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Pathogen sequence data have been exploited to infer who infected whom, by

using empirical and model-based approaches. Most of these approaches

exploit one pathogen sequence per infected host (e.g. individual, household,

field). However, modern sequencing techniques can reveal the polymorphic

nature of within-host populations of pathogens. Thus, these techniques pro-

vide a subsample of the pathogen variants that were present in the host at

the sampling time. Such data are expected to give more insight on epidemio-

logical links than a single sequence per host. In general, a mechanistic

viewpoint to transmission and micro-evolution has been followed to infer

epidemiological links from these data. Here, we investigate an alternative

approach grounded on statistical learning. The idea consists of learning

the structure of epidemiological links with a pseudo-evolutionary model

applied to training data obtained from contact tracing, for example, and

using this initial stage to infer links for the whole dataset. Such an approach

has the potential to be particularly valuable in the case of a risk of erroneous

mechanistic assumptions, it is sufficiently parsimonious to allow the hand-

ling of big datasets in the future, and it is versatile enough to be applied

to very different contexts from animal, human and plant epidemiology.

This article is part of the theme issue ‘Modelling infectious disease out-

breaks in humans, animals and plants: approaches and important themes’.

This issue is linked with the subsequent theme issue ‘Modelling infectious

disease outbreaks in humans, animals and plants: epidemic forecasting

and control’.

1. Introduction
In order to most effectively predict and control the spread of infectious diseases,

we need to better understand how pathogens spread within and between host

populations and assess the role of the environment in the transmissions. The

question how do pathogens spread? can be understood in many ways. Here, we

consider the case where we observe numerous host units infected by an ende-

mic or epidemic infectious disease, and the question of how do pathogens spread?
translates into who infected whom? or who is closely related to whom? in the disease

transmission dynamics. Host units typically designate individuals but can also

designate groups such as households, premises and agricultural fields.

For fast-evolving pathogens, numerous approaches exploiting pathogen

sequence data have been developed with the aim of inferring who infected

whom or who is closely related to whom. These approaches are grounded on a

wide variety of principles, from those based on statistical metrics to those
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based on a mechanistic modelling of pathogen transmission

and micro-evolution. For instance, transmission links can be

inferred by identifying specific variants shared by different

hosts or minimizing differences in single nucleotide poly-

morphisms (SNP) [1–3], by combining minimal genetic

distances between intra-host viral populations and properties

of social networks relevant to pathogen spread [4], by apply-

ing methods based on phylogeny, phylogeography and

some forms of birth–death processes [5–14], or by using

methods based on joint models of epidemiological dynamics

and evolutionary processes [15–21]. Initially, model-based

approaches mostly exploited a single pathogen sequence per

host. Nevertheless, the progress of sequencing techniques

revealing the within-host genetic polymorphism of pathogens

fostered the development of model-based approaches

accounting for the generation of within-host diversity and/

or leveraging the information provided by sets of sequences

sampled from hosts [4–7,9,14,20].

Approaches based on a mechanistic vision of transmission

and micro-evolutionary processes are the most obvious direc-

tion to follow for inferring epidemiological links between

host units. Indeed, mechanistic assumptions underlying these

approaches act as relevant constraints, which are expected to

guide the inference. However, statistical learning techniques

[22] adapted to the inference of epidemiological links should

also be developed, in particular (i) when mechanistic assump-

tions could be inadequate and, therefore, misleading, (ii) when

sequence data do not accurately reflect the within-host patho-

gen population because of sequencing bias or errors and (iii)

when a fast method is required to tackle big datasets in terms

of number of hosts, sequencing depth and sequence length.

Here, we propose a statistical learning approach for esti-

mating epidemiological links from deep sequencing data

(called SLAFEEL), which is based on a parsimonious semi-

parametric pseudo-evolutionary model. This model

is designed as a regression function where the response

variable is the set of sequences S observed from a recipient

host unit and the explanatory variable is the set of sequences

S0 observed from a putative source. The coefficients of

the regression are weights measuring how much each sequence

in S0 contributes to explaining each sequence in S. These

weights account for the gain and loss of virus variants

during within-host evolution and their loss during between-

host transmission. The model is semi-parametric because it

depends both on parameters and on a kernel smoother (a

tool from non-parametric statistics), which accounts for

unsampled sequences in the source of infection, the evolution

of new viral variants and potential sequencing errors. The

model is pseudo-evolutionary because, even if it does

not explicitly model evolutionary processes, it contains terms

that macroscopically reflect these processes. From this model,

we built a penalized pseudo-likelihood, which is used for

selecting who infected whom (or who is closely related to

whom). Two hypotheses (H1 and H2) were considered for

the penalization. H1: The penalization assesses whether the

contributions of sequences in S0 to explain sequences in S are

homogeneous (two penalization shapes were introduced

in this case: H1-normal and H1-x2). H2: The penalization

assesses whether the distance between sequences in S and

their contributing sequences in S0 is consistent with some

known features, e.g. with an expected value for this distance

(one penalization shape was introduced in this case: H2-

normal). In both cases, a penalization parameter measures
the strength of the penalization, and this parameter is

calibrated with training data. In the epidemiological contexts

tackled in this study, training data consist of contact tracing

(who has been in contact with whom) or geographical dis-

tances between host units (that can be viewed as a contact

proxy). Contact information has to be available only for a

subset of hosts, hereafter called training hosts. Finally, for each

putative donor–recipient pair, our method provides a link

intensity measuring whether the set S0 collected from the puta-

tive donor likely explains the set S collected from the recipient.

In addition, the link intensities can enable an assessment of the

uncertainty of the reconstruction of donor–recipient links.

In what follows, we pave the way for this statistical learning

approach aiming at inferring transmissions of infectious

diseases (caused by fast-evolving pathogens) from deep

sequencing data, and we apply it to three real cases in

animal, human and plant epidemiology. The animal case

study concerns swine influenza virus (SIV) and here serves

as a test study since the transmission chain is partly known.

The human case study, dealing with Ebola, is a particularly

challenging situation since little diversity is observed in the

pathogen population and limited contact tracing information

is available. The plant case study concerns a potyvirus of

wild salsify transmitted by aphids where the host unit is the

meadow. In this latter application, we are more interested in

estimating who is closely related to whom than who infected

whom. The generic nature of SLAFEEL allows dealing with

diverse epidemiological situations and sequencing procedures,

as illustrated by the three case studies and in §3 of this article.
2. Results
(a) Tracing experimental swine influenza outbreaks
The first dataset was generated from an experimentally

controlled transmission chain of SIV in pigs with different

immunological histories (naive and vaccinated; [2]). For each

chain, pairs of pigs were successively settled in an experimental

enclosure, with a temporal overlap between the arrival of the

new pair and the departure of the preceding pair to allow

the virus to be transmitted. Thus, the infection pathways are

partly known and will be used to assess the efficiency of SLA-

FEEL. For each pig, the virus population was sampled on a

daily basis, and multiple clones of the hemagglutinin gene

were sequenced using a capillary approach (Sanger sequen-

cing). The naive chain consisted of five pairs of pigs from

which 21 samples of the viral populations were collected

with multiple time points for eight pigs. The vaccinated

chain consisted of seven groups of pigs from which 29 samples

of the viral populations were collected with multiple time

points for seven pigs. Further details about the SIV dataset

are provided in electronic supplementary material, table S1.

Transmission chains were inferred for the two experimen-

tal outbreaks with SLAFEEL. The penalization was calibrated

for each outbreak with contact information from two training
hosts, which were either the two pigs of the last group of

the outbreak or a pig from the third group and a pig from

the fourth group. The training hosts and the hosts with

which they have been in contact, including the host in the

same group, are detailed in electronic supplementary

material, table S2. For this application, we chose the H1-

normal penalization (see §4b) that led to higher consistency

between contact information and inferred transmissions.
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For each host, the response set of sequences was the first

sample collected from this host, and the potential explanatory
sets of sequences were every sample collected earlier or at the

same time from all the other hosts.

Figure 1 shows transmissions inferred with SLAFEEL

for the naive and vaccinated chains. For the naive chain,

we observe rather consistent estimations with the two

pairs of training hosts, even if we observe variation in

secondary links with low intensities displayed with thin

arrows (the link intensity measures the likelihood of the

link; see §4c). By contrast, for the vaccinated chain, the train-

ing hosts have an impact on the inference. Indeed, the use of

training hosts in the last group leads to the identification

of many indirect links as transmissions, whereas the use
of training hosts in the middle of the chain reduces this

shortcoming (even if the sources for hosts 403, 406, 412 and

414 remain inadequately inferred). Electronic supplementary

material, figure S1 shows how this uncertainty is also

reduced by adding a third training host to the last group.

Using more contact information allows a finer calibration

of the penalization (electronic supplementary material,

figure S2) and, consequently, a more accurate resolution

of transmissions. Moreover, the advantage of introducing

a penalization is clearly illustrated by electronic supplemen-

tary material, figure S3, which displays transmissions

estimated without penalization: for the naive chain, host

113 is erroneously identified as the source of infection of

numerous hosts.
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(b) Inferring Ebola epidemiological links despite low
pathogen diversity

In this section, we analyse the dataset generated during the

2014 Ebola virus disease (EVD) outbreak in Sierra Leone

[23]. We were able to include in our analysis 58 confirmed

EVD patients, from which within-host populations of the

virus were collected and sequenced. This number of patients

represents nearly 50% of the EVD patients diagnosed in

Sierra Leone from late May to mid-June. Viral populations

were sequenced using the Nextera library construction

method and Illumina sequencing and the haplotypes were

estimated in a sliding window of 1000 bases every 500

bases using Predict-Haplo [24].

More details about the Ebola dataset are provided in

electronic supplementary material, table S1. Here, we

simply highlight the rather low pathogen diversity that

was observed: on average, 16.1 haplotypes per fragment of

1000 bases were identified for the 58 patients included

in the analysis (s.d. ¼ 8.0), and 1.37 haplotypes per fragment

of 1000 bases per patient (s.d. ¼ 0.64).

Epidemiological links between patients were inferred by

calibrating the penalization with contact tracing published

in [25]. We were able to use five donor–recipient training
pairs identified with contact tracing (see electronic sup-

plementary material, table S2), four of them having the
same putative donor. For this application, we chose the H2-

normal penalization (see §4b), which led to higher consist-

ency between contact information and inferred

transmissions in a situation where observed pathogen popu-

lations show relatively low levels of diversity. Several

samples were available for some of the patients collected at

different time points [23]. These samples were merged in

our analysis to increase the within-host sequence diversity.

In addition, we applied the statistical learning approach sep-

arately for 31 partly overlapping fragments of 1000

nucleotides, and we aggregated the results for reconstructing

the epidemiological links. For each host, potential sources

were inferred among patients observed earlier than or at

the same time as the target host (point discussed in §3).

Because of the reduced pathogen diversity, the inferred

intensities of epidemiological links are generally quite low

(figure 2a) and multiple sources for any host are plausible

(except those at the earlier time points of sampling

for which only a few potential sources are allowed). Thus,

source identification is quite uncertain. Figure 2b– f shows

the distributions of the link intensities with plausible sources

for the five recipients in the training data, and give the ranks

of their sources identified with contact tracing. The intensities

and ranks were inferred with a leave-one-out cross-validation

approach (i.e. the host of interest in each panel is removed

from the training data when one infers its source and the
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rank of its donor based on contact-tracing). The donors

identified with contact tracing are well ranked for patients

G3820, G3821, G3823 and G3851, but not for G3817. The

pathogen population collected from the latter patient is

actually quite different from the population observed in

its putative donor G3729 (see electronic supplementary

material, table S3, and the Ebola phylogeny built from the

consensus sequences [26]). Thus, the epidemiological link

between G3817 and G3729 could be revisited by focusing

on patients who are more closely connected to G3817 than

G3729 (see electronic supplementary material, tables S4–

S8). Figure 3 displays the most likely epidemiological links

cumulating to 20% of probability for each recipient (see

figure caption). Patients are clustered based on their chief-

doms, whose locations are provided in electronic

supplementary material, figure S4. The Jawie chiefdom

seems to be an interface between Kissi Teng and Kissi

Tongi chiefdoms on the one hand and most of the other chief-

doms on the other hand. Based on temporal data (electronic

supplementary material, figure S5), the Kissi Teng and Kissi

Tongi chiefdoms include mostly early cases and, therefore,

individuals in Jawie chiefdom may have played the role of

a relay in the outbreak.

(c) Assessing epidemiological links at the
metapopulation scale

This dataset was generated from a wild plant species

(Tragopogon pratensis, hereafter called wild salsify), which is

a reservoir for a potyvirus closely related to the endive

necrotic mosaic virus (ENMV; [27]). Within-host virus var-

iants were sequenced from 189 infected host plants
sampled in 2014 in a 40�10 km region of south-eastern

France. High-throughput sequencing was applied on viral

PCR amplicons (final length: 438 bp of the capsid gene)

using the Illumina technology [28]. Sequence data were

merged at the scale of the patch (i.e. meadows, agricultural

fields or urbanized areas) with the aim of assessing epide-

miological links between a subset of the metapopulation

formed by the potyvirus (the 189 sampled plants were dis-

tributed in 27 patches). Further details about this dataset

are provided in electronic supplementary material, table S1.

Epidemiological links between sampled patches were

inferred by calibrating the penalization with information on

inter-patch distances, assuming that, on average, geographi-

cally close host patches are infected by similar viral variants

(isolation-by-distance process). Here, the H1-x2 penalization

(see §4b) was chosen because it led to a lower average

distance between connected patches (see criterion (4.7), §4c).

Figure 4 shows the inferred links between sampled

patches. Here, all the optimal values for the penalization

parameter (shown in electronic supplementary material,

figure S9) led to the same set of links and, therefore, no

secondary arrows are displayed (electronic supplementary

material, figure S10 shows links inferred without penaliza-

tion). Even if most links are relatively short compared to

the mean distance between sampled patches (see electronic

supplementary material, figure S11), there is a non-negligible

proportion of long links that could be the signature of the

long-distance dispersal ability of the aphid to transmit the

virus. Additionally, common environmental conditions and

host demography and genetics at the scale of the study area

may partly explain the inferred long-distance links. Indeed,

environmental conditions constrain host local abundance
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and, therefore, genetic drift impacts on the levels of diversity

and differentiation within and between local pathogen popu-

lations. Spatial variation in host genetics may also shape

the spatial structure of pathogen populations by selecting

different variants regardless of the distance between host

patches [29,30].
(d) Benchmarking SLAFEEL
We first compared SLAFEEL and BadTrIP [5] for influenza

data to assess the ability of both methods to identify infection

pathways that are partly known. Electronic supplementary

material, figure S12, gives details about the application of

BadTrIP and shows inferred transmission trees. Whatever

training hosts were used, SLAFEEL generally performed

better than BadTrIP with respect to the proportion of correct

source identifications (that focuses on the most likely inferred

source) and the average Jeffreys discrepancy (that compares

the probabilities for any recipient host to be linked with

any putative source) as presented in electronic supplementary

material, table S10.

Second, we compared the transmissions inferred with

SLAFEEL from the Ebola data and those obtained in [5]

with BadTrIP. Here, we assessed the consistency of both

estimations (since potential infection pathways are not

known, unlike in the influenza case study). The most likely

sources are the same for 8% of recipient hosts (electronic

supplementary material, table S10) and the most likely

sources inferred with SLAFEEL are among the 10 most

likely sources identified with BadTrIP for almost 50% of

recipients (electronic supplementary material, figure S13).

These rather low percentages may be explained by the low

pathogen diversity in this study, leading to generally quite

low inferred link intensities with SLAFEEL and, to a lesser

extent, with BadTrIP (see electronic supplementary material,

figure B in [5]). They may also be explained by the assump-

tions made and the constraints imposed in [5], where

information from sampling dates, nucleotide frequencies

and sequencing coverage was used, and where the introduc-

tion date (removal date) of each host was specified as its

sampling date minus (plus) 21 days, thus allowing each

host to be infected at most 21 days before being sampled,

and to infect others at most 21 days after being sampled.

Finally, we simulated 1000 datasets with the SEEDY

package (simulation of evolutionary and epidemiological
dynamics; [20]) by using parameter values chosen by

Worby and Read to generate their 4th figure (mean epidemic

size: 26.6 infected hosts (s.d. ¼ 2.3); 10 virus genomes

sampled per host). The SEEDY package allows not only the

generation of datasets, but also a very fast inference of trans-

missions given infection times, the mutation rate, the

equilibrium viral population size within host and the trans-

mission bottleneck size, which are generally not known

in practice. Thus, we used SEEDY-based inferences of

transmissions as a benchmark, and assessed how SLAFEEL

compares with SEEDY in identifying the true source for

each recipient of each of the 1000 simulated outbreaks. For

the application of SLAFEEL to each simulated outbreak,

we randomly drew four training hosts whose sources were

supposed to be known, and we chose the H1-normal penali-

zation. On average, the most likely inferred source was

correct for 39% [20–61%] of recipients with SEEDY and

36% [17–60%] with SLAFEEL (electronic supplementary

material, figure S14). Therefore, in this simulation setting,

SLAFEEL performs almost as well as SEEDY.
3. Discussion
We introduced an exploratory approach, called SLAFEEL, for

quantitatively investigating epidemiological links between

host units from deep sequencing data. This versatile

approach, grounded on statistical learning, is adaptable to

diverse contexts and data. Here, we applied it to analyse

virus dynamics in humans, animals and plants at different

spatial scales (e.g. individuals and fields) using data obtained

with different sequencing techniques and showing different

levels of pathogen diversity. The relatively broad applica-

bility of SLAFEEL implies that, in some contexts, links have

to be interpreted in a conservative way: typically, in the sal-

sify potyvirus application, we did not infer who infected
whom but who is closely related to whom. Using the pseudo-

evolutionary model and the associated inference approach

for estimating epidemiological links should be particularly

valuable in non-standard situations where classical mechan-

istic assumptions may be erroneous and when sequencing

and variant calling issues may be misleading. The key prop-

erty underlying our procedure is the combination of a

learning stage and a penalization that can be used to con-

strain what is a link. This is expected to help in
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appropriately dealing with sequencing errors because such

errors should be accounted for non-training hosts as they

are for training hosts. Nevertheless, as discussed below, the

impact of sequencing errors on inference accuracy should

be formally assessed in simulation studies.

The training stage can use classical information such as

contact tracing data [25], but also contact proxies such as

geographical distances between host units, connectivities

via air masses for airborne pathogens [31] and social

connections [4,32]. To get a contact proxy, one could also

infer some transmissions with a (generally more time-

consuming) mechanistic approach from a subset of observed

cases and use the estimated transmissions as training data

in our approach applied to the whole dataset. Thus, the

mechanistic approach and SLAFEEL would be complemen-

tary. Whatever the way that contact information (or

proxies) are gathered, it can be conjectured that the closer

the relationship between contact information and epidemio-

logical links, the more informative the training stage.

Moreover, the possibility of using very diverse types of con-

tact information in the learning stage of SLAFEEL reinforces

its broad relevance to human, animal and plant diseases.

When geographical proximity is used for calibrating

the penalization (like in the potyvirus application), short-

distance links may be favoured, and the inferred distribution

of distances between linked host units hence has to be

interpreted with caution. However, in our procedure,

geographical proximity is only used after a genetic-based

selection of possible configurations: basically, the penalized

pseudo-likelihood function (only based on virus sequence

data) allows us to eliminate genetically unlikely configur-

ations; then, in the learning stage, spatial information is

used to select the most likely configurations within the set

of genetically likely configurations, building on the following

grounds: among two equally genetically likely configur-

ations, the one showing links at shorter distances is more

likely (because of the very classical assumption that ‘dispersal

is more probable at short distance than at long distance’).

Thus, inferring only short-distance links can be interpreted

as: ‘short distance dispersal is sufficient to explain the genetic

spatial pattern of the pathogen’. By contrast, inferring both

(i) a mixture of short- and long-distance links and

(ii) unlinked nearby host units (like in the potyvirus appli-

cation) suggests that isolation by distance does not hold at

the study scale, and that the assumption ‘dispersal is more

probable at short distance than at long distance’ is perturbed

by other drivers (e.g. host genetics), which significantly

impact the genetic spatial pattern of the pathogen. Finally,

while our analysis in the potyvirus application leads to inter-

pretable results, cross-validation or data-splitting (into

training and prediction data) could be applied in further

studies to strengthen the analysis conclusions when

geographical proximity is used as contact information.

The main objective of this article was to present how

statistical learning can be applied for inferring transmissions

(or epidemiological links from a conservative perspective)

and to examine if such an approach has the potential to be

efficient. Results obtained for swine influenza (where the

transmission pathways are partly known) and for outbreaks

simulated with SEEDY [20] are encouraging. However,

further research is required to make the method robust and

able to pass a battery of simulation tests such as the one

designed for assessing the performance of BadTrIP [5]. The
following questions should be specifically investigated

using simulations. How does the efficiency and speed of

the method scale up with big data? How does the method

perform at various sequencing depths (considering a single

haplotype for each host as a special case)? How does the

method perform in the presence of contamination and

sequencing errors (PHYLOSCANNER [14] explicitly handles

such issues)? What is the sensitivity of the method to the hap-

lotype reconstruction tool (e.g. comparing Predict-Haplo

that we used for the Ebola data with SAVAGE [33] and

MLEHaplo [34])? How is SLAFEEL accuracy improved

with increasing training information? How can we exploit

negative training information (i.e. infected hosts that are

known to not have been in contact with certain infected

hosts)? How does the method perform in the presence of

severe bottlenecks during transmissions, in comparison

with approaches exploiting phylogenetic signals that are

particularly adapted to such situations [9]?

Before testing SLAFEEL in the latter range of simulation

settings, further research should especially focus on the

penalization function. Here, we introduced three shapes

corresponding to different hypotheses (see §4b), but the

penalization could be tuned by considering other hypotheses,

which could help circumvent the current limitations of our

approach. For instance, the penalization could be improved

to take into account (i) the timing, thus constraining the set

of likely sources for each host based on observation times

and possibly additional temporal information like data on

infectious periods [17], (ii) fixed sub-clonal haplotypes

(including haplotypes with stop codons) by forcing the selec-

tion algorithm to pair host units sharing such haplotypes

[1,35] and (iii) sample sizes to avoid biases induced by differ-

ent levels of observed diversity. Specific penalizations could

also be designed to better infer the direction of epidemiologi-

cal links when temporal data do not discriminate sufficiently.

For example, the signature of the link direction could be

identified in the genetic training data and incorporated into

the penalization function. Other limitations are more difficult

to tackle, e.g. de novo mutations at the same site (homo-

plasy), recombinations, insufficient sequencing depth and

lack of sequence diversity, which can lead to uncertainty in

the inferences. However, the advantage of our statistical

learning approach is that the uncertainty can be objectively

assessed on training data. The uncertainty (and potential

bias) can even be assessed using cross-validation to prevent

over-fitting. The assessment of uncertainty and bias in the

inference of links is also an objective way to select the pena-

lization shape. However, we must warn that, if training data

are not representative of the whole population, learning

model parameters from training data may induce errors in

the selection of the penalization and, ultimately, in the recon-

struction of epidemiological links (such misleading training

data would be analogous to misleading assumptions in

mechanistic approaches).

Another important perspective is the implementation

of an efficient computer code. The R code that we developed

(available at https://doi.org/10.5281/zenodo.1410438)

allowed us to test different model specifications, to exploit

genetic data from multiple sequence fragments and to per-

form cross-validation in a limited time-span (e.g. a

SLAFEEL run for the swine influenza case study or for a

sequence fragment in the Ebola case study took approxi-

mately 10–20 minutes with a laptop computer, whereas

https://doi.org/10.5281/zenodo.1410438
https://doi.org/10.5281/zenodo.1410438
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BadTrIP takes several days; see caption of electronic sup-

plementary material, figure S12 and [5]). However,

implementing further improvements in the code should

allow us (i) to include multiple infections in transmission

scenarios where an explanatory set of sequences would consist

of a weighted mixture of several samples collected from sev-

eral putative sources, (ii) to select a penalization shape among

a large library of functions, and (iii) to tackle big data (e.g.

large numbers of cases and sequence fragments). Concerning

point (iii), our approach based on a simplified representation

of dependencies between observations via a statistical

regression model is a commonly used approach to handle

big data [36].
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4. Methods
To infer transmissions of a virus (or, more generally, epidemiologi-

cal links) within a host population, we built a pseudo-evolutionary

model that concisely describes transitions between sets of

sequences sampled from different host units, and used this

model to select probable source–recipient pairs. In what follows,

we provide the outline of our method in one of its simplest

forms (see also electronic supplementary material, figure S15),

then we technically describe it in its general form by presenting

first the model and second the inference.

(a) Outline of the SLAFEEL approach
Let us consider one of the possible source–recipient pairs. For

each virus sequence collected from the recipient, we compute

the genetic distance (namely, the number of different nucleo-

tides) to each sequence collected from the source, and we

identify the nearest sequence(s). By applying this procedure to

all sequences from the recipient, we can compute the contri-

bution of each sequence from the source to explain the viral

population observed from the recipient. This contribution relates

to the number of times that this sequence from the source is

identified as the nearest sequence (see the exact definition in

§4b). Then, a parametric kernel function, derived from the

Jukes–Cantor micro-evolutionary process and embedded in a

pseudo-likelihood, is used to assess how much each sequence

from the recipient is explained by its nearest sequence(s) from

the source. Moreover, a parametric penalization function is

used to assess how likely sequences from the source have been

uniformly subsampled to generate sequences from the recipient

(this is assessed based on the contributions calculated above).

Thus, for each possible source–recipient pair, we compute a

penalized pseudo-likelihood parameterized by the kernel

parameter m and the penalization parameter u. The penalized

pseudo-likelihood will be high for a putative source–recipient

pair if (i) all sequences from the recipient have genetic neigh-

bours in the source and (ii) sequences from the source equally

contribute in expectation to the set of sequences collected from

the recipient. Note that condition (ii) depends on the rationale

underlying the form chosen for the penalization function

(here, the penalization is grounded on a uniform subsampling

hypothesis).

The balance between the pseudo-likelihood and the penaliza-

tion is tuned in two steps. First, we estimate m, for each source–

recipient pair and each u value in a set Q of candidate values,

by maximizing the penalized pseudo-likelihood with respect to

m; then, for each recipient and each u value, the source leading

to the maximum penalized pseudo-likelihood is identified as

the most likely source given u. Second, adopting a learning

approach, we calibrate the penalization by selecting the u

values leading to the maximum proportion of training hosts for

which the most likely sources conditional on u are consistent
with contact information. The link intensity between a given

recipient and a possible source is measured by the proportion

of selected u values for which the source has been identified as

the most likely source.

The dual form of the penalized pseudo-likelihood and the

learning stage are essential to distinguish ‘A infected B’, ‘B

infected A’ and ‘C infected B’ when only the former statement

is true. Indeed, the pseudo-likelihood tends to impose that each

sequence from the recipient must have a neighbour sequence in

its source, which should exclude ‘C infected B’; the penalization

tends to impose that the set of sequences from the recipient has

been generated by a subsample of the set of sequences from

the source (if the penalization has been built in this way),

which should exclude ‘B infected A’; the learning stage is

expected to determine the adequate relative weights of the

pseudo-likelihood and the penalization for obtaining satisfactory

inference of epidemiological links. The learning stage can even be

exploited to design an adequate penalization form (one should

prefer a penalization form leading to higher inference accuracy

for training hosts).

(b) Pseudo-evolutionary model for the evolution and
transmission of populations of sequences

The method outlined above is grounded on a pseudo-

evolutionary model, which concisely describes transitions

between sets of sequences sampled from different host units.

The general form of the pseudo-evolutionary model is given by

the following penalized pseudo-likelihood for the transition

from an explanatory set of I sequences S(0)
1 , . . . , S(0)

I to a response

set of J sequences S1, . . ., SJ (haplotype copies are explicitly

incorporated in these sets of sequences):

f (S1, . . . , SJ j S(0)
1 , . . . , S(0)

I )¼ P(W)
YJ

j¼1

PI
i¼1 wijK(d(g(Sj), g(S(0)

i )))PI
i¼1 wij

 !
,

(4:1)

where each term in the product represents the pseudo-

probability of obtaining the response sequence Sj given the

explanatory sequences S(0)
1 , . . . , S(0)

I and the values of w1j, . . .,

wIj; g is a transformation of sequences (e.g. aiming at reducing

the dimension of the space of viral sequences); K is a kernel func-

tion and d is a pseudo-distance function introduced to account

for unsampled sequences in the source of infection, the evolution

of new viral variants and possible sequencing errors; wij

are weights accounting for the loss of virus variants during

within-host evolution and between-host transmission; W is the

(I � J )-matrix of weights whose element (i, j ) is wij; and P(W )

is a penalty for the weight matrix W potentially allowing the

incorporation of knowledge on virus evolution and transmission

(e.g. on the strength of the transmission bottleneck).

In this article, we focus on a simple semi-parametric version

of (4.1) where (i) each sequence Sj is only explained by the closest

sequence(s) S(0)
i in terms of the number of different nucleotides

and (ii) the penalization measures the discrepancy from a null

hypothesis to be specified. Thus, the pseudo-evolutionary

model given by equation (4.1) reduces to:

fm,u (S1, . . . , SJ j S(0)
1 , . . . , S(0)

I )

¼ Pu(W)
YJ

j¼1

PI
i¼1 wijKm{d(S j, S(0)

i ); Dij}PI
i¼1 wij

 !
, (4:2)

where d( � , � ) gives the number of different nucleotides between

two sequences; wij¼ 1/nj for indices i corresponding to sequences

S(0)
i minimally distant from sequence Sj, i.e. such that

d(S j, S(0)
i ) ¼ min {d(S j, S(0)

i0 ) : i0 ¼ 1, . . . , I}, the number of such

sequences being denoted nj, wij ¼ 0 otherwise (therefore,PI
i¼1 wij ¼ 1); Dij is the duration separating the two sequences
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Sj and S(0)
i ; Km( � ; D) is the probability distribution function

(p.d.f.) of the binomial law with size L (i.e. sequence length)

and success probability 3(1 2 exp (24mD))/4, corresponding to

the Jukes–Cantor micro-evolutionary process over a duration D

and with a substitution parameter m; and Pu(W) is a parametric

penalization measuring the likelihood of the contributions of

explanatory sequences S(0)
1 , . . . , S(0)

I (measured by
PJ

j¼1 wij, i ¼
1, . . ., I) to the response set of sequences S1, . . ., SJ. IfPJ

j¼1 wij ¼ 0, then sequence S(0)
i does not contribute to explaining

the sequences collected from the recipient and, therefore, may be

considered as lost during within-host evolution or between-host

transmission.

We consider the three following shapes for Pu. The

H1-normal shape measures the discrepancy between
PJ

j¼1 wij

and its expected value J/I under the uniform (but not necessarily

independent) sampling hypothesis by

Pu(W) ¼
YI

i¼1

F
XJ

j¼1

wij;
J
I

, u
J
I

1� 1

I

� �0
@

1
A, (4:3)

where F ( � ; a, b2) is the p.d.f. of the normal law with mean a and

variance b2, and u( J/I )(1 2 1/I ) is proportional to the multino-

mial variance up to the over-dispersion parameter u . 0. The

uniform sampling hypothesis amounts to assuming that explana-

tory sequences have equal chances to contribute to the set of

response sequences. With J response sequences, there are J
draws of an explanatory sequence (one for each response

sequence) among I explanatory sequences. Thus, under the

uniform sampling hypothesis, the total contribution
PJ

j¼1 wij of

the explanatory sequence S(0)
i has expectation J/I.

The H1-x2 shape measures the discrepancy between
PJ

j¼1 wij

and its expected value J/I by

Pu(W) ¼ ux2
XI

i¼1

PJ
j¼1 wij � J=I

� �2

J=I
; I � 1

0
B@

1
CA, (4:4)

where x2( � ; I � 1) is the p.d.f. of the x2 law with I 2 1 degrees of

freedom, and u . 0 measures the influence of the penalization.

The H2-normal shape can be used when estimates of the

mean and standard deviation of the distance between any

sequence collected from any recipient host and the closest

sequence collected from its source, say �dobs and s2
obs, are available

(these estimates can be obtained from contact tracing data). The

H2-normal shape measures how likely it is that this mean dis-

tance for the host unit of interest is drawn from the normal

distribution with mean �dobs and variance s2
obs:

Pu(W) ¼ u
YJ

j¼1

F
XI

i¼1

wijd(S j, S(0)
i ); �dobs, s

2
obs

 !
, (4:5)

where u . 0 measures the influence of the penalization.

Thereafter and whatever the penalization shape, u is called

the penalization parameter.

(c) Estimation and calibration of parameters, and
inference of transmissions

Consider M sets of sequences S1, . . ., SM collected from M host

units. In a first step, for each set of sequences Sm and each value

of u in a finite set Q to be specified, the penalized pseudo-likeli-

hoods fm,u(SmjSm0), for m0 = m, are maximized with respect to m

(let m̂m0 (u) denote the maximizer, i.e. the estimate, of m). The

most likely source for host unit m given u, say ŝ(m; u), is then

the host unit m0 leading to the highest value of fm̂m0 (u),u(Sm j Sm0 ):

ŝ(m; u) ¼
m0=m
argmax fm̂m0 (u),u(Sm j Sm0 ):
In a second step, the penalization parameter u is calibrated

by building and optimizing a criterion that compares contact

information and inferred sources of infection ŝ(m; u), for m in

a set M , {1, . . . , M} of training hosts (this procedure can

also be used in practice to select a penalization shape among

a set of candidate functions as those proposed in equations

(4.3)– (4.5)). Driven by the applications in this study, we intro-

duce the two following criteria. First, consider the case where

contact information consists of tracing contacts for hosts

m [ M. We define the criterion to be maximized as the pro-

portion of inferred transmissions that are consistent with

contact tracing:

~Q ¼
u[Q

argmax
1

jMj
X

m[M
1(̂s(m; u) [ Cm), (4:6)

where jMj is the number of elements in M; 1(E) ¼ 1 if event E is

true, zero otherwise; and Cm is the set of hosts in f1, . . ., Mg that

have been in contact with m. Second, consider the case where con-

tact information consists of the geographical distances between

hosts in the training set M , {1, . . . , M}. We define the criterion

to be minimized as the average distance between the train-

ing hosts and their inferred sources (if the sources are in the

training set):

~Q ¼
u[Q

argmin

P
m[M d(m, ŝ(m; u))1{̂s(m; u) [ M}P

m[M 1{̂s(m; u) [ M}
, (4:7)

where d(m, ŝ(m; u)) is the geographical distance between host m
and its suspected source ŝ(m; u). Note that, in both cases, ~Q may

be a set of values (and not only a single value) if the criterion is opti-

mal for several u in Q. This was the case in the applications that we

tackled, since criteria in (4.6) and (4.7) have values in very limited

discrete sets (e.g. f0, 1/5, 2/5, 3/5, 4/5, 1g in the Ebola application).

Thus, in each application, ~Q was obtained by computing the cri-

terion on a regular grid of u values and by retaining only values

maximizing the criterion. We observed that small variations in u

did not impact the criterion value, as well as link intensities defined

below in (4.8), and the mesh size of the grid was tuned accordingly.

In further applications, the grid search could be improved in two

directions: first, one could use an iterative numerical algorithm

for the optimization; second, one could replace the maximum/

minimum rule by a quantile rule (i.e. using a tolerance threshold).

In a third step, we assess the intensity of the link between m
and m0 in f1, . . ., Mg by the proportion of values of u in ~Q for

which ŝ(m; u) coincides with m0:

1

j~Qj
X
u[ ~Q

1{̂s(m; u) ¼ m0}, (4:8)

where j~Qj is the number of elements in ~Q. This intensity of the

link between two host units is used to infer who infected

whom or, from a more conservative perspective, who is the

most related with whom. When several sequence fragments are

available (like in the Ebola case study), the link intensity defined

in equation (4.8) is computed for each fragment, and then

averaged to obtain the overall link intensity. Future work could

explore alternatives to the average (e.g. robust mean and

median) for assessing link intensities from several fragments.

Model and inference specifications that were used for the

three case studies are summarized in electronic supplementary

material, table S9.
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