other cases can be deduced easily.
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The genome of each sire was created by considering two haplotypes from the
phased data of the chosen population. Note that once the sire’s genome is built, we
can extract easily the informative markers (i.e. the heterozygous markers). 50 off-
springs were generated by family, and the LRT was computed over the grid defined
by the 63,112 markers informative in at least one family. When the location did not
match an informative marker in a given family, the value of Zi() was obtained by
interpolation with the help of the functions αi(.) and βi(.). Besides, when the first
informative marker did not match the first extremity of the chromosome (i.e. t i

1 6= 0),
we considered (cf. proof in Section 8),

Zi(t) = Zi(t i
1) ∀t ∈ [0, t i

1].

In the same way, when the last informative marker did not match the end of the
chromosome (i.e. t i

Ki 6= 1.86), we considered

Zi(t) = Zi(t i
K) ∀t ∈ [t i

K ,1.86].

Table 13 compares thresholds obtained according to three methods available un-
der a dense map: DF, DMC, and the permutation method. Note that ET is not reported
since statistical tables given by [Estrella 2003] do not cover the case T = 1.86. The
DMC method was computed with the help of I independent AR(1) processes: we gen-
erated paths of a DOUCS(I) with a constant discretization step equal to 1.86/63,111.
In other words, it assumes that the informative markers are the same across families,
and equally spaced. Last, the permutation threshold was obtained by generating one
population: it handles the fact that informative markers change across families. Ac-
cording to Table 13, as expected, DF gives the largest threshold. Recall that it relies
on the continuous OUCS(I). We can also notice that, for I = 10 and I = 6 the DMC
threshold is greater than the one obtained by permutation. It is not the case for I = 14.

Then, the true level associated to each method was computed by generating 1,000
populations. For instance, for I = 10, it was found respectively equal to 3.3%, 3.6%,
and 4.1% for DF, DMC and the permutation method. In all cases, DF was the most
conservative method, and the shuffling method, which handles the informativity cor-
rectly, seemed less conservative than DMC. However, the permutation method has a
major drawback. It requires a large amount of time in order to compute the thresh-
old (112h24 for I = 14, 78h10 for I = 10, 42h30 for I = 6). In opposite, DF can be
obtained instantaneously, and DMC computation time remains reasonable (4h06 for
I = 14, 2h40 for I = 10, 1h29 for I = 6).

Recall that our analysis relies only on one chromosome (number 7) in humans.
In this context, our proposed methods seem to be the most appropriate for a whole
genome study (23 chromosomes). Another advantage of our theoretical study is the
following. In order to obtain the values of the process Zi(.) at each uninformative
marker of family i, it is now possible to complete by interpolations with the func-
tions αi(.) and βi(.). Usually, geneticists perform either an EM algorithm to compute
the MLE, or they choose a linearized likelihood method (cf. Section 6). The EM al-
gorithm is time consuming, and performing a linearized likelihood method at each
uninformative marker can also be challenging, specially when the number of such
markers is large. In contrast, completing by interpolation is very fast.
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To conclude, Table 14 investigates the power. In most cases, the permutation
method is slightly more powerful than DF and DMC. Besides, as expected, consider-
ing families without QTL, decreases the power of the global test.

To conclude, in most cases, we were able, with our simulated data, to detect the
QTL linked to human height on chromosome 7, highlighted by [Gudbjartsson 2008].
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Appendix 1. Proof of Theorem 1

Preliminaries

Let t belong to the interval [t1, t2] and let recall Lemma 3.1 of Azais, Delmas & Rabier
(2012).

Lemma 1 The conditional expectation x(t) of X(t) is linear in X(t1),X(t2) :

x(t) = α(t)X(t1)+β (t)X(t2)

with α(t) = Q1,1
t −Q−1,1

t and β (t) = Q1,1
t −Q1,−1

t .

Then, we have the following relationship

V
{

x2(t)
}
= E

{
x2(t)

}
= α

2(t) + β
2(t) + 2 α(t) β (t)ρ(t1, t2) .
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Since the model is regular, we can apply Theorem 5.39 of Van der Vaart (98). As a
result, according to formulae (4) and (5), we have

Λn(t) =
I

∑
i=1

[
n

∑
j=1

(Yj−µi) x j(t)

σ
√

n πi E{x2(t)}
1C j=i

]2

+ oPθ0
(1) (9)

where oPθ0
(1) denotes a sequence of random vectors that converges to zero in proba-

bility under H0.
Let Sn(., i) be the following process, for n observations:

Sn(t, i) =
n

∑
j=1

(Yj−µi) x j(t)

σ
√

n πi E{x2(t)}
1C j=i . (10)

According to Lemma 1,

Sn(t, i) = { α(t) Sn(t1, i) + β (t) Sn(t2, i) } /
√
E{x2(t)} .

We will call Zi(.) the limiting process of Sn(., i).

Study under H0

Without loss of generality, let us assume n = 1 and let us consider the process S(., i)
defined in the following way:

S(t, i) =
(Y −µi) x(t)

σ
√

πi E{x2(t)}
1C=i =

Y −µi

σ
√

πi
1C=i h(t) .

where h(t) = x(t)/
√
E{x2(t)}.

h(.) is a random process, independent of Y and C. It is easy to see that

E{S(t, i)}= 0 , V{S(t, i)}= E{h(t)}2 = 1 .

Besides,

Cov{S(t1, i), S(t2, i)}= E{h(t1)h(t2)}= ρ(t1, t2) .

So, we have

Zi(t) =
{

α(t) Zi(t1) + β (t) Zi(t2)
}
/
√
E{x2(t)} ,

E
{

Zi(t)
}
= 0, V

{
Zi(t)

}
= 1 and Cov

{
Zi(t1), Zi(t2)

}
= ρ(t1, t2) .

A direct application of central limit theorem implies that Z(t1) and Z(t2) have a
limit distribution which is a Gaussian distribution. According to formula (9), we have
Λn(t) = ∑

I
i=1 S2

n(t, i)+oPθ0
(1). As a result, Λn(.)

F.d.→ ∑
I
i=1
{

Zi(.)
}2.
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Study under Hλ t?

In this part, we set

Y = µi +
λi√

n
X(t?)+ σε , if C = i , (11)

where ε is a standard normal random variable. Recall that t? denotes the QTL loca-
tion.

According to formula (9), we have

Λn(t) =
I

∑
i=1

S2
n(t, i) + oPθ0

(1) . (12)

Recall that under Hλ t? , if there is a QTL within family i (i.e. λi 6= 0), the density
of Y

∣∣X(t1),X(t2),C verifies

p(t?) f(µi+qi,σ)(Y )+{1− p(t?)} f(µi−qi,σ)(Y ) , if C = i .

The model with t∗ fixed is differentiable in quadratic mean, this implies that the
alternative defines a contiguous sequence of alternatives. By Le Cam’s first lemma,
relation (12) remains true under the alternative. As a result, Λn(.)

F.d.→ ∑
I
i=1
{

Zi(.)
}2.

Calculations of the mean function of Zi(.), so-called mi
t?(t), can be done using

the process Sn(., i). According to formula (16) and (11), we have

Sn(t, i) =
1
√

n πi

n

∑
j=1

ε j 1C j=i h j(t) +
n

∑
j=1

λi

n σ
√

πi
1C j=i X j(t?) h j(t)

= S0
n(t, i) +

n

∑
j=1

λi

n σ
√

πi
1C j=i X j(t?) h j(t) (13)

where S0
n(., i) is the process obtained under H0.

Recall that h j(.) is the equivalent of the process h(.) for the individual j. Accord-
ing to the law of large number :

1
n

n

∑
j=1

X j(t?) h j(t) 1C j=i→ πi E{X(t?)h(t)} . (14)

Besides, we have E{X(t?)h(t1)}= ρ(t1, t?) and E{X(t?)h(t2)}= ρ(t?, t2).
As a result,

mi
t?(t1) = λi

√
πi ρ(t1, t?) / σ and mi

t?(t2) = λi
√

πi ρ(t?, t2) / σ .

Due to the interpolation, we have

mi
t?(t) =

{
α(t) mi

t?(t1) + β (t) mi
t?(t2)

}
/
√

E{x2(t)} .
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Study of the supremum of the LRT process

Since the model with t fixed is regular, we have the relationship (cf. section “Study
under H0”)

Λn(t) =
I

∑
i=1

S2
n(t, i)+oPθ0

(1)

under the null hypothesis. Our goal is now to prove that the rest above is uniform in
t.

Let us consider now t as an extra parameter. Let t∗,θ ∗ be the true parameter that
will be assumed to belong to H0. Note that t∗ makes no sense for θ belonging to H0.
It is easy to check that at H0 the Fisher information relative to t is zero so that the
model is not regular.

It can be proved that assumptions 1, 2 and 3 of [Azaı̈s et al. 2009] holds. So, we
can apply Theorem 1 of [Azaı̈s et al. 2009] and we have

sup
(t,θ)

ln
t (θ)− ln

t∗(θ
∗) = sup

d∈D

{ 1√
n

n

∑
j=1

d(X j)

}2

1d(X j)>0

+oP(1) (15)

where the observation X j stands for Yj,X j(t1),X j(t2),C j and where D is the set of
scores defined in [Azaı̈s et al. 2009], see also [Gassiat 2002]. A similar result is true
under H0 with a set D0. Let us precise the sets of scores D and D0. This sets are
defined at the sets of scores of one parameter families that converge to the true model
pt∗,θ∗ and that are differentiable in quadratic mean.

It is easy to see that

D =
{ 〈U, l′t (θ

∗)〉√
V(〈U, l′t (θ ∗)〉)

,U ∈ R2I+1, t ∈ [t1, t2]
}

where l′ is the gradient with respect to θ . In the same manner

D0 =
{ 〈U, l′t (θ

∗)〉√
V(〈U, l′t (θ ∗)〉)

,U ∈ RI+1
}
,

where now the gradient is taken with respect to µ1, ..., µI and σ only. Obviously, this
gradient does not depend on t.

Using the transform U → −U in the expressions of the sets of score, we see
that the indicator function can be removed in formula (15). Then, since the Fisher
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information matrix is diagonal (see formula (5)) , it is easy to see that

sup
d∈D

{ 1√
n

n

∑
j=1

d(X j)

}2
− sup

d∈D0

{ 1√
n

n

∑
j=1

d(X j)

}2


= sup
t∈[t1,t2]


 1√

n

n

∑
j=1

∂ lt
∂q1

(X j) |θ0√
V
{

∂ lt
∂q1

(X j) |θ0

}


2

+ ...+

 1√
n

n

∑
j=1

∂ lt
∂qI

(X j) |θ0√
V
{

∂ lt
∂qI

(X j) |θ0

}


2

= sup
t∈[t1,t2]

 I

∑
i=1

 1√
n

n

∑
j=1

∂ lt
∂qi

(X j) |θ0√
V
{

∂ lt
∂qi

(X j) |θ0

}


2 .

This is exactly the desired result. Since the model with t∗ fixed is differentiable in
quadratic mean, the alternative defines a contiguous sequence of alternatives. By Le
Cam’s first lemma, relation (15) remains true under the alternative.

Appendix 2. Proof of Theorem 2

The proof of the theorem is the same as the proof of Theorem 1 as soon as we can
confine our attention to the interval (t`, tr) when considering a unique instant t and to
the intervals (t`, tr)(t ′`, t ′r) when considering two instants t and t ′. For that we need
to prove that

x(t) = E{X(t)|X(t1), . . . ,X(tK)}= E
{

X(t)|X(t`),X(tr)
}

which is a direct consequence of the independance of the increments of Poisson pro-
cess.

Proof of results introduced in Section 8

Recall that Ti
Ki =

{
t i
1, ..., t

i
Ki

}
. Let t ∈ [t i

1, t
i
Ki ]\Ti

Ki . Let define xi(t) the quantity such
as xi(t) =E

{
X(t) | X(t`,i),X(tr,i),C = i

}
. Besides, Q1,1

t,i , Q1,−1
t,i , Q−1,1

t,i and Q−1,−1
t,i are

the following quantities:

Q1,1
t,i =

r̄(t`,i, t) r̄(t, tr,i)

r̄(t`,i, tr,i)
, Q1,−1

t,i =
r̄(t`,i, t) r(t, tr,i)

r(t`,i, tr,i)

Q−1,1
t,i =

r(t`,i, t) r̄(t, tr,i)

r(t`,i, tr,i)
, Q−1,−1

t,i =
r(t`,i, t) r(t, tr,i)

r̄(t`,i, tr,i)
.

Lemma 2 We have the following relationship:

xi(t) = αi(t)X(t`,i)+βi(t)X(tr,i)
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with αi(t) = Q1,1
t,i −Q−1,1

t,i , βi(t) = Q1,1
t,i −Q1,−1

t,i .

Let Sn(., i) be the following process, for n observations:

Sn(t, i) =
n

∑
j=1

(Yj−µi) xi
j(t)

σ

√
n πi E

{
(xi(t))2

} 1C j=i . (16)

According to Lemma 2

Sn(t, i) =
{

αi(t) Sn(t`,i, i) + βi(t) Sn(tr,i, i)
}

/

√
E
{
(xi(t))2

}
.

We will call Zi(.) the limiting process of Sn(., i).
Let us consider now the case where the first informative marker does not lie at the

beginning of the chromosome (0 < t i
1). Let t ∈ [0, t i

1[, we have

Sn(t, i) =
n

∑
j=1

(Yj−µi) x̃i
j(t)

σ

√
n πi E

{
(x̃i(t))2

} 1C j=i

where x̃i(t) = 2 P
{

X(t) = 1 | X(t i
1),C = i

}
−1. Recall that in the classical situation,

when t have two flanking markers : xi(t) = 2 P
{

X(t) = 1 | X(t`,i),X(tr,i),C = i
}
−1.

In our case,

x̃i(t) = 2
{

r̄(t, t i
1)1X(t i

1)=1 + r(t, t i
1)1X(t i

1)=−1

}
−1

= 2
{

ρ(t, t i
1)+ r(t, t i

1)
}
−1 = ρ(t, t i

1)

Besides, we have √
E
{
(x̃i(t))2

}
= ρ(t, t i

1) .

As a result,
∀t ∈ [0, t i

1[ Sn(t, i) = Sn(t i
1, i) .

By symmetry, when t i
Ki < T , we have

∀t ∈]t i
Ki ,T ] Sn(t i

Ki , i) = Sn(t, i).

To conclude, we just have to use same kind of arguments as in formula (9) in order
to prove that the LRT process converges asymptotically to the process ∑

I
i=1
{

Zi(.)
}2.
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Table 1 Summary of all the methods studied as a function of the genetic map (DMC for Discrete Monte-
Carlo, DMCQMC for Discrete Monte-Carlo Quasi Monte-Carlo, ET for Estrella Exact Table, DF for
Delong Approximative Formula)

Map Method

Dense (testing on markers)

ET (table available
for I 6 20)

DF (formula available
for I and

threshold large)

Sparse (testing between markers)
DMCQMC

(available only for I = 1)

DMC for I > 1

Table 2 Thresholds obtained using the appropriate method as a function of the value of I considered
(nspaths=1,000,000). The map consists of 4 genetic markers equally spaced every 20cM (T=60cM). A test
is performed every 5cM.

Method DMCQMC (I = 1) DMC (I = 3) DMC (I = 5)

Threshold 6.06 10.76 14.47

Table 3 Number of False Positives (NFP) as a function of the number of individuals n and the method con-
sidered. The map consists of 4 genetic markers equally spaced every 20cM (T=60cM). A test is performed
every 5cM (σ = 1, µ1 =−0.37, µ2 = 0.03, µ3 = 0.06, µ4 =−0.26, µ5 = 0.27, npop=40,000).

PPPPPPn
Method

DMCQMC (I = 1) DMC (I = 3) DMC (I = 5)

200 I 5.20% [4.98%;5.42%] 5.03% [4.82%;5.24%] 5.22% [5.00%;5.44%]
50 I 5.78% [5.55%;6.01%] 5.97% [5.74%;6.20%] 6.11% [5.88%;6.34%]
30 I 6.60% [6.36%;6.84%] 6.77% [6.52%;7.02%] 7.08% [6.83%;7.33%]

Table 4 Thresholds obtained using theoretical methods ET, DF as a function of the value of I considered.
DMC for checking (nspaths=1,000,000). The map consists of 501 genetic markers equally spaced every
0.1cM (T=50cM). A test is performed on each marker.

I = 1 I = 3 I = 5

Method ET DF DMC ET DF DMC ET DF DMC

Threshold 7.84 7.61 7.68 13.09 12.91 12.86 17.15 17.02 16.94
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Table 5 Number of False Positives (NFP) as a function of the number of individuals n and the method used
(I = 5). The map consists of 501 genetic markers equally spaced every 0.1cM (T=50cM). A test is per-
formed on each marker (σ = 1, µ1 =−0.37, µ2 = 0.03, µ3 = 0.06, µ4 =−0.26, µ5 = 0.27, npop=40,000).

PPPPPPn
Method

DF DMC ET

1000 4.78% [4.57%;4.99%] 5.13% [4.91%;5.35%] 4.41% [4.21%;4.61%]
500 4.96% [4.75%;5.17%] 5.15% [4.93%;5.37%] 4.64% [4.43%;4.85%]
150 5.67% [5.44%;5.90%] 5.91% [5.68%;6.14%] 5.34% [5.12%;5.56%]

Table 6 Theoretical Power and Empirical Power (EP) as a function of the method used, and the number of
families. The map consists of 4 genetic markers equally spaced every 20cM (T=60cM). A test is performed
every 5cM (λ = 2, t? = 25cM, nspaths=100,000 for the Theoretical Power and npop=10,000 for the Em-
pirical Power, µ1 = −0.37, µ2 = 0.03, µ3 = 0.06, µ4 = −0.26, µ5 = 0.27, σ = 1, nz = I). Thresholds
are given between parentheses, and confidence intervals for the true value of the power are given between
brackets.

Method Power I = 1 I = 3 I = 5

Mixture model (this paper)

Theoretical 37.59% (6.06) 68.57% (10.76) 85.58% (14.47)

EP for n = 200 I 38.08% 68.80% 85.00%
[37.13%;39.03%] [67.89%;69.71%] [84.30%;85.70%]

EP for n = 50 I 37.54% 68.37% 84.74%
[36.59%;38.49%] [67.46%;69.28%] [84.04%;85.44%]

EP for n = 30 I 37.83% 68.57% 85.15%
[36.88%;38.78%] [67.66%;69.48%] [84.45%;85.85%]

Permutation + Linearized likelihood

EP for n = 200 I 36.91% (6.11) 67.15% (10.83) 84.37% (14.60)
[35.96%;37.86%] [66.23%;68.07%] [83.66%;85.08%]

EP for n = 50 I 35.43% (6.32) 65.37% (11.09) 82.96% (14.78)
[34.49%;36.37%] [64.44%;66.30%] [82.22%;83.69%]

EP for n = 30 I 31.37% (6.79) 62.72% (11.53) 79.84% (15.23)
[30.46%;32.27%] [61.77%;63.67%] [79.05%;80.62%]

Table 7 Same legend as Table 6 except that t? = 50cM.

Method Power I = 1 I = 3 I = 5

Mixture model (this paper)

Theoretical 34.99% (6.06) 65.10% (10.76) 82.64% (14.47)

EP for n = 200 I 34.89% 64.26% 81.60%
[33.95%;35.82%] [63.32%;65.20%] [80.84%;82.35%]

EP for n = 50 I 35.07% 64.91% 81.31%
[34.13%;36.01%] [63.97%;65.85%] [80.55%;82.07%]

EP for n = 30 I 35.71% 64.18% 80.63%
[34.77%;36.64%] [63.24%;65.11%] [79.85%;81.40%]

Permutation + Linearized likelihood

EP for n = 200 I 34.05% (6.09) 63.21% (10.83) 81.53% (14.50)
[33.12%;32.13%] [62.26%;64.15%] [80.77%;82.29%]

EP for n = 50 I 31.22% (6.51) 61.12% (11.24) 78.56% (15.01)
[30.31%;36.37%] [60.16%;62.07%] [77.75%;79.36%]

EP for n = 30 I 28.80% (6.90) 61.01% (11.50) 75.80% (15.67)
[27.81%;29.69%] [60.05%;61.97%] [74.96%;76.64%]
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Table 8 Difference in terms of power between the LRT and the test relying only on marker locations
(T = 1, ∀i λ = λi

√
πi = 2, σ = 1, ζ refers to the intensity of the Poisson process)

Map t? ζ I = 1 I = 3 I = 5

map 1
0.5 1 [0.86%,0.93%] [1.69%,1.77%] [1.67%,1.73%]

5 [1.07%,1.13%] [2.52%,2.62%] [4.09%,4.19%]

0.4 1 [0.60%,0.69%] [0.53%,0.59%] [0.24%,0.29%]
5 [0.20%,0.31%] [−1.21%,−1.12%] [−1.24%,−1.18%]

map 2
0.51 1 [0.011%,0.034%] [0.0030%,0.0079%] [−0.00027%,0.0010%]

5 [0.505%,0.577%] [0.365%,0.397%] [0.063%,0.072%]

0.4 1 [0.0032%,0.019%] [0.020%,0.042%] [0.011%,0.026%]
5 [0.144%,0.196%] [0.297%,0.355%] [0.205%,0.259%]

0  10 20 30 40 50 60

2
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6

7

8

9

t(cM)

infinite number of markers
4 markers every 20cM

Fig. 1 Paths of the process ∑
3
i=1
{

Zi(.)
}2 as a function of the genetic map (T=60cM).
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Fig. 2 Power as a function of t? and I. From top to bottom, I = 5, I = 3, I = 1 (∀i λ = λi
√

πi = 2, σ = 1,
nspaths=100,000). The map consists of 4 genetic markers equally spaced every 20cM (T=60cM). A test is
performed every 5cM.
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Fig. 3 Power as a function of t? and the number nz of non zero. From top to bottom, nz = 5, 4, 3, 2, 1, 0
(I = 5, λ = 2, σ = 1, nspaths=100,000). The map consists of 4 genetic markers equally spaced every 20cM
(T=60cM). A test is performed every 5cM.
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Fig. 4 Power as a function of t?, I and the number nz of non zero. From top to bottom : I = 5 with nz = 2,
I = 1 with nz = 1, I = 5 with nz = 1 (λ = 2, σ = 1, nspaths=100,000). The map consists of 4 genetic
markers equally spaced every 20cM (T=60cM). A test is performed every 5cM.
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Fig. 5 Power of the global approach (in solid line) and power of the Bonferroni approach (in dashed line),
as a function of t? and in the particular case of nz = 1. Crosses refer to I = 12, rectangles to I = 7 and stars
to I = 5 (λ = 2, σ = 1, nspaths=100,000). The map consists of 4 genetic markers equally spaced every
20cM (T=60cM). A test is performed every 5cM.
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Fig. 6 Power of the global approach (in solid line) and power of the Bonferroni approach (in dashed line),
as a function of t? and in the particular case of nz = I. Crosses refer to I = 12, rectangles to I = 7 and stars
to I = 5 (λ = 2, σ = 1, nspaths=100,000). The map consists of 4 genetic markers equally spaced every
20cM (T=60cM). A test is performed every 5cM.
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Fig. 7 Mean power of the global approach (in solid line) and mean power of the Bonferroni approach (in
dashed line), as a function of t?. Crosses refer to I = 12, rectangles to I = 7 and stars to I = 5 (λ = 2,
σ = 1, nspaths=100,000). The map consists of 4 genetic markers equally spaced every 20cM (T=60cM).
A test is performed every 5cM.
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I
HHH

HHn
m 1 (+) 2a (+ -) 2b (+ -) 3 (+ - +) 3 (+ - -)

1

+∞ 41.28% 10.62% 20.60% 32.97% 57.71%
200 I 40.60% 10.20% 21.20% 34.70% 58.20%
50 I 41.50% 11.10% 19.00% 31.60% 56.30%
30 I 39.90% 12.50% 21.50% 29.50% 54.20%

3

+∞ 74.77% 14.16% 35.67% 60.82% 92.26%
200 I 74.90% 15.20% 34.20% 60.00% 90.30%
50 I 73.70% 15.40% 34.30% 59.00% 91.10%
30 I 72.80% 14.90% 34.10% 57.90% 88.80%

5

+∞ 90.58% 17.67% 49.56% 79.24% 99.00%
200 I 91.20% 18.90% 48.50% 78.40% 98.90%
50 I 88.60% 16.90% 46.90% 78.10% 98.10%
30 I 91.30% 21.90% 44.90% 78.50% 97.00%

Table 11 Theoretical Power and Empirical Power as a function of the number m of QTLs, their effects, and
the number I of families ( T = 0.60, K = 4, ∀k = 1, ..,4 tk = 0.20(k−1)). A test is performed every 5cM.
(+) denotes a positive effect whereas (−) is a negative effect. 1 refers to the situation (m = 1, t?(1) = 0.20),
2a refers to (m = 2, t?(1) = 0.20, t?(2) = 0.40) , 2b refers to (m = 2, t?(1) = 0.20, t?(2) = 0.60), 3 refers
to (m = 3, t?(1) = 0.20, t?(2) = 0.40, t?(3) = 0.60). ∀(s, i) |λs,i

√
πi| = 2, σ = 1, 100,000 paths for the

Theoretical Power, 1,000 samples of size n for the Empirical Power.

Family ID Population Nb Informative Markers
1 CEU 20,925
2 CEU 21,939
3 CEU 21,572
4 CHD 20,053
5 CHD 19,753
6 CHB 20,340
7 CHB 19,280
8 JPT 19,016
9 JPT 19,326
10 MEX 19,556
11 MEX 21,803
12 TSI 21,409
13 TSI 20,867
14 TSI 22,137

Table 12 Number of informative markers in each family (CEU=Utah residents with Northern and West-
ern European ancestry from the CEPH collection, CHD=Chinese in Metropolitan Denver (Colorado),
CHB=Han Chinese in Beijing (China), JPT=Japanese in Tokyo (Japan), MEX=Mexican ancestry in Los
Angeles (California), TSI=Toscans in Italy).

Table 13 Thresholds, CPU time and Number of False Positives (NFP) according to DF, DMC, and Per-
mutation methods (nspaths=100,000 for DMC, Permutation threshold based on 1,000 shufflings npop=1
and n = 50I, NFP based on npop=1,000).

I = 14 I = 10 I = 6

Method DF DMC Permutation DF DMC Permutation DF DMC Permutation

Threshold 36.67 36.46 36.52 29.98 29.71 29.42 22.64 22.37 21.55
CPU time - 4h06 112h24 - 2h40 78h10 - 1h29 42h30

NFP 3.3% 3.5% 3.5% 3.3% 3.6% 4.1% 3.2% 3.2% 4.1%
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(
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as a function the QTL location in each family (I = 3, T = 0.60, K = 4,

∀k = 1, ..,4 tk = 0.20(k−1), ∀i λ = λi
√

πi = 2, σ = 1).

Table 14 Empirical Power as a function of the method used, the number I of families and the number nz
of non zero λi’s (npop=1,000, n = 50I, λ = 2, when λi 6= 0 λi = λ

√
I, σ = 1).

I nz DF DMC Permutation

14
14 99.7% 99.7% 99.7%
10 92.8% 93.1% 93.1%
6 60.6% 61.7% 61.5%

10
10 96.7% 96.8% 97.3%
6 70.7% 71.8% 72.8%
3 24.72% 25.62% 26.72%

6
6 82% 83% 84.9%
3 34.9% 37% 40.2%
2 17.1% 18% 21.2%


