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A CONTINUOUS-TIME APPROACH
TO ONLINE OPTIMIZATION

JOON KWON AND PANAYOTIS MERTIKOPOULOS

Abstract. We consider a family of learning strategies for online optimization
problems that evolve in continuous time and we show that they lead to no
regret. From a more traditional, discrete-time viewpoint, this continuous-time
approach allows us to derive the no-regret properties of a large class of discrete-
time algorithms including as special cases the exponential weight algorithm,
online mirror descent, smooth fictitious play and vanishingly smooth fictitious
play. In so doing, we obtain a unified view of many classical regret bounds, and
we show that they can be decomposed into a term stemming from continuous-
time considerations and a term which measures the disparity between discrete
and continuous time. As a result, we obtain a general class of infinite horizon
learning strategies that guarantee an O(n−1/2) regret bound without having
to resort to a doubling trick.
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1. Introduction

Online optimization focuses on decision-making in sequentially changing envi-
ronments (the weather, the stock market, etc.). More precisely, at each stage of a
repeated decision process, the agent/decision-maker obtains a payoff (or incurs a
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loss) based on the environment and his decision, and his long-term objective is to
maximize his cumulative payoff via the use of past observations.

The worst-case scenario for the agent – and one which has attracted considerable
interest in the literature – is when he has no Bayesian-like prior belief on the
environment. In this context, the cumulative payoff difference between an oracle-
like device (a decision rule which prescribes an action based on knowledge of the
future) and a learning strategy (a rule which only relies on past observations) can
become arbitrarily large, even in very simple problems. As a result, in the absence
of absolute payoff guarantees, the most widely used online optimization criterion
is that of regret minimization, a notion which was first introduced by Hannan [15]
and has since given rise to a vigorous literature at the interface of optimization,
statistics and theoretical computer science – see e.g. Cesa-Bianchi and Lugosi [10],
Shalev-Shwartz [28] for a survey. Specifically, the cumulative regret of a strategy
compares the payoff obtained by an agent that follows it to the payoff that he
would have obtained by constantly choosing one action; accordingly, one of the
main goals in online optimization is to devise strategies that lead to (vanishingly)
small average regret against any fixed action, and irrespective of how the agent’s
environment evolves over time.

In this paper, we take a continuous-time approach to online optimization and we
consider a class of strategies that lead to no regret in continuous time. From a more
traditional, discrete-time viewpoint, the importance of this approach lies in that
it provides a unifying view of the regret properties of a broad class of well-known
online optimization algorithms. In particular, the discrete-time version of our family
of strategies is an extension of the general class of online mirror descent (OMD)
algorithms (themselves equivalent to “Following the Regularized Leader” (FtRL)
in the case of linear payoffs; see e.g. Shalev-Shwartz [28], Bubeck [7], Hazan [16])
with a time-varying parameter. As such, our analysis contains as special cases
a) the exponential weight (EW) algorithm (Littlestone and Warmuth [19], Vovk
[30]) and its decreasing parameter variant (Auer et al. [1]); b) smooth fictitious
play (SFP) (Fudenberg and Levine [13], Benaïm et al. [4]) and vanishingly smooth
fictitious play (VSFP) (Benaïm and Faure [3]); and c) the method of online gradient
descent (OGD) introduced by Zinkevich [32] (the Euclidean predecessor of OMD).

With regards to the OMD/FtRL family of algorithms, the vanishing regret
bounds that we derive by using a time-varying parameter are not particularly new:
bounds of the same order can be obtained by taking existing guarantees for learning
with a finite horizon and then using the so-called “doubling trick” (Cesa-Bianchi
et al. [9], Vovk [31]).1 That said, the introduction of a time-varying parameter has
several advantages: a) it allows us to integrate SFP and VSFP into the fold and
to derive explicit bounds for their regret; b) it provides a unified any-time anal-
ysis without needing to reboot the algorithm every so often (to the best of our
knowledge, such an analysis only exists for the EW algorithm with a time-varying
parameter (Bubeck [7], Auer et al. [1])); and c) in the case of ordinary convex opti-
mization problems with an open-ended termination criterion (as opposed to a fixed
number of steps), a variable parameter leads to more efficient value convergence
bounds than a variable step-size.

1In a nutshell, the doubling trick amounts to breaking up the learning timeline in blocks of
exponentially increasing horizon, and then resetting the algorithm at the start of each block with
an optimal parameter for the block’s (finite) horizon.
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Building on an idea that was introduced by Sorin [29] in the study of the ex-
ponential weight algorithm, the key ingredient of our analysis is the descent from
continuous to discrete time. More precisely, given an online optimization problem in
discrete time, we construct a continuous-time interpolation where our continuous-
time dynamics lead to no regret; then, by comparing the agent’s payoffs in discrete
and continuous time, we are able to deduce a bound for the agent’s regret in the
original discrete-time framework.

One of the main contributions of this approach is that it leads to a unified deriva-
tion of several existing regret bounds with disparate proofs; secondly, it allows us
to decompose many classical bounds into two components, a term coming from
continuous-time considerations and a comparison term which measures the dispar-
ity between discrete and continuous time (see also Mannor and Perchet [20] for
an alternative interpretation of such a decomposition). Each of these terms can
be made arbitrarily small by itself, but their sum is coupled in a nontrivial way
that induces a trade-off between continuous- and discrete-time considerations: in a
sense, faster decay rates in continuous time lead to greater discrepancies in the dis-
crete/continuous comparison – and hence, to slower regret decay bounds in discrete
time.

Finally, we also give a brief account of how the derived regret bounds are related
to classical convergence results for certain convex optimization and stochastic con-
vex optimization algorithms — including the projected subgradient (PSG) method,
mirror descent (MD), and their stochastic variants (Nemirovski and Yudin [23],
Nemirovski et al. [22]), and we illustrate a (somewhat surprising) performance gap
incurred by using an optimization algorithm with a decreasing parameter instead
of a decreasing step-size.

1.1. Paper Outline. In Section 2, we present some basics of online optimization
to fix notation and terminology; then, in Section 3, we define regularizer functions,
choice maps and the class of variable-parameter OMD/FtRL strategies that we will
focus on. The core of our paper consists of Sections 4 and 5: we first show that the
corresponding class of continuous-time strategies leads to no regret in Section 4;
this analysis is then translated to discrete time in Section 5 where we derive the no-
regret properties of the class of algorithms under consideration. Finally, in Section
6, we establish several links with existing online learning and convex optimization
algorithms, and we show how their properties can be derived as corollaries of our
results.

1.2. Notation and Preliminaries. Let d be a positive integer and let V = Rd

be equipped with an arbitrary norm ∥·∥. The dual of V will be denoted by V ∗ and
the induced dual norm on V ∗ will be given by the familiar expression:

∥y∥∗ = sup
∥x∥⩽1

|⟨y|x⟩| , (1.1)

where ⟨y|x⟩ denotes the canonical pairing between y ∈ V ∗ and x ∈ V . For a
nonempty subset U ⊂ V will use the notation ∥U∥ = supx∈U ∥x∥.

In the rest of our paper, C will denote a nonempty compact convex subset of
V ; moreover, given a convex function f : V → R ∪ {+∞}, its effective domain will
be the convex set dom f = {x ∈ V : f(x) < ∞}. For convenience, if f : C → R
is convex, we will treat f as a convex function on V by setting f(x) = +∞ for
x ∈ V \ C; conversely, if f : V → R ∪ {+∞} has domain dom f = C, we will also
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treat f as a real-valued function on C (in all cases, the ambient space V will be
clear from the context). We will then say that v ∈ V ∗ is a subgradient of f at
x ∈ C if f(x′)− f(x) ⩾ ⟨v|x′ − x⟩ for all x′ ∈ C; likewise, the set ∂f(x) = {v ∈ V ∗ :
v is a subgradient of f at x} will be called the subdifferential of f at x and f will
be called subdifferentiable if ∂f(x) is nonempty for all x ∈ dom f .

If it exists, the minimum (resp. maximum) of a function f : V → R ∪ {+∞}
will be denoted by fmin (resp. fmax). Moreover, if A = {a1, . . . , ad} is a finite
set, the set ∆(A) of probability measures on A will be identified with the standard
(d−1)-dimensional simplex ∆d = {x ∈ Rd

+ :
∑d

i=1 xi = 1} of Rd; also, the elements
of A will be identified with the corresponding vertices of ∆(A), i.e. the canonical
basis vectors {ei}di=1 of Rd. Finally, for x, y ∈ R, we will let ⌊x⌋ = max{k ∈ Z :
k ⩽ x} and ⌈x⌉ = min{k ∈ Z : k ⩾ x}, and we will write x ∨ y = max{x, y} and
x ∧ y = min{x, y}.

2. The Model

The heart of the online optimization model that we consider is as follows: at
every discrete time instance n ⩾ 1, an agent (decision-maker) chooses an action
from a nonempty convex action set C ⊂ V and gains a payoff (or incurs a loss)
determined by some time-dependent function. Information about this function is
only revealed to the agent after he picks his action, and the agent’s objective is to
maximize his long-term payoff in an adaptive manner.

2.1. The Core Model. Let C ⊂ V denote the agent’s action space. Then, at each
stage n ⩾ 1, the process of play is as follows:
1. The agent chooses an action xn ∈ C.
2. Nature chooses and reveals the payoff vector un ∈ V ∗ of the n-th stage and the

agent receives a payoff of ⟨un|xn⟩.2
3. The agent uses some decision rule to pick a new action xn+1 ∈ C and the process

is repeated ad infinitum.
More precisely, define a strategy to be a sequence of maps σn : (V

∗)n−1 → C,
n ⩾ 1, such that σn+1 determines the player’s action at stage n+1 in terms of the
payoff vectors u1, . . . , un ∈ V ∗ that have been revealed up to stage n (in a slight
abuse of notation, σ1 will be regarded as an element of C). Then, given a sequence
of payoff vectors u = (un)n⩾1 in V ∗, the sequence of actions generated by σ will be

xn+1 ≡ σn+1(u1, . . . , un), (2.1)

and the agent’s cumulative regret with respect to x ∈ C is defined as:

Regσ,un (x) =
n∑

k=1

⟨uk|x⟩ −
n∑

k=1

⟨uk|xk⟩

=

n∑
k=1

⟨uk|x⟩ −
n∑

k=1

⟨uk|σk(u1, . . . , uk−1)⟩ .
(2.2)

In what follows, we focus on strategies that lead to no (or, at worst, small) regret :

2Nature may be adversarial, i.e. un may be chosen as a function of x1, . . . , xn.
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Definition 2.1. A strategy σ leads to ε-regret (ε ⩾ 0) if, for every sequence of
payoff vectors (un)n⩾1 in V ∗ such that ∥un∥∗ ⩽ 1:

lim sup
n→∞

1

n
max
x∈C

Regσ,un (x) ⩽ ε. (2.3)

In particular, if (2.3) holds with ε = 0, we will say that σ leads to no regret.

Remark 1. The definition of an ε-regret strategy depends on the dual norm ∥ ·∥∗ of
V ∗ (and hence, on the original norm ∥ · ∥ on V ); on the other hand, the definition
of “no regret” is independent of the norm.

Remark 2. In our framework, we can easily see that a strategy leading to ε-regret
against “any sequence” is equivalent to leading to ε-regret against “any strategy of
nature”. However, this may not be true in the randomized setting we present in the
following paragraph.

Despite its simplicity, this online linear optimization model may be used to
analyze more general online optimization models. In what follows, we summarize
some examples of this kind.

2.2. The Case of the Simplex and Mixed Actions. Consider a discrete de-
cision process where, at each stage n ⩾ 1, the agent chooses an action an from a
finite set of pure actions A = {1, . . . , d}. To do so, the agent draws an according to
some probability distribution xn ∈ ∆(A); then, once an is drawn, the payoff vector
un ∈ [−1, 1]d which prescribes the payoff un,a of each action a ∈ A is revealed and
the agent receives the payoff un,an that corresponds to his choice of action.

In this setting, a strategy is still defined as in the core model of Section 2.1 with
the agent’s action set replaced by the set of mixed actions ∆(A).3 The agent’s
realized regret with respect to a pure action a ∈ A will then be

n∑
k=1

(uk,a − uk,ak
), (2.4)

and we will say that a strategy σ leads to ε-realized-regret (resp. to no realized
regret for ε = 0) if

lim sup
n→∞

1

n
max
a∈A

n∑
k=1

(uk,a − uk,ak
) ⩽ ε (a.s.), (2.5)

for every sequence of payoff vectors (un)n⩾1 in Rd such that ∥un∥∞ ⩽ 1.4 On the
other hand, the agent’s expected payoff at stage n is E[un,an ] = ⟨un|xn⟩; thus, if
we interpret ⟨un|xn⟩ as the payoff of the mixed action xn ∈ ∆d, we will have:

E

[
n∑

k=1

(uk,a − uk,ak
)

]
=

n∑
k=1

⟨uk|ea − xk⟩ = Regσ,un (ea) (2.6)

where the basis vector ea ∈ ∆(A) is identified here with the Dirac point mass
δa on a ∈ A. By a classical argument based on Hœffding’s inequality and the
Borel–Cantelli lemma, the minimization of (2.4) is then reduced to the core model
of Section 2.1:

3In a more general setting, the choice at each stage might depend not only on the past payoff
vectors, but also on the agent’s realized actions a1, . . . , an.

4This condition is also called external ε-consistency (Fudenberg and Levine [13], Benaïm et al.
[4]).
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Proposition 2.2 (Cesa-Bianchi and Lugosi [10], Corollary 4.3). If a strategy σ
leads to ε-regret with respect to the uniform norm on V ∗, it also leads to ε-realized-
regret.

2.3. Online Convex Optimization. We briefly discuss here a more general online
convex optimization model where losses are determined by a sequence of convex
functions. Formally, the only change from Section 2.1 is that at each stage n ⩾ 1,
the agent incurs a loss ℓn(xn) determined by a subdifferentiable convex loss function
ℓn : C → R. In this nonlinear setting, the information revealed to the agent after
playing includes a (negative) subgradient un ∈ −∂ℓn(xn) ⊂ V ∗ of ℓn at xn, so the
incurred cumulative regret with respect to a fixed action x ∈ C is:

n∑
k=1

ℓk(xk)−
n∑

k=1

ℓk(x). (2.7)

By convexity, ℓk(x′) − ℓk(x) ⩽ ⟨v|x′ − x⟩ for all v ∈ ∂ℓk(x
′) and for all x ∈ C; in

this way, (2.7) readily yields:
n∑

k=1

ℓk(xk)−
n∑

k=1

ℓk(x) ⩽ −
n∑

k=1

⟨uk|xk − x⟩ =
n∑

k=1

⟨uk|x⟩ −
n∑

k=1

⟨uk|xk⟩ (2.8)

where uk ∈ −∂ℓk(xk). This last expression can obviously be interpreted as the
regret incurred by an agent facing a sequence of payoff vectors un ∈ V ∗ (cf. the
core model of Section 2.1), so a strategy which guarantees a bound on the right-
hand side of (2.8) will guarantee the same for (2.7). Consequently, when the loss
functions ℓn are uniformly Lipschitz continuous, results for the core model can be
directly translated into this one.

3. Regularizer Functions, Choice Maps and Learning Strategies

3.1. Regularizer Functions and Choice Maps. We begin with the concept of
a regularizer function:

Definition 3.1. A convex function h : V → R ∪ {+∞} will be called a regularizer
function on C if domh = C and h|C is strictly convex and continuous.

Remark 3. This definition is intimately related to the notion of a Legendre-type
function (see e.g. Rockafellar [25, Section 26]); however, as was recently noted
by Shalev-Shwartz [27] (and in contrast to the analysis of e.g. Benaïm and Faure
[3], Bubeck [7] and Benaïm et al. [4]), we will not require any differentiability or
steepness assumptions.

A key tool in our analysis will be the convex conjugate h∗ : V ∗ → R ∪ {+∞} of
h defined as

h∗(y) = sup
x∈V

{⟨y|x⟩ − h(x)}. (3.1)

Since h is equal to +∞ on V \ {C} and h|C is continuous and strictly convex, the
supremum in (3.1) will be attained at a unique point in C. This unique maximizer
then defines our choice map as follows:

Definition 3.2. The choice map associated to a regularizer function h on C will
be the map Qh : V

∗ → C defined as

Qh(y) = argmax
x∈C

{⟨y|x⟩ − h(x)}, y ∈ V ∗. (3.2)
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Example 3.3 (Entropy and logit choice). In the case of the simplex (C = ∆d),5 a
classical example of a choice map is generated by the entropy function

h(x) =

{∑d
i=1 xi log xi if x ∈ ∆d,

+∞ otherwise.
(3.3)

A standard calculation then yields the so-called logit choice map:

Qh(y) =
1∑d

j=1 e
yj

(ey1 , . . . , eyd) . (3.4)

This map is used to define the exponential weight algorithm (cf. Section 6), and
its importance stems from the well known fact that it leads to the optimal regret
bound for C = ∆d (Cesa-Bianchi and Lugosi [10, Theorems 2.2 and 3.7]).

Example 3.4 (Euclidean projection). Another important example arises by taking
the squared Euclidean distance as a regularizer function; more precisely, we define
the Euclidean regularizer on C as

h(x) =

{
1
2 ∥x∥

2
2 if x ∈ C,

+∞ otherwise.
(3.5)

The associated choice map Qh : RN → C corresponds to taking the orthogonal
projection with respect to C:

Qh(y) = argmax
x∈C

{
⟨y|x⟩ − 1

2∥x∥
2
2

}
= argmin

x∈C

{
1
2∥x∥

2
2 − ⟨y|x⟩+ 1

2∥y∥
2
2

}
= argmin

x∈C
∥y − x∥22. (3.6)

Example 3.5 (Bregman projections). The Euclidean example above is a special case
of a class of projection mappings known as Bregman projections (Bregman [5]).

Let F : V −→ R ∪ {+∞} be a proper convex function, differentiable on its
domain. Let us denote D = domF and for x, x′ ∈ D, the Bregman divergence
DF : D ×D −→ R is defined as

DF (x, x
′) = F (x)− F (x′)− ⟨∇F (x′)|x− x′⟩ . (3.7)

Hence, given a compact set C ⊂ D, the associated Bregman projection of a point
x0 ∈ D onto C is given by

prCF (x0) = argmin
x∈C

DF (x, x0). (3.8)

Now assume that F ∗ is also differentiable on its domain which we will denote D∗.
It is easy to check that for y ∈ D∗, ∇F ∗(y) ∈ D and ∇F (∇F ∗(y)) = y. Then, the
process of mapping y ∈ D∗ to ∇F ∗(y) and then projecting to C can be written as
a choice map in the sense of (3.2):

prCF ∇F ∗(y) = argmin
x∈C

{F (x)− F (∇F ∗(y))− ⟨∇F (∇F ∗(y))|x−∇F ∗(y)⟩}

= argmin
x∈C

{F (x)− ⟨y|x⟩} = argmax
x∈Rd

{⟨y|x⟩ − h(x)} = Qh(y), (3.9)

where h|C = F |C and h(x) = +∞ for x ∈ Rd \ {C}.

5In this setting, choice maps are more commonly known as smooth best reply maps (Fudenberg
and Levine [12], Hofbauer and Sandholm [17], Benaïm et al. [4], Benaïm and Faure [3]).
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3.2. Strategies Generated by Regularizer Functions. The class of strategies
that we will consider in the rest of this paper is a variable-parameter extension of
the so-called online mirror descent (OMD) method – itself equivalent to the family
of algorithms known as Follow the Regularized Leader (FtRL) in the case of linear
payoffs (see e.g. Shalev-Shwartz [28] and Hazan [16]).

In a nutshell, this class of strategies may be described as follows: the agent ag-
gregates his payoffs over time into a score vector y ∈ V ∗ and then uses a choice map
to turn these scores into actions and continue playing. Formally, if h is a regular-
izer function on the agent’s action space C and (ηn)n⩾1 is a positive nonincreasing
sequence, the strategy σ ≡

(
σh,ηn
n

)
n⩾1

generated by h with parameter ηn is defined
as

σn+1(u1, . . . , un) = Qh

(
ηn

n∑
k=1

uk

)
, (3.10)

with σ1 = Qh(0). The corresponding sequence of play xn+1 = σn+1(u1, . . . , un)
will then be given by the recursion:

Un = Un−1 + un,

xn+1 = Qh(ηnUn).

In addition to the standard variants of OMD/FtRL, a list of examples of strate-
gies and algorithms that can be expressed in this general form is given in Table
1. A more detailed analysis (including the regret properties of each algorithm) will
also be provided in Section 6; we only mention here that the variability of ηn will be
key for the no-regret properties of σ: when ηn is constant, the strategy (3.10) does
not guarantee a sublinear regret bound (see e.g. Shalev-Shwartz [28] and Bubeck
[7]).

3.3. Regularity of the Choice Map and the Role of Strong Convexity. In
this section, we derive some regularity properties of the choice map Qh that will be
needed in the analysis of the subsequent sections. We begin by showing that Qh is
continuous and equal to the gradient of h∗:

Proposition 3.6. Let h be a regularizer function on C. Then h∗ is continuously
differentiable on C and ∇h∗(y) = Qh(y) for all y ∈ V ∗.

Proof. For y ∈ V ∗, we have

x ∈ ∂h∗(y) ⇐⇒ y ∈ ∂h(x) ⇐⇒ x ∈ argmaxx′∈C {⟨y|x′⟩ − h(x′)} , (3.11)

i.e. ∂h∗(y) = argmaxx′∈C{⟨y|x′⟩ − h(x′)}. However, since the latter set only
consists of Qh(y), h∗ will be differentiable with ∇h∗(y) = Qh(y) for all y ∈ V ∗.
The continuity of ∇h∗ then follows from Rockafellar [25, Corollary 25.5.1]. □

In the discrete-time analysis of Section 5, (3.10) will be shown to guarantee a re-
gret bound of a simple form when Qh is Lipschitz continuous. This last requirement
is equivalent to h being strongly convex :

Definition 3.7. Let f : Rd → R ∪ {+∞} be a convex function, let ∥ · ∥ be a norm
on Rd, and let K > 0.
(1) f is K-strongly convex w.r.t. ∥ · ∥ if, for all w1, w2 ∈ Rd and for all λ ∈ [0, 1]:

f(λw1 + (1− λ)w2) ⩽ λf(w1) + (1− λ)f(w2)− 1
2K λ(1− λ) ∥w2 − w1∥2. (3.12)
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(2) f is K-strongly smooth w.r.t. ∥ · ∥ if it is differentiable and, for all w1, w2 ∈ Rd:

f(w2) ⩽ f(w1) + ⟨∇f(w1)|w2 − w1⟩+ 1
2K ∥w2 − w1∥2. (3.13)

Strong convexity of a function was shown in Kakade et al. [18] to be equivalent
to strong smoothness of its conjugate. In turn, this equivalence yields the following
characterization of Lipschitz continuity:

Proposition 3.8. Let f : V → R ∪ {+∞} be proper and lower semi-continuous.
Then, for K > 0, the following are equivalent:

(i) f is K-strongly convex with respect to ∥ · ∥.
(ii) f∗ is differentiable and ∇f∗ is 1/K-Lipschitz.
(iii) f∗ is 1/K-strongly smooth with respect to ∥ · ∥∗.

Hence, given that regularizer functions are proper and lower semi-continuous by
definition, Proposition 3.8 leads to the following characterization:

Corollary 3.9. Let h be a regularizer function C and K > 0. The associated choice
map Qh is K-Lipschitz continuous if and only if h is K-strongly convex with respect
to ∥ · ∥.

This characterization of the Lipschitz continuity of ∇f∗ (which will be of partic-
ular interest to us) is a classical result in the case of the Euclidean norm – see e.g.
Rockafellar and Wets [26, Proposition 12.60]. On the other hand, the implication
(ii) =⇒ (iii) appears to be new in the case of an arbitrary norm (though the proof
technique is fairly standard).

Proof of Proposition 3.8. We will show that (i) =⇒ (ii) =⇒ (iii) =⇒ (i).
(i) =⇒ (ii). See e.g. Beck and Teboulle [2, Proposition 3.1], Nesterov [24,
Lemma 1] or Shalev-Shwartz [27, Lemma 15].

(ii) =⇒ (iii). Fix y1, y2 ∈ V ∗, let z = y2 − y1, and set ϕ(t) = f∗(y1 + tz), t ∈ [0, 1].
Identifying V with V ∗∗ and ∥ · ∥∗∗ with ∥ · ∥, we have:

ϕ′(t)− ϕ′(0) = ⟨∇f∗(y1 + tz)−∇f∗(y1)|z⟩

⩽ ∥z∥∗∥∇f∗(y1 + tz)−∇f∗(y1)∥ ⩽ t

K
∥z∥2∗, (3.14)

where the first inequality follows from the definition of the dual norm and the
second from the assumed Lipschitz continuity of f∗. By integrating, we then get:

ϕ(t)− ϕ(0) ⩽ ϕ′(0)t+
1

2K
t2∥z∥2∗, (3.15)

and hence, for t = 1:

f∗(y2)− f∗(y1) ⩽ ⟨∇f∗(y1)|y2 − y1⟩+
1

2K
∥y2 − y1∥2∗, (3.16)

which shows that f∗ is 1/K-strongly smooth.

(iii) =⇒ (i). Since f is proper and lower semi-continuous, it will also be closed.
Our assertion then follows from e.g. Kakade et al. [18, Theorem 3]. □

We close this section by stating the strong convexity properties of the regularizer
functions of Examples 3.3 and 3.4 (which thus imply the Lipschitz continuity of the
corresponding choice maps):

Proposition 3.10. With notation as in Examples 3.3 and 3.4, we have:
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(i) The entropy h : ∆d → R of (3.3) is 1-strongly convex w.r.t. ∥ · ∥1.
(ii) The Euclidean regularizer h : C → R of (3.5) is 1-strongly convex w.r.t. ∥ · ∥2.

Proof. The strong convexity of the Euclidean regularizer is trivial; for the strong
convexity of the entropy with respect to ∥ · ∥1, see e.g. Beck and Teboulle [2,
Proposition 5.1]. □

4. The Continuous-Time Analysis

Motivated by a technique introduced by Sorin [29] in the context of the exponen-
tial weight (EW) algorithm, we present in this section a continuous-time version of
the class of strategies of Section 2 and we derive a bound for the induced regret in
continuous time. This will then enable us to bound the actual discrete-time regret
by comparing the continuous- and discrete-time variants of this and the previous
section respectively.

In continuous time, instead of a sequence of payoff vectors (un)n⩾1 in V ∗, the
agent will be facing a measurable and locally integrable stream of payoff vectors
(ut)t∈R+

in V ∗. Hence, extending (3.10) to continuous time, we will consider the
process:

xc
t = Qh

(
ηt

∫ t

0

us ds

)
, (4.1)

where (ηt)t∈R+ is a positive, nonincreasing and piecewise continuous parameter,
while xc

t ∈ C denotes the agent’s action at time t given the history of payoff vectors
us, 0 ⩽ s < t.6

Our main result in this section is the following regret bound for (4.1):

Theorem 4.1. If h is a regularizer function on C and (ηt)t∈R+ is a positive, non-
increasing and piecewise continuous parameter, then, for every locally integrable
payoff stream (ut)t∈R+ in V ∗, we have:

max
x∈C

∫ t

0

⟨us|x⟩ ds−
∫ t

0

⟨us|xc
s⟩ ds ⩽ hmax − hmin

ηt
. (4.2)

Proof. Assume first that ηt is of class C1 and let yt = ηt
∫ t

0
us ds. Then, for all

x ∈ C and for all t ⩾ 0, Fenchel’s inequality gives:∫ t

0

⟨us|x⟩ ds =
⟨yt|x⟩
ηt

⩽ h∗(yt) + h(x)

ηt
⩽ h∗(yt)

ηt
+

hmax

ηt
. (4.3)

On the other hand, with xc
t = Qh(yt), we will also have by definition:

h∗(yt)

ηt
=

⟨yt|xc
t⟩ − h(xc

t)

ηt
=

∫ t

0

⟨us|xc
t⟩ ds− h(xc

t)

ηt
. (4.4)

Consider the function ϕ : (x, t) 7→
∫ t

0
⟨us|x⟩ ds − h(x)/ηt. For fixed t ⩾ 0, one can

check that xc
t maximizes ϕ(x, t), so we can apply the envelope theorem (see e.g.

Mas-Colell et al. [21, Theorem M.L.1]) to differentiate ϕ(xc
t , t) with respect to t:

d

dt

h∗(yt)

ηt
=

∂ϕ

∂t
(xc

t , t) = ⟨ut|xc
t⟩+

η̇t
η2t

h(xc
t) ⩽ ⟨ut|xc

t⟩+ hmin
η̇t
η2t

, (4.5)

6In the rest of the paper, we will consistently use n and k for discrete indices and s, t, . . . for
continuous ones.
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where we used the fact that, by assumption, η̇ ⩽ 0. Integrating (4.5) then yields

h∗(yt)

ηt
⩽ h∗(y0)

η0
+

∫ t

0

⟨us|xc
s⟩ ds+ hmin

∫ t

0

η̇s
η2s

ds =

∫ t

0

⟨us|xc
s⟩ ds− hmin

ηt
, (4.6)

where we have used the fact that h∗(y0) = h∗(0) = −hmin in the second step.
Hence, by combining this last equation with (4.3), we finally obtain:∫ t

0

⟨us|x⟩ ds ⩽
∫ t

0

⟨us|xc
s⟩ ds− hmin

ηt
+

hmax

ηt
, (4.7)

and our claim follows by taking the maximum of the left-hand side over x ∈ C.
If ηt is not smooth, let ηmt , m = 1, 2 . . . , be a sequence of positive and non-

increasing parameters of class C1 that converges pointwise to ηt. Then, if we let
ymt = ηmt

∫ t

0
us ds and xm

t = Qh(y
m
t ), we will also have xm

s → xc
s pointwise for all

s ∈ [0, t] by the continuity of Qh. By the dominated convergence theorem, this
implies that

∫ t

0
⟨us|xm

s ⟩ ds →
∫ t

0
⟨us|xc

s⟩ ds and our assertion follows by the bound
(4.7) for smoothly varying parameters. □

Remark 4. We should note here that the quantity δh = hmax − hmin in (4.2) can
be taken arbitrarily small so there is no “optimal” regret bound in continuous time.
That said, we shall see in the following section that smaller values of δh result in
greater disparities between continuous and discrete time, thus leading to a trade-off
for the regret in discrete time.

5. Regret Minimization in Discrete Time

In this section, our aim will be to provide a bound for the regret incurred by the
discrete-time strategy (3.10). To that end, our approach will be as follows: first,
given a positive nonincreasing parameter (ηn)n⩾1 and a sequence of payoff vectors
(un)n⩾1, we construct their continuous-time counterparts by setting

ut = u⌈t⌉ (5.1a)

and
ηt = η⌊t⌋∨1 (5.1b)

for all t ∈ R+ (i.e. ηt = η⌊t⌋ if t ⩾ 1 and ηt = η1 otherwise). Then, given a regu-
larizer h : C → R, we will compare the cumulative payoffs of the processes (xn)n⩾1

and (xc
t)t∈R+ that are generated by (3.10) and (4.1) in discrete and continuous

time respectively. In this way, the derived regret bound will consist of two terms:
one coming from the continuous-time bound (4.2), and a term coming from the
discrete/continuous comparison. Formally:

Theorem 5.1. Let h be a K-strongly convex regularizer on C and let (ηn)n⩾1

be a positive nonincreasing parameter. Then, for every sequence of payoff vectors
(un)n⩾1 in V ∗, the sequence of play

xn+1 = Qh

(
ηn

n∑
k=1

uk

)
(5.2)

generated by the strategy σ = (σh,ηn
n )n⩾1 of (3.10) guarantees the bound

max
x∈C

Regσ,un (x) ⩽ hmax − hmin

ηn
+

1

2K

n∑
k=1

ηk−1∥uk∥2∗, (5.3)
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where we have set η0 = η1. In particular, if ∥un∥∗ ⩽ M for some M > 0, then:

max
x∈C

Regσ,un (x) ⩽ hmax − hmin

ηn
+

M2

2K

n∑
k=1

ηk−1. (5.4)

Proof. Define the continuous-time interpolations of un and ηn as in (5.1) and let
yt = ηt

∫ t

0
us ds; Then, for the continuous-time process xc

t = Qh (yt) generated by
(4.1), we will have:

xn = Qh

(
ηn−1

n−1∑
k=1

uk

)
= xc

n−1, (5.5)

and hence, for k ⩾ 1 and t ∈ (k− 1, k), the payoffs corresponding to xc
t and xk will

differ by at most

| ⟨ut|xc
t⟩ − ⟨uk|xk⟩ | = |

⟨
uk

∣∣xc
t − xc

k−1

⟩
|

⩽ ∥uk∥∗∥Qh(yt)−Qh(yk−1)∥ ⩽ 1

K
∥uk∥∗ ∥yt − yk−1∥∗, (5.6)

where the last inequality follows from the 1/K-Lipschitz continuity of Qh (Corol-
lary 3.9). On the other hand, the definition of yt gives

∥yt − yk−1∥∗ =

∥∥∥∥ηk−1

∫ t

k−1

us ds

∥∥∥∥
∗
⩽ ηk−1∥uk∥∗(t− k + 1), (5.7)

which leads to the estimate:∣∣∣∣∣
∫ n

0

⟨ut|xc
t⟩ −

n∑
k=1

⟨uk|xk⟩

∣∣∣∣∣ ⩽
n∑

k=1

∫ k

k−1

| ⟨ut|xc
t⟩ − ⟨uk|xk⟩ | dt

⩽ 1

K

n∑
k=1

ηk−1∥uk∥2∗
∫ k

k−1

(t− k + 1) dt

=
1

2K

n∑
k=1

ηk−1∥uk∥2∗. (5.8)

In view of this discrete/continuous comparison, we thus obtain:

max
x∈C

n∑
k=1

⟨uk|x⟩ = max
x∈C

∫ t

0

⟨ut|x⟩ dt

⩽
∫ n

0

⟨ut|xc
t⟩ dt+

hmax − hmin

ηn

⩽
n∑

k=1

⟨uk|xk⟩+
1

2K

n∑
k=1

ηk−1∥uk∥2∗ +
hmax − hmin

ηn
, (5.9)

where the first inequality follows from Theorem 4.1 and the last one from (5.8); the
bounds (5.3) and (5.4) are then immediate. □

To get the optimal dependence of the bound (5.4) in n, both terms should scale
as

√
n (otherwise, one would be slower than the other). In this case, we get a bound

for the average regret which vanishes as O(n−1/2):
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Corollary 5.2. Let (un)n⩾1 be a sequence of payoff vectors in V ∗. Then, with
notation as in Theorem 5.1, the sequence of play

xn+1 = Qh

(√
K(hmax − hmin)

M2n

n∑
k=1

uk

)
(5.10)

guarantees the regret bound:

max
x∈C

Regσ,un (x) ⩽ 2M

√
hmax − hmin

K

(
1

4
+
√
n

)
. (5.11)

Proof. Set δh = hmax − hmin and ηn = η/
√
n with η = M−1

√
Kδh. Then:

n∑
k=1

ηk−1 = η + η

n−1∑
k=1

1√
k
⩽ η + η

∫ n−1

0

1√
t
dt ⩽ η

(
1 + 2

√
n
)
, (5.12)

so the bound (5.4) becomes:

δh
ηn

+
M2

2K

n∑
k=1

ηk−1 ⩽ δh
η

√
n+

M2η

2K

(
1 + 2

√
n
)
= 2M

√
δh
K

(
1

4
+
√
n

)
.

□

Remark 5. We should stress here that regret guarantees of the same order as (5.11)
can be obtained for the OMD/FtRL family of algorithms by optimizing the choice
of parameter over a finite learning horizon and then restarting the algorithm every
so often, using the doubling trick (Cesa-Bianchi et al. [9], Vovk [31]) to guarantee
a sublinear regret bound in the long run. The doubling trick may thus be seen
as a special case of a nonincreasing parameter; for the general case, the bounds
(5.3)/(5.4) describe in a precise way the impact of the variability of ηn on the
method’s regret guarantees (see also Section 6 for a more detailed discussion).

Remark 6. The dependence of η on δh, K and M in (5.11) has been chosen precisely
so as to minimize the expression

(
δh/η +M2η/K

)
over all η > 0.

Remark 7 (On the dependence on K and the choice of optimal h). The depen-
dence of the bound (5.11) on K is clearly artificial: (5.11) remains invariant if h
is rescaled by a positive constant, so it suffices to consider regularizer functions
that are 1-strongly convex over C. This then leads to the following question: given
a norm ∥ · ∥ on V and a compact convex subset C ⊂ V , which 1-strongly convex
function minimizes hmax − hmin? With the exception of the Euclidean norm, this
question does not seem to admit a trivial answer (cf. Section 7.1 for a more detailed
discussion).

By expressing the cumulative payoff gap between discrete- and continuous-time
exactly, Theorem 5.1 can be extended further to regularizer functions that are
not strongly convex over C. The only thing that changes in this case is that the
comparison term of the bound (5.4) is replaced by a term involving the Bregman
divergence associated with the convex conjugate h∗ of h.

The following result is a variable-parameter extension of Theorem 5.6 in Bubeck
and Cesa-Bianchi [6].
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Theorem 5.3. Let h be a regularizer function on C. Then, with notation as in
Theorem 5.1, the strategy σ = (σh,ηn

n )n⩾1 of (3.10) guarantees the regret bound:

max
x∈C

Regσ,un (x) ⩽ hmax − hmin

ηn
+

n∑
k=1

1

ηk−1
Dh∗(y−k , y

+
k−1), (5.13)

where we have set y+n = ηn
∑n

k=1 uk, y−n = ηn−1

∑n
k=1 uk and η0 = η1.

Proof. With notation as in the proof of Theorem 5.1, the variables y±n in the state-
ment of the theorem may be expressed more concisely as:

y±n = lim
t→n±

yt = lim
t→n±

ηt

∫ t

0

us ds, (5.14)

and hence, with ηt right-continuous, we get xn = Qh(yn−1) = Qh(y
+
n−1). Accord-

ingly, if xc
t = Qh(yt) denotes the continuous-time process generated by (4.1), then,

for all k ⩾ 1 and for all t ∈ (k − 1, k), we will have:

⟨ut|xc
t⟩−⟨uk|xk⟩ = ⟨ut|Qh(yt)⟩−

⟨
uk

∣∣Qh(y
+
k−1)

⟩
= ⟨uk|∇h∗(yt)⟩−

⟨
uk

∣∣∇h∗(y+k−1)
⟩
.

(5.15)
In this way, noting that ⟨ut|∇h∗(yt)⟩ is simply the derivative of h∗(yt)/ηk−1 for
t ∈ (k − 1, k), we obtain the following comparison over (k − 1, k):∫ k

k−1

⟨ut|xc
t⟩ dt− ⟨uk|xk⟩ =

∫ k

k−1

1

ηk−1

d

dt
(h∗(yt)) dt− 1

ηk−1

⟨
ηk−1uk

∣∣∇h∗(y+k−1)
⟩

=
1

ηk−1

(
h∗(y−k )− h∗(y+k−1)−

⟨
y−k − y+k−1

∣∣∇h∗(y+k−1)
⟩)

=
1

ηk−1
Dh∗

(
y−k , y

+
k−1

)
. (5.16)

In view of the above, the claim follows by summing this bound over k = 1, . . . , n
and plugging the resulting expression in the first inequality of (5.9) – which holds
independently of any assumptions on h. □

6. Links with Existing Results

In this section, we discuss how certain existing results in online optimization
and (stochastic) convex programming can be obtained as corollaries of the general
analysis of the previous sections.

6.1. Links with Known Online Optimization Algorithms.

6.1.1. The Exponential Weight Algorithm. The exponential weight (EW) algorithm
was introduced independently by Littlestone and Warmuth [19] and Vovk [30] as
a learning strategy in discrete time. Motivated by the approach of Sorin [29] who
used a continuous-time variant to retrieve the algorithm’s classical regret bounds,
we show here how the same bounds can be obtained directly from Theorem 5.1.

The framework of the EW algorithm is that of randomized action selection as in
Section 2.2. Specifically, let A = {1, . . . , d} be a finite set of pure actions, and let
the agent’s action set be the unit simplex C = ∆d of Rd – the latter being endowed
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with the ℓ1 norm ∥ · ∥1. In this context, the EW algorithm is defined as:
Un = Un−1 + un,

xi,n+1 =
eηUi,n∑d
j=1 e

ηUj,n

(EW)

where η > 0 is a (fixed) parameter and (un)n⩾1 is a sequence of payoff vectors in
[−1, 1]d (so that ∥un∥∞ ⩽ 1 in the induced dual norm).

Example 3.3 in Section 3.1 shows that (EW) corresponds to (3.10) with ηn = η

and h(x) =
∑d

i=1 xi log xi. Since hmax − hmin = log d and h is 1-strongly convex
with respect to ∥ · ∥1 (cf. Proposition 3.10), Theorem 5.1 readily yields the bound

max
a∈A

Regn(a) ⩽
log d

η
+

nη

2
. (6.1)

Additionally, if the time horizon n is known in advance, the optimal parameter
choice η =

√
2 log d/n leads to

max
α∈A

Regn(a) ⩽
√
2n log d, (6.2)

which, as far as the dependence on d and n is concerned, is the best possible bound
a strategy can guarantee in this framework – see e.g. Cesa-Bianchi and Lugosi [10,
Theorem 3.7].

Remark 8. By taking un ∈ [0, 1]d (as is often the case in the literature) and then
shifting to [−1/2, 1/2]d, Theorem 5.1 can be applied with M = 1/2. This yields
a factor of 1/8 in the second term of (6.1) and leads to the bound obtained by
Cesa-Bianchi [8] and Cesa-Bianchi and Lugosi [10].

6.1.2. The Exponential Weight Algorithm with ηn = 1/
√
n. Auer et al. [1] consid-

ered the following variant of (EW)
Un = Un−1 + un,

xi,n+1 =
eηUi,n/

√
n∑d

j=1 e
ηUj,n/

√
n
.

(EW′)

In our context, a direct application of Corollary 5.2 with M = K = 1 then gives

max
a∈A

Regn(a) ⩽ 2
√
n log d+

1

2

√
log d, (6.3)

a bound which, unlike (6.2), has the advantage of holding uniformly in time.

6.1.3. Smooth Fictitious Play. The smooth fictitious play (SFP) process was in-
troduced by Fudenberg and Levine [11] (see also Fudenberg and Levine [12] and
Fudenberg and Levine [13]), and its regret properties were examined further by Be-
naïm et al. [4] using the theory of stochastic approximation – but without providing
any quantitative bounds for the regret.

Just like the EW algorithm, SFP falls within the randomized actions framework
of Section 2.2. In particular, SFP corresponds to the sequence of play generated by
(3.10) for an arbitrary regularizer on ∆d and with parameter η/n for some η > 0 ;
specifically:

xn+1 = Qh

(
η

n

n∑
k=1

uk

)
. (SFP)
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With regards to the regret induced by (SFP), Benaïm et al. [4, Theorem 6.6] show
that for every ε > 0, there exists some η∗ ≡ η∗(ε) such that the strategy (SFP)
with parameter η ⩾ η∗ leads to ε-realized-regret. On the other hand, combining
Proposition 2.2 with Theorem 5.1 yields the following more precise statement:

Proposition 6.1. Let h be a K-strongly convex regularizer on the unit simplex
∆d ⊂ Rd endowed with the ℓ1 norm. Then, for every sequence of payoff vectors
(un)n⩾1 in [−1, 1]d, the strategy (SFP) with parameter η > 0 guarantees

max
a∈A

Regn(a) ⩽
hmax − hmin

η
n+

η log n

2K
+

η

K
. (6.4)

In particular, (SFP) with parameter η leads to (hmax − hmin)/η (realized) regret.

Proof. Simply combine the logarithmic growth estimate
∑n

k=1 k
−1 < 1 + log n for

the harmonic series and Theorem 5.1 with ηn = η/n; the claim for the realized
regret then follows from Proposition 2.2. □
Remark 9. It should be noted here that the qualitative analysis of Benaïm et al.
[4] does not require h to be strongly convex; that said, if h is strongly convex,
Proposition 6.1 gives a quantitative bound on the regret.

6.1.4. Vanishingly Smooth Fictitious Play. The variant of SFP known as vanish-
ingly smooth fictitious play (VSFP) was introduced by Benaïm and Faure [3], and
its regret properties were established using sophisticated tools from the theory of
differential inclusions and stochastic approximation – but, again, without providing
explicit regret bounds.

Using the same notation as before, VSFP corresponds to the sequence of play

xn+1 = Qh

(
ηn

n∑
k=1

uk

)
, (VSFP)

where h is a strongly convex regularizer on ∆d and the sequence ηn satisfies:
(A1) limn→∞ nηn = +∞.
(A2) ηn = O(n−α) for some α > 0.
Under these assumptions, the main result of Benaïm and Faure [3] is that (VSFP)
leads to no realized regret; in our framework, this follows directly from Proposition
2.2 and Theorem 5.1 (which also gives a quantitative regret guarantee):

Proposition 6.2. With notation as in Proposition 6.1, the strategy (VSFP) with
ηn satisfying assumptions (A1) and (A2) guarantees the regret bound

max
a∈A

1

n
Regn(a) ⩽

hmax − hmin

nηn
+

1

2nK

n∑
k=1

ηk−1, (6.5)

and thus leads to no regret. In particular, if ηn = ηn−α for some α ∈ (0, 1), then:

max
a∈A

1

n
Regn(a) ⩽

hmax − hmin

ηn1−α
+

ηn−α

2(1− α)K
+

η

2Kn
. (6.6)

Proof. The bound (6.5) is an immediate corollary of Theorem 5.1; the no-regret
property then follows from Assumptions (A1) and (A2). Finally, if ηn = ηn−α, we
get

n∑
k=1

ηk−1 = 1 +
n−1∑
k=1

k−α ⩽ 1 +

∫ n−1

0

t−α dt = 1 +
n1−α

1− α
, (6.7)
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and (6.6) follows by substituting the above in (6.5). □

Remark 10. If we take h(x) =
∑d

i=1 xi log xi and α = 1/2, (VSFP) boils down to
(EW′); the bound (6.3) then also follows from (6.6).

6.1.5. Online Gradient Descent. The online gradient descent (OGD) algorithm was
introduced by Zinkevich [32] in the context of online convex optimization that we
described in Section 2.3 – see also Bubeck [7, Section 4.1]. Here, we focus on a so-
called lazy variant (Shalev-Shwartz [28, p. 144]) defined by means of the recursion

Un ∈ Un−1 − η ∂ℓn(xn),

xn+1 = argmin
x∈C

∥x− Un∥2, (OGD-L)

where ℓn : C → R is a sequence of M -Lipschitz loss functions, η > 0 is a constant
parameter, and the algorithm is initialized with U0 = 0.

In view of Example 3.4, (OGD-L) corresponds to the strategy σ = (σh,η
n )n⩾1

generated by the Euclidean regularizer h on C – defined itself as in (3.5). Theorem
5.1 thus yields the regret bound:

max
x∈C

1

n
Regn(x) ⩽

δ2C
2nη

+
ηM2

2
(6.8)

with δ2C = maxx∈C ∥x∥22−minx∈C ∥x∥22. Accordingly, if the time horizon n is known
in advance, the optimal choice for η is η = δC/(M

√
n), leading to a cumulative regret

guarantee of MδC
√
n, which is essentially the bound derived by Shalev-Shwartz [28,

Corollary. 2.7] (see also Bubeck [7, Theorem 3.1] for the greedy variant).7

6.1.6. Online Mirror Descent. The family of (lazy) online mirror descent (OMD)
algorithms studied by Shalev-Shwartz [27, 28] is the most general family of strate-
gies that we discuss in this section (see also Bubeck [7] for a greedy version). In
particular, the OMD class of strategies contains EW and OGD as special cases,
and it is also equivalent to the family of Follow the Regularized Leader (FtRL)
algorithms in the case of linear payoffs (Shalev-Shwartz [28], Hazan [16]).

Following Shalev-Shwartz [28] (and with notation as in Section 2.3), let ℓn : C →
R be a sequence of convex functions which are M -Lipschitz with respect to some
norm ∥·∥ on Rd. Then, given a regularizer function h on C, the lazy OMD algorithm
is defined by means of the recursion:

Un ∈ Un−1 − η ∂ℓn(xn),

xn+1 = Qh(Un),
(OMD-L)

where η > 0 is a fixed parameter and the algorithm is initialized with U0 = 0. As a
result, if h is taken K-strongly convex with respect to ∥·∥, Theorem 5.1 immediately
yields the known regret bound for OMD:

max
x∈C

Regn(x) ⩽
hmax − hmin

η
+

ηM2n

2K
. (6.9)

7For the difference between lazy and greedy variants, see Section 7.2.
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6.2. Links with Convex Optimization. Ordinary convex programs can be seen
as online optimization problems where the loss function remains constant over time
and the agent seeks to attain its minimum value. In what follows, we outline
how regret-minimizing strategies can be used for this purpose and we describe the
performance gap incurred by using a method with a variable step-size instead of a
variable parameter.

Let f : C → R be a convex real-valued function on C and let (γn)n⩾1 be a positive
sequence (which we will later interpret as a sequence of step-sizes); also, given a
sequence (xn)n⩾1 in C, let

xmin
n ∈ argmin

1⩽k⩽n
f(xk), xγ

n =

∑n
k=1 γkxk∑n
k=1 γk

. (6.10)

If we use the notation x′
n ∈ {xmin

n , xγ
n} to refer interchangeably to either xmin

n or
xγ
n, Jensen’s inequality readily gives:

f(x′
n) ⩽

∑n
k=1 γkf(xk)∑n

k=1 γk
. (6.11)

Now consider the algorithm:
Un ∈ Un−1 − γn∂f(xn),

xn+1 = Qh(ηnUn),
(6.12)

where γn is a sequence of step sizes and ηn is a sequence of parameters. In the case
of a constant parameter ηn = 1, (6.12) then becomes

Un ∈ Un−1 − γn∂f(xn),

xn+1 = Qh(Un).
(MD-L)

which is a lazy variant of the mirror descent (MD) algorithm (Nemirovski and Yudin
[23]). In particular, if h is the Euclidean regularizer on C, the algorithm boils down
to a lazy version of the standard projected subgradient (PSG) method:

Un ∈ Un−1 − γn∂f(xn),

xn+1 = argmin
x∈C

∥x− Un∥2. (PSG-L)

The following corollary shows that these lazy versions guarantee the same value
convergence bounds as the corresponding greedy variants — see e.g. Beck and
Teboulle [2, Theorem 4.1].

Corollary 6.3 (Constant parameter, variable step size). Let f : C → R be an
M -Lipschitz convex function and let (xn)n⩾1 be the sequence of play generated by
(MD-L) for some K-strongly convex regularizer h on C. Then, the adjusted iterates
x′
n ∈ {xmin

n , xγ
n} of xn satisfy:

f(x′
n) ⩽ fmin +

hmax − hmin + 1
2M

2K−1
∑n

k=1 γ
2
k∑n

k=1 γk
. (6.13)

Proof. With σ = (σh,ηn
n )n⩾1, uk ∈ −γk∂f(xk) and x′

n ∈ {xmin
n , xγ

n}, we have:

Regσ,un (x) =

n∑
k=1

⟨uk|x− xk⟩ ⩾ −
n∑

k=1

γk
(
f(x)− f(xk)

)
⩾

n∑
k=1

γk ·
(
f(x′

n)− f(x)
)
,

(6.14)
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where the last step follows from (6.11). By taking x ∈ argmin f , we then obtain:

f(x′
n)− fmin ⩽ Regσ,un (x)∑n

k=1 γk
. (6.15)

The result then follows by applying Theorem 5.1 and using the fact that ∥uk∥∗ ⩽
∥γk∂f(xk)∥∗ ⩽ γkM (recall that f is M -Lipschitz continuous). □

One can see that the best convergence rate that we get with constant η and
step-sizes of the form γn ∝ n−α is O(log n/

√
n) for α = 1/2 (and there is no

straighforward choice of γn leading to a better convergence rate). On the other
hand, by taking a constant step-size γn = 1 and varying the algorithm’s parameter
ηn ∝ n−1/2, we do achieve an O(n−1/2) rate of convergence.

Corollary 6.4 (Constant step size, variable parameter). With notation as in Corol-
lary 6.3, let (xn)n⩾1 be the sequence of play generated by (6.12) with

ηn =
1

M

√
K(hmax − hmin)

n
, (6.16)

and constant γn = 1. Then, the adjusted iterates x′
n ∈ {xmin

n , xγ
n} of xn guarantee

f(x′
n) ⩽ fmin + 2M

√
hmax − hmin

K

(
1√
n
+

1

4n

)
. (6.17)

Proof. Similar to the proof of Corollary 6.3. □
6.3. Noisy Observations and Links with Stochastic Convex Optimization.
Assume that at every stage n = 1, 2, . . . of the decision process, the agent does not
observe the actual payoff vector un ∈ V ∗, but the realization of a random vector
ũn with E

[
ũn|ũn−1, . . . , ũ1

]
= un. In this case, a learning strategy σ can be

used with the observed vectors ũn, thus leading to a (random) sequence of play
x̃n+1 = σn+1(ũ1, . . . , ũn) – see e.g. Shalev-Shwartz [28, Section 4.1] for a model of
this kind.

In this framework, the agent’s (maximal) cumulative regret will be given by

max
x∈C

n∑
k=1

⟨uk|x− x̃k⟩ . (6.18)

On the other hand,
∑n

k=1 ⟨ũk|x− x̃k⟩ can be interpreted as the agent’s cumulative
regret against the observed payoff sequence (ũn)n⩾1. Thus, if h is a K-strongly
convex regularizer on C and ∥ũk∥∗ ⩽ M (a.s.), Theorem 5.1 yields:

E

[
max
x∈C

n∑
k=1

⟨uk|x− x̃k⟩

]
= max

x∈C

n∑
k=1

[E ⟨ũk|x− x̃k⟩ − E ⟨ũk − uk|x− x̃k⟩] ⩽ Rn,

(6.19)
where Rn is the regret guarantee of (5.4) and we have used the easily verifiable
fact that E[⟨ũk − uk|x̃k − x⟩] = 0 (recall that E[ũk|ũk−1, . . . , ũ1] = 0 and that x̃k

only depends on ũk−1, . . . , ũ1). This bound is of the same form as that of e.g.
Shalev-Shwartz [28, Theorem 4.1]; furthermore, by the strong law of large numbers
for martingale differences (Hall and Heyde [14, Theorem 2.18]), we also obtain the
stronger statement that

max
x∈C

n∑
k=1

⟨uk|x− x̃k⟩ ⩽ Rn + o(n) (a.s.), (6.20)
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i.e., if the parameter ηn is suitably chosen, then the strategy (3.10) with noisy
observations still leads to no regret (a.s.).

The above can be adapted to the framework of stochastic convex optimization as
follows: let f : C → R be a Lipschitz convex function on C, let (γn)n⩾1 be a positive
sequence of step sizes, and consider the strategy σ generated by (3.10) with η = 1
and h a K-strongly convex regularizer on C. Then, the sequence of play

x̃n+1 = σn+1(−γ1g̃1, . . . ,−γng̃n) = Qh

(
−

n∑
k=1

γkg̃k

)
(6.21)

where g̃n is a random vector with E
[
g̃n|g̃n−1, . . . , g̃1

]
∈ ∂f(x̃n) may be written

recursively as:
Ũn ∈ Ũn−1 − γn∂f(x̃n),

x̃n+1 = Qh(Ũn).
(MDSA-L)

This algorithm may be seen as a lazy version of the so-called mirror descent
stochastic approximation (MDSA) process of Nemirovski et al. [22]; in particular,
using the Euclidean regularizer leads to the lazy stochastic projected subgradient
(SPSG) method:

Ũn ∈ Ũn−1 − γn∂f(x̃n),

x̃n+1 = argmin
x∈C

∥x− Ũn∥2.
(SPSG-L)

Setting un = −γngn, ũn = −γng̃n and taking x̃′
n ∈ {x̃min

n , x̃γ
n} as before, Corol-

lary 6.3 combined with our previous discussion then gives:

E [f(x̃′
n)− f(x)] ⩽ 1∑n

k=1 γk

n∑
k=1

E ⟨uk|x− x̃k⟩

⩽
hmax − hmin + 1

2M
2K−1

∑n
k=1 γ

2
k∑n

k=1 γk
, (6.22)

which is essentially the same value guarantee as that of greedy MDSA (Nemirovski
et al. [22, Eq. 2.41]).

7. Discussion

7.1. On the optimal choice of h. As mentioned in the discussion after Corollary
5.2, the following open question arises: given a norm ∥ · ∥ on V and a compact,
convex subset C ⊂ V , which 1-strongly convex regularizer on h : C → R has minimal
depth δh = hmax − hmin?

As the following proposition shows, in the case of the Euclidean norm on V , this
minimal depth is half the radius squared of the smallest enclosing sphere of C:

Proposition 7.1. Let h : C → R be a 1-strongly convex regularizer function on C
with respect to the ℓ2 norm ∥ · ∥2 on V . Then:

hmax − hmin ⩾ 1

2
min
x′∈C

max
x∈C

∥x′ − x∥22, (7.1)

and equality is attained by taking

h(x) =

{
1
2∥x− x0∥22 if x ∈ C,
+∞ otherwise,

(7.2)
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algorithm C h(x) ηn input norm

EW ∆d

∑
i xi log xi constant un ℓ1

EW′ ∆d

∑
i xi log xi η/

√
n un ℓ1

SFP ∆d any η/n un ℓ1

VSFP ∆d any ηn−α (0 < α < 1) un ℓ1

OGD-L any 1
2 ∥x∥

2
2 constant −∇fn(xn) ℓ2

OMD-L any any constant −∇fn(xn) any

PSG-L any 1
2 ∥x∥

2
2 1 −γn∇f(xn) ℓ2

MD-L any any 1 −γn∇f(xn) any

MDSA-L any any 1 −γn(∇f(xn) + ξn) any

SPSG-L any 1
2 ∥x∥

2
2 1 −γn(∇f(xn) + ξn) ℓ2

Table 1. Summary of the algorithms discussed in Section 6. The suffix “L”
indicates a “lazy” variant; the input column stands for the stream of payoff
vectors which is used as input for the algorithm and the norm column specifies
the norm of the ambient space; finally, ξn represents a zero-mean stochastic
process with values in Rd.

where x0 ∈ argminx′∈C maxx∈C ∥x′ − x∥22 is the center of the smallest enclosing
sphere of C.

Proof. Letting x1 ∈ argminx∈C h(x) and x2 ∈ argmaxx∈C ∥x−x1∥22, we readily get:

hmax − hmin ⩾ h(x2)− h(x1)

⩾ 1

2
∥x2 − x1∥22 =

1

2
max
x∈C

∥x− x1∥22 ⩾ 1

2
min
x′∈C

max
x∈C

∥x− x′∥22, (7.3)

where the second inequality follows from the strong convexity of h and the fact that
∂h(x1) ∋ 0. That (7.2) attains the bound (7.1) is then a trivial consequence of its
definition, as is its geometric characterization. □

Despite the simplicity of the bound (7.1), this analysis does not work for an
arbitrary norm because 1

2 ∥x− x0∥2 might fail to be 1-strongly convex with respect
to ∥ · ∥ – for instance, ∥x− x0∥21 is not even strictly convex.

7.2. Greedy versus Lazy. To illustrate the difference between lazy and greedy
variants, we first focus on the PSG method run with constant step γ = 1 for a
smooth function f : C → R. The two variants may then be expressed by means of
the recursions:

an = xn −∇ f(xn)

xn+1 = argmin
x∈C

∥x− an∥2 (7.4a)
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Figure 1. Graphical illustration of the greedy (dashed) and lazy
(solid) branches of the projected subgradient (PSG) method.

..V .

V ∗

.xn.

∇F (xn)

.

zn = ∇F (xn)−∇f(xn)

. an = ∇F ∗(zn). xn+1 = prCF (an)

.

. . .

(a) Greedy Mirror Descent

..V .

V ∗

.

yn

.xn+1 = Qh(yn).

yn+1 = yn −∇f(xn+1)

. xn+2 = Qh(yn+1).

. . .

(b) Lazy Mirror Descent

Figure 2. Greedy and Lazy Mirror Descent with γn = 1.

for the greedy version and:

yn = yn−1 −∇ f(xn)

xn+1 = argmin
x∈C

∥x− yn∥2 (7.4b)

for the lazy one.
As can be seen in Fig. 1, the greedy variant is based on the classical idea of

gradient descent, i.e. adding −∇ f(xn) to xn and projecting back to C if needed.
On the other hand, in the lazy variant, the gradient term −∇ f(xn) is not added
to xn, but to the “unprojected” iterate yn; we only project to C in order to obtain
the algorithm’s next iterate. Owing to this modification, the lazy variant is thus
driven by the sum yn =

∑n
k=1 ∇ f(xn).
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In the case of mirror descent with an arbitrary regularizer function h, the lazy
version has an implementation advantage over its greedy counterpart. Specifically,
given a proper convex function F such that F = h on C (cf. Example 3.5), greedy
mirror descent is defined as:

an = ∇F ∗ (∇F (xn)−∇ f(xn)) ,

xn+1 = prCF (an),
(7.5a)

where the Bregman projection prCF (an) is given by (3.8); on the other hand, lazy
MD is defined as

yn = yn−1 −∇ f(xn),

xn+1 = Qh(yn).
(7.5b)

The computation steps for each variant are represented in Figure 2. The first step
in the greedy version which consists in computing ∇F has no equivalent in the lazy
version, which is thus computationally more lightweight.

References

[1] Auer, Peter, Nicolò Cesa-Bianchi, Claudio Gentile. 2002. Adaptive and self-confident on-line
learning algorithms. Journal of Computer and System Sciences 64(1) 48–75.

[2] Beck, Amir, Marc Teboulle. 2003. Mirror descent and nonlinear projected subgradient meth-
ods for convex optimization. Operations Research Letters 31(3) 167–175.

[3] Benaïm, Michel, Mathieu Faure. 2013. Consistency of vanishingly smooth fictitious play.
Mathematics of Operations Research 38(3) 437–450.

[4] Benaïm, Michel, Josef Hofbauer, Sylvain Sorin. 2006. Stochastic approximations and differ-
ential inclusions, part II: Applications. Mathematics of Operations Research 31(4) 673–695.

[5] Bregman, Lev M. 1967. The relaxation method of finding the common point of convex sets
and its application to the solution of problems in convex programming. USSR Computational
Mathematics and Mathematical Physics 7(3) 200–217.

[6] Bubeck, S, N Cesa-Bianchi. 2012. Regret analysis of stochastic and nonstochastic multi-armed
bandit problems. Foundations and trends in machine learning 5(1) 1–122.

[7] Bubeck, Sébastien. 2011. Introduction to online optimization. Lecture Notes.
[8] Cesa-Bianchi, Nicolò. 1997. Analysis of two gradient-based algorithms for on-line regression.

COLT ’97: Proceedings of the 10th Annual Conference on Computational Learning Theory.
163–170.

[9] Cesa-Bianchi, Nicolò, Yoav Freund, David Haussler, David P. Helmbold, Robert E. Schapire,
Manfred K. Warmuth. 1997. How to use expert advice. Journal of the ACM 44(3) 427–485.

[10] Cesa-Bianchi, Nicolò, Gábor Lugosi. 2006. Prediction, Learning, and Games. Cambridge
University Press.

[11] Fudenberg, Drew, David K. Levine. 1995. Consistency and cautious fictitious play. Journal
of Economic Dynamics and Control 19(5-7) 1065–1089.

[12] Fudenberg, Drew, David K. Levine. 1998. The Theory of Learning in Games, Economic
learning and social evolution, vol. 2. MIT Press, Cambridge, MA.

[13] Fudenberg, Drew, David K. Levine. 1999. Conditional universal consistency. Games and
Economic Behavior 29(1) 104–130.

[14] Hall, P., C. C. Heyde. 1980. Martingale Limit Theory and Its Application. Probability and
Mathematical Statistics, Academic Press, New York.

[15] Hannan, James. 1957. Approximation to Bayes risk in repeated play. Melvin Dresher, Al-
bert William Tucker, P. Wolfe, eds., Contributions to the Theory of Games, Volume III ,
Annals of Mathematics Studies, vol. 39. Princeton University Press, Princeton, NJ, 97–139.

[16] Hazan, Elad. 2012. A survey: The convex optimization approach to regret minimization.
Sebastian Nowozin Suvrit Spa, Stephen J. Wright, eds., Optimization for Machine Learning.
MIT Press, 287–304.

[17] Hofbauer, Josef, William H. Sandholm. 2002. On the global convergence of stochastic ficti-
tious play. Econometrica 70(6) 2265–2294.

[18] Kakade, Sham M., Shai Shalev-Shwartz, Ambuj Tewari. 2012. Regularization techniques for
learning with matrices. The Journal of Machine Learning Research 13 1865–1890.



24 J. KWON AND P. MERTIKOPOULOS

[19] Littlestone, Nick, Manfred K. Warmuth. 1994. The weighted majority algorithm. Information
and Computation 108(2) 212–261.

[20] Mannor, Shie, Vianney Perchet. 2013. Approchability, fast and slow. Journal of Machine
Learning Research: Workshop and Conference Proceedings 30 1–16.

[21] Mas-Colell, Andreu, Michael D. Whinston, Jerry R. Green. 1995. Microeconomic Theory.
Oxford University Press, New York, NY, USA.

[22] Nemirovski, Arkadi Semen, Anatoli Juditsky, Guangui (George) Lan, Alexander Shapiro.
2009. Robust stochastic approximation approach to stochastic programming. SIAM Journal
on Optimization 19(4) 1574–1609.

[23] Nemirovski, Arkadi Semen, David Berkovich Yudin. 1983. Problem Complexity and Method
Efficiency in Optimization. Wiley, New York, NY.

[24] Nesterov, Yurii. 2009. Primal-dual subgradient methods for convex problems. Mathematical
Programming 120(1) 221–259.

[25] Rockafellar, R. Tyrrell. 1970. Convex Analysis. Princeton University Press, Princeton, NJ.
[26] Rockafellar, Ralph Tyrrell, Roger J. B. Wets. 1998. Variational Analysis, A Series of Com-

prehensive Studies in Mathematics, vol. 317. Springer-Verlag, Berlin.
[27] Shalev-Shwartz, Shai. 2007. Online learning: Theory, algorithms, and applications. Ph.D.

thesis, Hebrew University of Jerusalem.
[28] Shalev-Shwartz, Shai. 2011. Online learning and online convex optimization. Foundations

and Trends in Machine Learning 4(2) 107–194.
[29] Sorin, Sylvain. 2009. Exponential weight algorithm in continuous time. Mathematical Pro-

gramming 116(1) 513–528.
[30] Vovk, Volodimir G. 1990. Aggregating strategies. COLT ’90: Proceedings of the Third

Workshop on Computational Learning Theory. 371–383.
[31] Vovk, Volodimir G. 1995. A game of prediction with expert advice. COLT ’95: Proceedings

of the 8th Annual Conference on Computational Learning Theory. 51–60.
[32] Zinkevich, Martin. 2003. Online convex programming and generalized infinitesimal gradient

ascent. ICML ’03: Proceedings of the 20th International Conference on Machine Learning.

Institut de Mathématiques de Jussieu, Université Pierre-et-Marie-Curie (UPMC),
Paris, France

E-mail address: joon.kwon@ens-lyon.org

URL: http://www.math.jussieu.fr/~kwon/

French National Center for Scientific Research (CNRS) and Laboratoire d’In-
formatique de Grenoble, Grenoble, France

E-mail address: panayotis.mertikopoulos@imag.fr

URL: http://mescal.imag.fr/membres/panayotis.mertikopoulos/home.html

http://www.math.jussieu.fr/~kwon/
http://mescal.imag.fr/membres/panayotis.mertikopoulos/home.html

	1. Introduction
	2. The Model
	3. Regularizer Functions, Choice Maps and Learning Strategies
	4. The Continuous-Time Analysis
	5. Regret Minimization in Discrete Time
	6. Links with Existing Results
	7. Discussion
	References

