B. R. Zirkin and V. Papadopoulos, Leydig cells: Formation, function, and regulation, Biol. Reprod, vol.99, pp.101-111, 2018.

F. Dimitriadis, C. Tsiampali, N. Chaliasos, P. Tsounapi, A. Takenaka et al., The Sertoli cell as the orchestra conductor of spermatogenesis: Spermatogenic cells dance to the tune of testosterone, Hormones, vol.14, pp.479-503, 2015.

R. V. Rebois, Establishment of gonadotropin-responsive murine leydig tumor cell line, J. Cell Biol, vol.94, pp.70-76, 1982.

L. O'hara, K. Mcinnes, I. Simitsidellis, S. Morgan, N. Atanassova et al., Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men, FASEB J, vol.29, pp.894-910, 2015.

B. T. Akingbemi, R. Ge, C. S. Rosenfeld, L. G. Newton, D. O. Hardy et al., Estrogen receptor-alpha gene deficiency enhances androgen biosynthesis in the mouse Leydig cell, Endocrinology, vol.144, pp.84-93, 2003.

R. S. Ahima, Metabolic actions of adipocyte hormones: Focus on adiponectin, Obesity, vol.14, pp.9-15, 2006.

T. Yamauchi, M. Iwabu, M. Okada-iwabu, and T. Kadowaki, Adiponectin receptors: A review of their structure, function and how they work, Best Pract. Res. Clin. Endocrinol. Metab, vol.28, pp.15-23, 2014.

K. Kos, A. L. Harte, N. F. Da-silva, A. Tonchev, G. Chaldakov et al., Adiponectin and resistin in human cerebrospinal fluid and expression of adiponectin receptors in the human hypothalamus, J. Clin. Endocrinol. Metab, vol.92, pp.1129-1136, 2007.

Y. Takemura, Y. Osuga, T. Yamauchi, M. Kobayashi, M. Harada et al., Expression of adiponectin receptors and its possible implication in the human endometrium, Endocrinology, vol.147, pp.3203-3210, 2006.

S. T. Kim, K. Marquard, S. Stephens, E. Louden, J. Allsworth et al., Adiponectin and adiponectin receptors in the mouse preimplantation embryo and uterus, Hum. Reprod, vol.26, pp.82-95, 2011.

N. Smolinska, A. Maleszka, K. Dobrzyn, M. Kiezun, K. Szeszko et al., Expression of adiponectin and adiponectin receptors 1 and 2 in the porcine uterus, conceptus, and trophoblast during early pregnancy, Theriogenology, vol.82, pp.951-965, 2014.

T. Yamauchi, J. Kamon, H. Waki, Y. Terauchi, N. Kubota et al., The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity, Nat. Med, vol.7, pp.941-946, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00174777

E. Nigro, O. Scudiero, D. Sarnataro, G. Mazzarella, M. Sofia et al., Adiponectin affects lung epithelial A549 cell viability counteracting TNFalpha and IL-1ss toxicity through AdipoR1, Int. J. Biochem. Cell Biol, vol.45, pp.1145-1153, 2013.

I. Kelesidis, T. Kelesidis, and C. S. Mantzoros, Adiponectin and cancer: A systematic review, Br. J. Cancer, vol.94, pp.1221-1225, 2006.

B. J. Goldstein and R. Scalia, Adiponectin: A novel adipokine linking adipocytes and vascular function, J. Clin. Endocrinol. Metab, vol.89, pp.2563-2568, 2004.

T. Yamauchi, J. Kamon, Y. Minokoshi, Y. Ito, H. Waki et al., Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase, Nat. Med, vol.8, pp.1288-1295, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00174612

X. Wu, H. Motoshima, K. Mahadev, T. J. Stalker, R. Scalia et al., Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes, Diabetes, vol.52, pp.1355-1363, 2003.

R. Ye and P. E. Scherer, Adiponectin, driver or passenger on the road to insulin sensitivity?, Mol. Metab, vol.2, pp.133-141, 2013.

Y. Combarnous, F. Guillou, and N. Martinat, Functional states of the luteinizing hormone/choriogonadotropin -receptor complex in rat Leydig cells, J. Biol. Chem, vol.261, pp.6868-6871, 1986.

H. Gronemeyer, Transcription activation by estrogen and progesterone receptors, Annu. Rev. Genet, vol.25, pp.89-123, 1991.

N. Fujimoto and B. S. Katzenellenbogen, Alteration in the agonist/antagonist balance of antiestrogens by activation of protein kinase A signaling pathways in breast cancer cells: Antiestrogen selectivity and promoter dependence, Mol. Endocrinol, vol.8, pp.296-304, 1994.

D. J. Gruol and J. Altschmied, Synergistic induction of apoptosis with glucocorticoids and 3',5'-cyclic adenosine monophosphate reveals agonist activity by RU 486, Mol. Endocrinol, vol.7, pp.104-113, 1993.

C. A. Beck, N. L. Weigel, M. L. Moyer, S. K. Nordeen, and D. P. Edwards, The progesterone antagonist RU486 acquires agonist activity upon stimulation of cAMP signaling pathways, Proc. Natl. Acad. Sci, vol.90, pp.4441-4445, 1993.

J. P. Somers and D. B. Defranco, Effects of okadaic acid, a protein phosphatase inhibitor, on glucocorticoid receptor-mediated enhancement, Mol. Endocrinol, vol.6, pp.26-34, 1992.

S. Ali, D. Metzger, J. M. Bornert, and P. Chambon, Modulation of transcriptional activation by ligand-dependent phosphorylation of the human oestrogen receptor A/B region, EMBO J, vol.12, pp.1153-1160, 1993.

L. Goff, P. Montano, M. M. Schodin, D. J. Katzenellenbogen, and B. S. , Phosphorylation of the human estrogen receptor. Identification of hormone-regulated sites and examination of their influence on transcriptional activity, J. Biol. Chem, vol.269, pp.4458-4466, 1994.

K. J. Catt, M. L. Dufau, and T. Tsuruhara, Studies on a radioligand-receptor assay system for luteinizing hormone and chorionic gonadotropin, J. Clin. Endocrinol. Metab, vol.32, pp.860-863, 1971.

K. J. Catt, M. L. Dufau, and T. Tsuruhara, Radioligand-receptor assay of luteinizing hormone and chorionic gonadotropin, J. Clin. Endocrinol. Metab, vol.34, pp.123-132, 1972.

D. Klett, P. Meslin, L. Relav, T. M. Nguyen, J. Mariot et al., Low reversibility of intracellular cAMP accumulation in mouse Leydig tumor cells (MLTC-1) stimulated by human Luteinizing Hormone (hLH) and Chorionic Gonadotropin (hCG), Mol. Cell. Endocrinol, vol.434, pp.144-153, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01529482

M. Kotula-balak, P. Pawlicki, A. Milon, W. Tworzydlo, M. Sekula et al., The role of G-protein-coupled membrane estrogen receptor in mouse Leydig cell function-in vivo and in vitro evaluation, Cell Tissue Res, vol.374, pp.389-412, 2018.

A. Milon, P. Pawlicki, A. Rak, E. Mlyczynska, B. J. P?achno et al., Telocytes are localized to testis of the bank vole (Myodes glareolus) and are affected by lighting conditions and G-coupled membrane estrogen receptor (GPER) signaling, Gen. Comp. Endocrinol, vol.271, pp.39-48, 2019.

P. Yasar, G. Ayaz, S. D. User, G. Gupur, and M. Muyan, Molecular mechanism of estrogen-estrogen receptor signaling, Reprod. Med. Biol, vol.16, pp.4-20, 2017.

E. J. Filardo and P. Thomas, Minireview: G Protein-Coupled Estrogen Receptor-1, GPER-1: Its Mechanism of Action and Role in Female Reproductive Cancer, Renal and Vascular Physiology, Endocrinology, vol.153, pp.2953-2962, 2012.

M. Zhang, R. Guan, and D. L. Segaloff, Revisiting and questioning functional rescue between dimerized LH receptor mutants, Mol. Endocrinol, vol.26, pp.655-668, 2012.

X. Feng, M. Zhang, R. Guan, and D. L. Segaloff, Heterodimerization between the lutropin and follitropin receptors is associated with an attenuation of hormone-dependent signaling, Endocrinology, vol.154, pp.3925-3930, 2013.

A. L. Scaling, E. R. Prossnitz, and H. J. Hathaway, GPER mediates estrogen-induced signaling and proliferation in human breast epithelial cells and normal and malignant breast, Horm. Cancer, vol.5, pp.146-160, 2014.

A. C. Fitzgerald, C. Peyton, J. Dong, and P. Thomas, Bisphenol A and Related Alkylphenols Exert Nongenomic Estrogenic Actions Through a G Protein-Coupled Estrogen Receptor 1 (Gper)/Epidermal Growth Factor Receptor (Egfr) Pathway to Inhibit Meiotic Maturation of Zebrafish Oocytes, Biol. Reprod, vol.93, 2015.

F. Acconcia, V. Pallottini, and M. Marino, Molecular Mechanisms of Action of BPA, Dose Response, vol.13, 2015.

S. Song, Y. Duan, T. Zhang, B. Zhang, Z. Zhao et al., Serum concentrations of bisphenol A and its alternatives in elderly population living around e-waste recycling facilities in China: Associations with fasting blood glucose, Ecotoxicol. Environ. Saf, vol.169, pp.822-828, 2019.

J. E. Caminos, R. Nogueiras, F. Gaytan, R. Pineda, C. R. Gonzalez et al., Novel expression and direct effects of adiponectin in the rat testis, Endocrinology, vol.149, pp.3390-3402, 2008.

L. Wu, B. Xu, W. Fan, X. Zhu, G. Wang et al., Adiponectin protects Leydig cells against proinflammatory cytokines by suppressing the nuclear factor-kappaB signaling pathway, FEBS J, vol.280, pp.3920-3927, 2013.

D. Landry, A. Pare, S. Jean, and L. J. Martin, Adiponectin influences progesterone production from MA-10 Leydig cells in a dose-dependent manner, Endocrine, vol.48, pp.957-967, 2015.

O. M. Ocon-grove, S. M. Krzysik-walker, S. R. Maddineni, G. L. Hendricks, and R. Ramachandran, Adiponectin and its receptors are expressed in the chicken testis: Influence of sexual maturation on testicular ADIPOR1 and ADIPOR2 mRNA abundance, Reproduction, vol.136, pp.627-638, 2008.

J. Hoffstedt, E. Arvidsson, E. Sjolin, K. Wahlen, and P. Arner, Adipose tissue adiponectin production and adiponectin serum concentration in human obesity and insulin resistance, J. Clin. Endocrinol. Metab, vol.89, pp.1391-1396, 2004.

F. Orio, . Jr, S. Palomba, T. Cascella, G. Milan et al., Adiponectin levels in women with polycystic ovary syndrome, J. Clin. Endocrinol. Metab, vol.88, pp.2619-2623, 2003.

T. S. Tsao, Assembly of adiponectin oligomers, Rev. Endocr. Metab. Disord, vol.15, pp.125-136, 2014.

D. B. Briggs, R. M. Giron, P. R. Malinowski, M. Nunez, and T. S. Tsao, Role of redox environment on the oligomerization of higher molecular weight adiponectin, BMC Biochem, vol.12, 2011.

D. Horakova, L. Stepanek, R. Nagelova, D. Pastucha, K. Azeem et al., Total and high-molecular -weight adiponectin levels and prediction of insulin resistance, Endokrynol. Pol, vol.69, pp.375-380, 2018.

J. Hu, W. Cui, W. Ding, Y. Gu, Z. Wang et al., Globular Adiponectin Attenuated H2O2-Induced Apoptosis in Rat Chondrocytes by Inducing Autophagy Through the AMPK/ mTOR Pathway, Cell. Physiol. Biochem, vol.43, pp.367-382, 2017.

S. Wang, J. Miao, M. Qu, G. Y. Yang, and L. Shen, Adiponectin modulates the function of endothelial progenitor cells via AMPK/eNOS signaling pathway, Biochem. Biophys. Res. Commun, vol.493, pp.64-70, 2017.

Y. Chen, Y. Zheng, L. Liu, C. Lin, C. Liao et al., Adiponectin Inhibits TNF-alpha-Activated PAI-1 Expression Via the cAMP-PKA-AMPK-NF-kappaB Axis in Human Umbilical Vein Endothelial Cells, Cell. Physiol. Biochem, vol.42, pp.2342-2352, 2017.

M. Schindler, M. Pendzialek, K. J. Grybel, T. Seeling, J. Gurke et al., Adiponectin stimulates lipid metabolism via AMPK in rabbit blastocysts, Hum. Reprod, vol.32, pp.1382-1392, 2017.

Y. Wang, J. Zhang, L. Zhang, P. Gao, and X. Wu, Adiponectin attenuates high glucose-induced apoptosis through the AMPK/p38 MAPK signaling pathway in NRK-52E cells, PLoS ONE, vol.12, p.178215, 2017.

H. S. Abdou, F. Bergeron, and J. J. Tremblay, A cell-autonomous molecular cascade initiated by AMP-activated protein kinase represses steroidogenesis, Mol. Cell. Biol, vol.34, pp.4257-4271, 2014.

E. Gorowska-wojtowicz, P. Dutka, M. Kudrycka, P. Pawlicki, A. Milon et al., Regulation of steroidogenic function of mouse Leydig cells: G-coupled membrane estrogen receptor and peroxisome proliferator-activated receptor partnership, J. Physiol. Pharmacol, vol.69, pp.373-390, 2018.

F. Zheng, S. Zhang, W. Lu, F. Wu, X. Yin et al., Regulation of insulin resistance and adiponectin signaling in adipose tissue by liver X receptor activation highlights a cross-talk with PPARgamma, PLoS ONE, vol.9, 2014.