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Viewpoint
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Based on case studies, we discuss the extent to which 
genome-wide association studies (GWAS) are affected 
by outlier plants, i.e. those deviating from the expected 
distribution on a multi-criteria basis. Using a raw dataset 
consisting of daily measurements of leaf area, biomass, 
and plant height for thousands of plants, we tested three 
different cleaning methods for their effects on genetic 
analyses. No-cleaning resulted in the highest number of 
dubious quantitative trait loci, especially at loci with highly 
unbalanced allelic frequencies. A trade-off was identified 
between the risk of false-positives (with no-cleaning and/
or a low threshold for minor allele frequency) and the risk 
of missing interesting rare alleles. Cleaning can lower the 
risk of the latter by making it possible to choose a higher 
threshold in GWAS.

An outlier is usually defined as an observation considered to be 
inconsistent with the distribution of values in the dataset being 
analysed (Barnett and Lewis, 1994). Observations may be time-
points (Grubbs, 1950) or whole time-courses of one or more 
variables (Hubert et al., 2015). The concept can be extended to 
‘outlier plants’, defined here as biological replicates that deviate 
from the overall distribution of plants on a multi-criteria basis, 
regardless of the quality of measurements. For example, outlier 
plants can originate from poor seed quality, from wrong geno-
type identification, or from fertilization of ovaries by undesired 
pollen, for example generating a hybrid instead of an inbred 
line, which can have a large effect if the hybrid is derived from 
lines with high consanguinity. In field experiments, outlier 
plants have a low impact on genotypic means because the ex-
perimental units (the smallest entity to which a treatment can 
be applied; http://www.miappe.org) are microplots containing 

tens of plants (Tollenaar et  al., 1984). In phenotyping plat-
forms with hundreds of genotypes, and also in many other 
experiments in controlled conditions, the experimental unit is 
frequently an individual plant with 3 to 10 replicates per geno-
type, so the presence of one or more outlier plants may have 
a high impact on genotypic means (Estaghvirou et al., 2014).

Whilst numerous methods have been developed for 
detecting outlier points, involving either individual (Grubbs, 
1950; Utz, 2003; Rousseeuw and Hubert, 2011) or multiple 
traits (Reimann et  al., 2008; Rousseeuw and Hubert, 2011; 
Hubert et al., 2015), the detection of outlier plants is, to our 
knowledge, still in its infancy. This is probably because the con-
cept of an outlier is less straightforward in plants because it in-
volves a reasoning based on a multiplicity of criteria. Statistical 
methods based on individual traits are reproducible for a given 
experiment, but they may exclude different plants depending 
on the considered trait, resulting in different final trait-specific 
datasets for each variable. Multi-trait methods based on multi-
variate procedures can avoid this problem but they are com-
plex to handle and, in our experience, result in non-satisfactory 
results if traits are not weighted based on expert rules. Visually 
removing outlier plants based on expert intuition is the most 
used method, and can result in similar accuracy compared with 
statistical methods (Bernal-Vasquez et  al., 2016). However, 
criteria for visual elimination can appreciably differ between 
experimenters. Moreover, whereas visual cleaning can be per-
formed in small datasets, it becomes nearly impossible when 
thousands of time-courses need to be analysed.

In addition, issues other than the significance of statistical 
tests on the variable of interest need to be considered for out-
lier plants. Indeed, the benchmark in this case is rather the 
degree to which each method affects the results of genetic 
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analyses. In genome-wide association studies (GWAS), a causal 
polymorphism (quantitative trait locus, QTL) is considered 
significant if the values of the studied variable (e.g. leaf area) 
differ significantly between genotypes carrying alleles A or B at 
the considered marker on the genome. Because the detection 
of outliers may interact with allelic frequencies at this QTL, 
we aimed to identify in which cases the detection of outlier 
plants may or may not affect the results of genetic analyses. To 
this end, as a case study, we compared the outputs of a gen-
etic analysis of a raw dataset consisting of daily measurements 
of leaf area, biomass, and plant height for thousands of plants 
with those of datasets based on the same experiments but re-
sulting from three different cleaning methods, namely visual 
elimination based on the experimenter’s expertise, a statistical 
semi-automated method based on single traits, and a statistical 
composite multi-trait method combined with expert rules 
(see Supplementary Protocol S1 at JXB online). The dataset 
(Alvarez Prado et al., 2018) consisted of a diversity panel of 254 
maize hybrids growing in three experiments (Spr12, Spring 
2012; Win13, Winter 2013; and Spr13, Spring 2013) with two 
irrigation treatments (WW, well-watered; and WD, water def-
icit treatments) (Supplementary Table S1). Each experiment 
involved 1680 plants in an image-based phenotyping plat-
form located in a greenhouse (see Supplementary Protocol S1; 
https://www6.montpellier.inra.fr/lepse/M3P).

Different cleaning methods provide 
markedly different lists of plant outliers

In the visual method, outlier plants were identified and tagged 
by the experimenter based on expert criteria. The statistical 
single-trait method was performed for each trait individually, 
meaning that distinct outlier datasets associated with each con-
sidered trait were obtained. The composite statistical method 
was based on a multi-trait approach with expert rules that 
considered two categories of potentially outlier plants, namely 
plants that were apparently too small or too large. For the de-
tection of unexpectedly small plants that probably have physio-
logical disorders, the progression of leaf stages was considered 
in addition to the time-course of shoot biomass. Indeed, leaf 
appearance rate carried non-redundant information compared 
with biomass (r=0.49, 0.26, and 0.30 in Exp. Win13, Spr13, and 
Spr12, respectively). It usually presents low plant-to-plant vari-
ability except in case of severe disorders, and is relatively in-
sensitive to environmental cues other than temperature, which 
was already taken into account via the use of thermal time 
(Parent et al., 2010, 2019). A small plant, which would be diffi-
cult to classify as an outlier based on biomass alone because of 
the continuous distribution of values, was identified by com-
bining the biomass information with that of progression of 
leaf stages for which one plant unambiguously differed from 
the others (Box 1A). For the detection of unexpectedly large 
plants, potentially associated with wrong genotype identifica-
tion, combining plant height and biomass resulted in an effi-
cient identification, as illustrated in Box 1B and revealed by the 
statistical approach (see Supplementary Protocol S1 for details).

When comparing the three methods, a trade-off appeared 
between the resulting heritability and the rate of outlier 

exclusion. The statistical composite method increased her-
itability by only 1% for biomass, leaf area, and plant height 
compared with the raw dataset (Supplementary Tables S2, S3), 
but it was the most parsimonious with only 0–2.2% of plants 
identified as outliers depending on the experiment. The statis-
tical single-trait method increased heritability by 8.0, 9.5, and 
4.3% for biomass, leaf area, and plant height, respectively, but 
with higher rates of exclusion (0–4.3%). The visual method re-
sulted in the highest heritability, which was increased by 10.0, 
11.0, and 6.2% for the same three traits compared with the 
raw dataset, at the cost of a high rate of exclusion (3–12.2%). 
The plants that were identified differed among the methods 
(Supplementary Table S4), so appreciably different datasets 
were generated by each one. Hence, the increase in heritability 
cannot be considered as the unique benchmark for ranking the 
effectiveness of the cleaning methods.

Exclusion of outlier plants strongly affects 
the results of genetic analyses

Genome-wide association studies were performed on indi-
vidual traits for each combination of experiment × water treat-
ment (Supplementary Protocol S1, Supplementary Table S5). 
The cleaning method had a large effect on the distribution of 
allelic effects at QTLs identified in all the tested datasets. This 
is exemplified in Box 2 for one QTL of leaf area on chromo-
some 10 that was identified in Exp. Win13_WD. Appreciably 
unbalanced allelic frequencies were observed at this marker 
(236 versus 18 genotypes for alleles A  and B, respectively), 
which were nevertheless acceptable in GWAS analyses (7%, for 
a commonly accepted threshold of 5%). The range of pheno-
typic values was large for both allelic groups, from 0.1–0.45 
m2 for allele A and from 0.05–0.4 m2 for allele B (Box 2A). In 
the absence of cleaning, six hybrids carrying allele B had low 
genotypic means because of plants with low leaf area (Box 2B), 
so the QTL was found to be significant (log10P-value=5.7). 
The statistical single-trait method resulted in the same output 
(log10P-value=5.3). In contrast, visual cleaning resulted in a 
non-significant QTL (log10P-value=0.139) after elimination 
of 45 plants with low leaf area, in particular plants of geno-
types carrying allele B. The composite statistical method elim-
inated only 15 plants, but also resulted a in a non-significant 
QTL (log10P-value=3.44). Interestingly, this specific QTL was 
found to be non-significant in Exp. Win13_WW, Spr12_WW 
and WD, and Spr13_WW and WD regardless of the method 
used (Supplementary Table S5). Hence, the QTL identified in 
Exp. Win13_WD with either no cleaning or with the statistical 
single-trait method is likely to be an artefact. Notably, the dif-
ferences in significance between methods were not linked to 
the size of samples involved in the GWAS, because the cleaning 
methods affected the values but not the number of genotypic 
means (254 in all cases).

At the whole-genome level, a considerably higher number 
of QTLs was observed in the raw dataset compared with those 
that were cleaned, in which many QTLs disappeared at gen-
omic positions with highly unbalanced allelic frequencies 
(Box 3B, Supplementary Table S5). Indeed, 55 QTLs of leaf 
area were detected without cleaning, 47 with the statistical 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article-abstract/70/15/3693/5479455 by IN

R
A (Institut N

ational de la R
echerche Agronom

ique) user on 22 August 2019

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz191#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz191#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz191#supplementary-data
https://www6.montpellier.inra.fr/lepse/M3P
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz191#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz191#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz191#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz191#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz191#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz191#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz191#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erz191#supplementary-data


Cleaning phenotypic datasets for outlier plants in genetic analyses  |  3695

single-traits method, 13 with the composite method, and 12 
with the visual method (Box 3A; Supplementary Table S5). 
The difference between methods depended on allelic frequen-
cies, but was still appreciable for some QTLs displaying more 
than 15% of minor allele frequency (Box 3B).

When and where do cleaning methods 
affect the outputs of GWAS analyses?

The above results suggest that the method for managing out-
liers can cause a ‘QTL×Method interaction’ in the same way as 

Box 1.  An example of multi-trait detection with expert rules

(A) Detection of plants that probably have physiological disorders. Detection based on the time-course of 
biomass only is difficult because of the continuous distribution of values, whereas considering it together with 
leaf appearance rate allows unambiguous identification (red points). Here, the plant architecture itself would not 
provide any extra information (images). (B) Detection of plants that probably have different genotypes. Detection 
based on biomass only is ambiguous, whereas combining it with plant architecture (height) identifies the plant 
represented by the red dots. The data are from six replicates in one experiment for one genotype.
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multiple environments generate a QTL×Environment inter-
action (Malosetti et  al., 2013). Intuitively, cleaning methods 
may be seen as aiming to obtain more numerous and more 
precise QTLs. On the contrary, the results presented here sug-
gest that excluding outlier plants instead serves to avoid the 
detection of artefact QTLs. For every potential QTL, an arte-
fact is most likely to occur for lowest numbers of genotypes 
carrying the minor allele, as suggested by Box 2. Because 
GWAS involve hundreds of thousands of markers over the 
genome, with varying allelic frequencies between markers, 
an accumulation of outlier trait values is bound to occur at 
some markers for the minor allele. This causes an artefact 
QTL at the corresponding marker position. The number of 
such problematic markers depends on the total number of 
genotypes in the panel, but also on the threshold, chosen in 
all GWAS methods, for the frequency of the minor allele 
below which a marker is excluded. A high number of non-
eliminated outliers has relatively low consequences on the 

detection of artefact QTLs if the studied population is large 
(e.g. >400 genotypes) and/or if a high threshold eliminates 
markers with unbalanced allelic frequencies, as suggested by 
Box 3B. Elimination of outliers becomes essential if the popu-
lation is smaller and/or if researchers are interested by rare 
alleles with unbalanced allelic frequencies (Yang et al., 2010;  
Ingvarsson and Street, 2011).

Large trades-off associated with each cleaning method 
therefore appeared between the increase in heritability, the 
rate of outlier exclusion, and the risks of either identifying 
artefact QTLs or missing real QTLs. The consequences of no 
cleaning (which may tend to generate false-positives) may be 
counteracted by the choice of a higher threshold for minor al-
lele frequency, itself associated with a decreased power of QTL 
detection. Conversely, a high rate of plant exclusion, observed 
here using a visual method, is a problematic feature in any 
analysis but it may allow a lower threshold for minor allele fre-
quency to be chosen. The composite multi-trait method that 

Box 2. The method used for data cleaning affects the apparent allelic effects on leaf area at a given 
genomic position

(A) The leaf area of plants carrying alleles A and B at a QTL detected in experiment Win13_WD, either in the 
absence of cleaning, or with visual cleaning, single-trait statistical cleaning, or a composite multi-trait method for 
cleaning. Note that the plants considered as outliers (blue) differ in number between the methods. (B) The mean 
leaf area of genotypes carrying each allele. The mean values differ between methods for a given hybrid because 
they were obtained from non-outliers (red points in A). ns, non-significant; and * significant. The log10P-values 
were 5.7, 0.1, 3.4, and 5.3 for no cleaning, visual, composite, and statistical single-trait methods, respectively. 
The threshold for considering a QTL as significant was 5. Allelic effects are calculated for SNP952509 on 
chromosome 10.
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minimized the rate of outlier exclusion, but also the number 
of potentially artefact QTLs, appeared to be a promising op-
timum in the dataset presented here.

The choice of one method or another thus depends on an 
optimization of criteria and on strategic decisions for genetic 
analyses. Attempting to standardize this choice, for instance 
with regards to placing data in repositories (Ćwiek-Kupczyńska 
et al., 2016), may lead to interminable discussions whose rele-
vance probably depends on specific questions and datasets. In 
any case, the method of outlier identification, or its absence, 
is an essential criterion in GWAS analyses. Datasets should be 
organized and stored in such a way that they can be re-analysed 
either by the same group some years later in the light of fur-
ther results, or by different groups (Wilkinson et al., 2016). This 
requires that detected outliers are identified as such but are not 
deleted in the information system, and that the rules for outlier 
detection are kept as meta-data of the GWAS analysis. Recent 
information systems for phenomic data allow these two condi-
tions to be fulfilled (Neveu et al., 2019).

Keywords:   Allele frequency, genetic analysis, outliers, phenomics, 
quantitative trait loci, statistical analysis.
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