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Summary 

 RIN-deficient fruits generated by CRISPR/Cas9 initiated partial ripening at a similar time to 

wild-type (WT) fruits but only 10% WT levels of carotenoids and ethylene were synthesised. 

RIN-deficient fruit never ripened completely, even when supplied with exogenous ethylene. 

The low amount of endogenous ethylene that they did produce was sufficient to enable 

ripening initiation and this could be suppressed by the ethylene perception inhibitor 1-MCP.

 The reduced ethylene production by RIN-deficient tomatoes was due to an inability to induce 

autocatalytic system-2 ethylene synthesis, a characteristic feature of climacteric ripening. 

Production of volatiles and transcripts of key volatile biosynthetic genes were also greatly 

reduced in the absence of RIN.

 In contrast, the initial extent and rates of softening in the absence of RIN were similar to WT 

fruits, although detailed analysis showed the expression of some cell wall modifying enzymes 

was delayed and others increased in the absence of RIN. 

 These results support a model where RIN and ethylene, via ERFs, are required for full 

expression of ripening genes. Ethylene initiates ripening of mature green fruit, upregulates 

RIN expression and other changes, including system-2 ethylene production. RIN, ethylene and 

other factors are required for completion of the full fruit ripening program.

Keywords: Solanum lycopersicum (tomato), MADS-RIN, ripening initiation, system-2 ethylene, 

carotenoid, volatile, post-harvest softening, cell wall

Introduction

Fleshy fruits evolved both to protect developing seeds and aid seed dispersal. They have 

traditionally been classified into climacteric (eg apples, pears, bananas, melons and tomato) and 

non-climacteric (eg pineapple, strawberry, citrus) types. Climacteric fruits such as tomato show a 

characteristic rise in respiration, the respiratory climacteric, and a marked rise in ethylene 

production at the onset of ripening. The tomato (Solanum lycopersicum) has been a model for 

understanding the molecular basis of ripening for more than 40 years because of its commercial 

importance but also because it is well characterised genetically, several crops can be grown year-

round in controlled environments, it can be relatively easily transformed, and several important 

natural mutations have been identified that affect different aspect of ripening (Giovannoni, 2007; 

Klee and Giovannoni, 2011). During fruit growth the cells enlarge and accumulate reserves and at A
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maturity multiple changes are initiated in a coordinated manner that alter colour, flavour, texture 

and aroma. This ripening process converts a hard, unappealing fruit into a colorful nutritious 

product that attracts birds, animals and humans to aid in seed dispersal (Giovannoni, 2004).

The transcription factor MADS-RIN (RIN) has long been viewed as a master regulator of 

ripening. RIN affects accumulation of many gene transcripts (Giovannoni, 2004), proteins and 

their post-translational degradation (Qin et al., 2012; Wang et al., 2014). Recent advances in 

knowledge concerning the transcription factors that regulate climacteric fruits ripening (Ito et al., 

2017; Li et al., 2018; Gao et al., 2019; Wang et al., 2019), including discrepancies between the 

phenotypes of natural mutants and CRISPR/Cas9-induced mutations of ripening inhibitor (rin), 

non-ripening (nor), colourless non-ripening (Cnr), have called into question the precise roles of 

these regulatory genes in the ripening control network (Ito et al., 2017; Li et al., 2019; Gao et al., 

2019; Wang et al., 2019). The rin mutation was originally thought to correspond to a loss-of-

function event (Vrebalov et al., 2002) but is now known to generate an active hybrid transcription 

factor, RIN-MC, which has a repressor activity (Ito et al., 2017; Li et al., 2018). RIN is still 

critical for progression of ripening but is not required for ripening initiation (Ito et al., 2017; Li et 

al., 2018) and the factor actually responsible for ripening initiation in the absence of RIN has not 

been identified. 

Ethylene has long been implicated in ripening control. All plants produce some ethylene, but 

this can increase 100-fold as climacteric fruit transition from low level (system-1) ethylene, which 

is self-inhibitory, to a major burst of autocatalytic ethylene synthesis, called system-2 ethylene 

(McMurchie et al., 1972; Grierson, 2013, 2014) during ripening. Non-climacteric fruits also 

respire and evolve low levels of ethylene, but they do not show a climacteric burst. Analysis of 

natural mutants which have pleiotropic effects on multiple genes has identified ripening regulators 

such as MADS-RIN, NAC-NOR and the squamosa-box binding protein CNR, some of which act 

at least partly independently of ethylene (Martel et al., 2011; Kumar et al., 2012; Giovannoni et 

al., 2017). Activator- and repressor- ethylene response factors (ERFs) and auxin response factors 

(ARFs) operate downstream of their respective hormone signalling pathways to regulate gene 

expression and hormone cross-talk (Liu et al., 2015, 2018). Ethylene promotes ripening (Tucker et 

al., 2017), abscisic acid may also play a part (Mou et al., 2016; Chen et al., 2016), whereas auxin 

tends to inhibit ripening (Shin et al., 2019). The way in which this complex network of 

transcription factors and hormones operates to control the expression of many ripening genes is 

still being actively investigated (Li et al., 2019), but it is known that together they control A
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production of enzymes for biosynthesis of coloured pigments such as carotenoids in the 

chromoplasts (or anthocyanins in the vacuoles in other fruits), multiple cell wall softening 

enzymes, metabolism of acids and sugars affecting taste and production of multiple aroma 

volatiles (Giovannoni, 2004; Li et al., 2019;  Grierson, 2013; Klee and Tieman, 2018). 

Recent work describing the removal of RIN by CRISPR/Cas9 or RNAi strategies (Ito et al., 

2017; Li et al., 2018) has shown that the precise role of RIN in climacteric ripening needs further 

clarification. Here we characterize new RIN-deficient Ailsa Craig tomato fruits obtained by 

CRISPR/Cas9 technology and show that they produce sufficient endogenous ethylene to induce 

ripening and this RIN-independent initiation of ripening is inhibited by the ethylene perception 

inhibitor 1-methylcyclopropene (1-MCP). Ethylene production is low because RIN-deficient fruits 

are unable to induce autocatalytic system-2 ethylene production and they are also deficient in 

volatiles and carotenoids and transcripts associated with these pathways. Strikingly, extensive 

softening occurs independently of RIN, which contrasts strongly with the original rin mutant 

phenotype. Moreover, late softening of RIN-deficient fruits coincides with the delayed 

accumulation of several cell wall enzymes including MAN1, Mside7, MAN4a, TBG4, PG and 

PME2.1. These results support a model in which ethylene is required for the initiation of ripening 

and the combined action of RIN and ethylene is required for the progression and completion of 

different facets of the ripening process.

Materials and Methods

Plasmid construction

The target site for CRISPR/Cas9-mediated RIN mutagenesis was selected using the CRISPR-

P program (http://cbi.hzau.edu.cn/cgi-bin/CRISPR) (Fig. S1a). The 20 bp oligos were cloned into 

AtU3d and AtU3b vectors and the sgRNA expression cassettes assembled into pYLCRISPR/Cas9-

Ubi-H binary plasmid by Golden Gate ligation (Ma et al., 2015). Agrobacterium tumefaciens-

mediated transfer of T-DNA was used for stable transformation of tomato (Sun et al., 2006; 

Kimura and Sinha, 2008). For the mutation analysis, genomic DNA was extracted from young 

tomato leaves using a Plant Genomic DNA Kit (Tiangen, China) and used as a template to amplify 

the RIN fragment using PCR and the fragments sent for sequencing. The primer pairs used for 

vector construction and mutation analyses are listed in Table S1. 

Plant material and growth conditionsA
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Wild-type (WT) tomato (Solanum lycopersicum Alisa Craig, AC) and RIN-CRISPR 

seedlings were grown in a greenhouse under long-day conditions (16 h of light and 8 h of dark) at 

a temperature of 26 °C. For gene expression analysis, organs were collected, frozen in liquid 

nitrogen, and stored at -80 °C until RNA extraction. Three independent samplings were performed 

for each measurement.

Tomato fruit nuclei isolation and Western blotting

Nuclei were isolated from tomato fruits picked at B+5 stage and assayed for RIN protein. 

Fruit samples were ground into a powder under liquid nitrogen and the mixture was extracted with 

buffer (0.25 M Sucrose, 10 mM Tris-HCl pH7.5, 1 mM MgCl2, 0.5% PVP, 0.5% Triton X-100, 

Roche protease inhibitor tablet) and the suspension filtered using miracloth (Millipore 475855). 

After centrifugation at 10,000 g for 10 min, the precipitate was washed with extraction buffer and 

centrifuged again at 10,000 g for 10 min, and the pellet was resuspended in percoll buffer (0.25 M 

Sucrose, 95% Percoll, 10 mM Tris-HCl pH7.5, Roche protease inhibitor tablet). The floating layer 

was collected after centrifugation at 10,000 g for 10 min, diluted to 30% with extraction buffer, 

centrifuged at 10,000 g for 10 min, to pellet the nuclei and stored at -80 ℃ or used for SDS-PAGE 

assay. 

Western blotting was carried out as described (Li et al., 2018). Briefly, protein extracts were 

separated on 10% SDS-PAGE gels and transferred to a polyvinylidene fluoride (PVDF) membrane 

blocked in 5% non-fat milk for 2 h at room temperature. A specific polyclonal antibody produced 

in rabbit raised against the C-terminal end of RIN (amino acids 75-242) was added in a ratio of 

1:1,000 and incubated for 2 h at room temperature. Membranes were washed with Tris-buffered 

saline plus Tween-20 three times, 15 min each time. The anti-rabbit horseradish peroxidase 

secondary antibody was added at a ratio of 1:10,000 and incubated for 2 h at room temperature. 

After three washes with Tris-buffered saline plus Tween-20, the membranes were visualized using 

a horseradish peroxidase-enhanced chemiluminescence system.

Ethylene production measurement

For the measurement of ethylene production, each fruit was placed in a sealed gas-tight 300 

mL container at 25 °C for 1 h, and a 1 mL headspace gas sample was analyzed using GC (Agilent 

6890N GC system) equipped with a flame ionization detector (Ma et al., 2016).A
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Color Measurement

A Hunter Lab Mini Scan XE Plus colorimeter (Hunter Associates Laboratory, Inc., USA) 

with the CIE L*a*b color system was chosen for pericarp color assay (Komatsu et al., 2016). At 

least six biological replicates were used for each assay.

Carotenoid content assay

Carotenoid extraction followed the methods reported by Xu et al. (2006); 100 mg tomato 

fruits samples were ground to a powder and frozen at -80 °C, 250 μL methanol was added, 

vortexed to mix, followed by 500 μL chloroform, vortexed again and 250 μL 50 mM Tris buffer 

(pH 7.5, containing 1 M NaCl) was added, followed by vortexing. After centrifugation (15,000 g 

for 10 min at 4 °C), the lower chloroform phase was collected. The chloroform extraction was 

repeated 2 or 3 times and the chloroform phases combined and dried under flowing nitrogen. The 

residue was dissolved in 100 μL ethyl acetate (HPLC grade), and 50 μL transferred to HPLC 

sample analysis tubes. Carotenoid content was assayed according to the methods reported by 

Zheng et al. (2015): A volume of 20 μL for each sample was absorbed for HPLC analysis, carried 

out using a Waters liquid chromatography system (e2695) equipped with a photodiode array 

(PDA) detector (2998). A C30 carotenoid column (250 mm × 4.6 mm; YMC, Japan) was used to 

elute the carotenoids with a methanol: H2O [9:1, v/v, eluent A] solution and methyl tert-butyl ether 

(MTBE) [100%, eluent B] solution containing 0.01% (w/v) butylated hydroxytoluene (BHT). The 

linear gradient program was performed as follows: 8% B to 25% B for 30 min, 25% B to 70% B 

for 5 min, 70% B for 5 min, and back to the initial 8% B for re-equilibration for 10 min. The flow 

rate was 1 mL/min. To avoid light degradation of carotenoids the extraction and analysis was 

performed under subdued light.

Firmness measurement

The firmness of the pericarp was assayed using a penetrometer (TA-XT2i texture analyzer 

Stable Micro Systems) according to the manufacturer’s instructions. At least six biological 

replicates were used for each assay.

Volatiles assays

Measurements of volatiles were carried out according to Zhang et al. (2010), with 

modifications. 5 g of frozen flesh tissue was ground in liquid nitrogen and transferred to a 15 mL A
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vial containing 5 mL of saturated sodium chloride solution. Before vials were sealed, 20 μL of 2-

octanol (0.8 mg mL-1) was added as an internal standard and vortexed for 10 s. 

For solid-phase microextraction (SPME), samples were equilibrated at 40 °C for 30 min and 

then exposed to a fiber coated with 50/30 μm DVB/CAR/PDMS (Supelco Co., Bellefonte, PA). 

Volatiles were subsequently desorbed over 5 min at 230 °C into the splitless injection port of the 

GC-flame ionization detector (FID). An Agilent 7890A GC equipped with an FID and a DB-WAX 

column (30 m × 0.32 mm, 0.25 μm, J&W Scientific, Folsom, CA) was used for volatile analysis. 

Chromatography conditions were as follows: injector, 230 °C; initial oven temperature, 34 °C held 

for 2 min, increased by 2 °C min-1 to 60 °C, then increased by 5 °C min-1 to 220 °C, and held for 2 

min. Nitrogen was used as carrier gas at 1.0 mL/min. Volatiles were identified by comparison with 

retention times of authentic standards. Further identification of volatile compounds was by 

capillary gas chromatography-mass spectrometry (GC-MS) (7890A-5975C) performed using an 

HP-5 MS column (30 m × 0.25 mm, 0.25 μm, J&W Scientific, Folsom, CA). Injection port 

temperature was 240 °C, with a split ratio of 5:1. Helium was used as the carrier gas at a rate of 

1.0 mL min-1. The column temperature was held at 40 °C for 2 min, increased by 5 °C min-1 to 60 

°C, then increased by 10 °C min-1 to 250 °C, and held for 5 min. MS conditions were as follows: 

ion source, 230 °C; electron energy, 70 eV; multiplier voltage, 1247 V; GC-MS interface zone, 

280 °C; and a scan range, 30-250 mass units. Volatiles were identified on the basis of a 

comparison of their electron ionization (EI) mass spectra to published data and data from authentic 

standards. Quantitative determination of compounds was carried out using the peak of the internal 

standard as a reference value and calculated on the basis of standard curves constructed with 

authentic compounds.

Ethylene, 1-MCP and propylene treatment

Tomato fruits at the mature green (MG) stage, before any sign of colour change, were placed 

in an air-tight 1 L plastic container with 100 ppm ethylene, 1000 ppm propylene or 10 ppm 1-

MCP. 1000 ppm propylene is equivalent to 10 ppm ethylene treatment (McMurchie et al., 1972) 

and is used in order to distinguish it from endogenous ethylene production by GC equipment. The 

treatment was conducted continually in an incubator under 16 h of light and 8 h of dark at 25 °C, 

with at least three biological replicates for each treatment. RIN-CRISPR tomato fruits treated with 

ethylene for 48 hours, and control WT and RIN-CRISPR treated with air, were chosen for gene A
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expression assay using qRT-PCR. The gas environments (air, ethylene, propylene, 1-MCP) were 

replenished every 24 hours. 

RNA Isolation and qRT-PCR

RNA was isolated from tomato fruit pericarp at different ripening stages as described (Zhu et 

al., 2015). Total RNA extraction from tomato fruit pericarp was carried out using Trizol reagent, 

and RNA integrity was verified by 1.5% (v/v) agar gel electrophoresis. Genomic DNA was 

removed from RNA preparations by digestion with DNase I (Invitrogen, Cat. AM1907), and RNA 

quality and quantity were confirmed by spectrophotometry (Thermo Scientific; NanoDrop 1000). 

RNA was reverse transcribed into cDNA using cDNA synthesis kit (Bio-RAD, Cat. 1708890) 

according to the manufacturer’s instructions. qRT-PCR was conducted using FastStart Essential 

DNA Green Master (Roche, Cat. 06402712001) with a LightCycler480 (Roche). Relative gene 

expression values were calculated using the 2-ΔΔCt method (Livak and Schmittgen, 2001). The 

tomato ACTIN gene (Solyc03g078400) was used as an internal reference gene. At least three 

biological replicates were included for each point, and each replicate was from independent 

sampling. The primer pairs used in qRT-PCR analyses are listed in Table S2.

Water loss

The water lost by tomato fruits was calculated as FW (%) = Fruit weight (g)-Fresh fruit 

weight (g)/ Fresh fruit weight (g)×100%. More than ten biological replicates were used for each 

assay.

Promoter sequence and motif assay

Promoter sequences 2.0 kb in length were downloaded from Sol Genomics Network 

(https://solgenomics.net/), various CArG-box elements are from Fujisawa et al. (2013). The GCC-

box, a characteristic cis-element binding site for ERFs, is from Licausi et al. (2013). An AP2/ERF 

binding motif, ATCTA is from Welsch et al. (2007).

Statistical Analysis

Microsoft Excel 2010 and SPSS (SPSS Statistics, version 22) were used for statistical 

analyses. Duncan’s multiple range test was used (P<0.05).A
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Results

Generation of RIN mutants using the CRISPR/Cas9 gene-editing system

Recent studies using CRISPR/Cas9 or RNAi have shown that ripening initiation is not 

completely inhibited in RIN-deficient tomato fruit (Ito et al., 2017; Li et al., 2018), however, the 

possible role of ethylene in ripening initiation in the absence of RIN has not been investigated. To 

clarify the precise role of RIN and other factors controlling the different aspects of climacteric 

ripening, we generated new RIN loss-of-function tomato lines, using the CRISPR/Cas9 gene 

editing system. Two genomic sites were targeted for cleavage (Fig. S1a), and multiple 

independent transgenic plants were genotyped by the direct sequencing of PCR products from 

genomic DNA flanking the target sites. After two generations of screening, ten lines were 

identified carrying homozygous mutations in exon 2, a deletion of 432 bp corresponding to the 

entire exon 2 (RIN-CRISPR-1), deletion of 11bp (RIN-CRISPR-2), insertion of 1bp (RIN-

CRISPR-3), deletion of 1bp (RIN-CRISPR-4), deletion of 2bp (RIN-CRISPR-5), insertion of 1bp 

(RIN-CRISPR-6), insertion of 1bp (RIN-CRISPR-7, RIN-CRISPR-8), deletion of 2bp (RIN-

CRISPR-9) and changes in 4bp (RIN-CRISPR-10) (Fig. S1b), hereafter referred to as RIN-

deficient lines. These manipulations introduced premature stop codons in the RIN coding 

sequence, which led to predicted truncated RIN polypeptides of 68, 74, 78, 94, 77, 97, 78, 78, 96 

and 242 (with 21 changes) amino acids of the MADS domain (Fig. S1b), compared to the 242 

amino acids of wild-type (WT) RIN native protein. 

To assess the presence of RIN protein in the edited tomato lines, we used antibodies specific 

to the C-terminal region (sites 158-242 AAs), which encodes the activation domain of the RIN 

protein (Qin et al., 2012; Martel et al., 2011; Ito et al., 2008) as the N-terminal MADS-box 

domain is highly conserved among MADS-box proteins. Western blot analysis revealed that full-

length RIN protein could only be detected in WT and was absent from RIN-CRISPR fruits (Fig. 

1a). All the lines bearing premature stop codons in the RIN gene displayed similar altered ripening 

phenotypes. Three of these were studied more closely and two representative lines (named RIN-

CRISPR-1, -2) used for detailed physiological analyses and molecular studies (Fig. S2).

RIN-deficient fruit reveal that ripening can be initiated independently from RIN 

Assessing the ripening behaviour of RIN-deficient fruits revealed that all three independent 

mutant lines (RIN-CRISPR-1, -2, -3) initiated ripening at approximately the same time as WT 

fruits and there was no obvious delay in ripening onset (Fig. 1b,1c). This contrasted with the A
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situation for rin mutant fruits, where initiation of ripening was delayed by 14 days or more (Fig. 

1c) and fruits only ever turned a pale yellow colour and did not soften. The RIN-deficient fruits 

not only ripened earlier than rin mutant fruit but became a deep yellow/orange colour and 

softened, the rin mutant fruit slowly became pale yellow but did not soften, whereas WT fruits 

softened and turned red (Fig. 1b). 

When they were allowed to ripen for longer, RIN-CRISPR fruits became orange. This 

appeared to vary slightly in different fruits, according to age and position on the plant, suggesting 

that they might be sensitive to some other factor(s). The ability of RIN-deficient fruit to undergo 

ripening in response to ethylene was investigated. Detached mature green (MG) WT and RIN-

CRISPR fruits were treated with either external ethylene (100 ppm) or its competitive inhibitor 1-

methylcyclopropene (1-MCP) (10 ppm). External ethylene accelerated red colour development in 

WT fruit with a visible difference after 2 days treatment, while 1-MCP inhibited this process very 

significantly for at least 15 days (Fig. 1d). Ethylene also accelerated colour change in RIN-

CRISPR fruits, which become faintly orange-red, while 1-MCP significantly inhibited the 

transition from green to yellow for many days (Fig. 1d). Although supplying ethylene externally to 

picked fruit induced slight red coloration in RIN-deficient fruits, the response was weaker than in 

WT fruits and occurred more slowly (Fig. 1d). These results indicated that RIN-CRISPR fruits are 

able to respond to ethylene by enhancing pigment accumulation during ripening, but without 

approaching the levels displayed by WT fruits. 

RIN-CRISPR fruits are deficient in climacteric ethylene production and unable to induce 

system-2 ethylene synthesis

To address whether the reduced ethylene production of RIN-deficient tomatoes is due to their 

inability to induce autocatalytic system-2 ethylene synthesis, a characteristic feature of normal 

climacteric fruit ripening, we treated RIN-deficient fruit with propylene, an analog which mimics 

the hormone effect of ethylene. In the absence of treatment, WT fruits showed a characteristic 

burst of ethylene synthesis after the onset of ripening, whereas ethylene production by RIN-

CRISPR fruits was substantially inhibited compared to WT (Fig. 2a). Thereafter, detached WT 

and RIN-CRISPR MG fruits were challenged by continuous treatment with 1000 ppm propylene 

which is equivalent to 10 ppm ethylene treatment (McMurchie et al., 1972). An obvious burst of 

ethylene production was detected after 24 hours with WT fruits, which reached a peak at 48 hours 

(Fig. 2b). No increase in ethylene production was detected, however, in RIN-CRISPR fruits even A
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after 72 hours treatment (Fig. 2b), indicating that the autocatalytic system-2 ethylene burst could 

not be induced by propylene treatment in the absence of RIN.  

Several differences between RIN-CRISPR and WT fruits were found in the expression of 

genes related to ethylene biosynthesis, perception and signalling (Fig. S3). Transcripts of ACC 

synthase (ACS) and ACC oxidase (ACO), the ethylene biosynthesis genes, were all greatly reduced 

in RIN-deficient fruits, compared to WT fruits. ACS2 and ACS4 transcripts, the main ACS genes 

that increase during ripening, accumulated to less than 20% of their levels in WT respectively, 

while ACO1 and ETR3/NR transcripts reached about 40% and 50% of WT levels, respectively. 

This is consistent with the suggestion there is a dual control of these genes (Yokotani et al., 2009) 

and it is noteworthy that they are known to be specifically involved in system-2 ethylene synthesis. 

Moreover, the ACS genes affected in RIN-deficient fruits are those previously identified among 

the RIN targets (Zhong et al., 2013; Fujisawa et al., 2012). The classic ethylene-induced tomato 

genes E4 and E8 transcripts were also greatly reduced (Fig. S3, Lincoln and Fischer, 1988).

Pigment accumulation is impaired in RIN-deficient fruit 

Pigment accumulation is a major fruit ripening trait and colour change depends on the 

degradation of chlorophyll and the synthesis and accumulation of the colored carotenoids 

lycopene and β-carotene. The tomato fruits pericarp colors were measured with a colorimeter 

using the CIE L*a*b color system (Komatsu et al., 2016). The a* value refers to the degree of red 

to green, determined by the degradation of chlorophyll and the accumulation of carotenoids, such 

as β-carotene and lycopene, which produce the characteristic yellow, orange and red coloration 

(Luo et al., 2013, Fig. S4). At B+5 and B+10 stages WT fruits turned red gradually. In contrast, 

the three RIN-CRISPR mutants turned yellow and slowly developed an orange tinge 1-2 weeks 

after ripening onset (Fig. 1). The carotenoid content and constituents were determined 

quantitatively by HPLC in WT and RIN-CRISPR fruits at B, B+5 and B+10 stages. WT fruits 

accumulated more than a 10-fold higher concentration of lycopene, the main red colour than RIN-

CRISPR fruits, which, in addition to having low lycopene, accumulated no phytofluene and very 

low amounts of phytoene and alpha-carotene (Fig. 3a). This indicated how severely carotenoid 

accumulation is inhibited in RIN-CRISPR fruits. In contrast, the rin mutant fruit remained yellow 

until B+10 stage, with almost no detectable lycopene (Li et al., 2018). Transcripts for the key 

enzymes phytoene synthase1 (PSY1) (Bird et al., 1991; Fray and Grierson, 1993) and non-heme 

hydroxylases (CHY/SlBCH2) and carotene isomerase (CRTISO) were inhibited by 90%, 80% and A
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75%, respectively in RIN-deficient fruits and other transcripts of genes in the pathway (1-D-

deoxyxylulose 5-phosphate synthase (DXS1), phytoene desaturase (PDS), zeta-carotene 

desaturase (ZDS)) were significantly reduced, whereas geranylgeranyl pyrophosphate synthases 

(GGPS2) was not affected and zeaxanthin epoxidase (ZEP) transcripts actually accumulated to a 

higher level in RIN-deficient fruit. In agreement with the positive response to ethylene of RIN-

deficient fruits, transcripts of both PSY1 (3.0, 3.8-fold increase in RIN-CRISPR-1 and RIN-

CRISPR-2) and CHY (3.0, 2.0-fold increase) accumulated to higher levels in response to ethylene 

treatment (Fig. 3b). These data indicate that colour change, a major ripening-associated trait in 

tomato fruit, can be induced by ethylene in a RIN-independent manner but high-level 

accumulation of carotenoids requires RIN.

Volatiles accumulation is impaired in RIN-deficient fruit 

Production of volatile compounds is a major trait of ripe fruit that is highly appreciated by 

consumers. At the B+10 stage, volatiles derived from different pathways (Fig. S5a) were 

measured by gas chromatography (GC) and GC-MS and were significantly reduced in RIN-

deficient fruits compared to WT (Fig. S5b and Table S3). These included volatiles generated from 

amino acids (phenylethyl alcohol, 2-hydroxy-benzaldehyde, 2-methoxy-phenol, 

benzeneacetaldehyde, benzaldehyde, 2-Isobutylthiazole), carotenoids (6-methyl-5-hepten-2-one, 

(E)-3-Buten-2-one), lipids (hexanal, heptanal, (E)-2-heptenal, (E)-2-Pentenal) (Fig. 4a). Of the 

volatile compounds shown to be reduced in RIN-deficient fruits, nine (phenylethyl alcohol, 2-

hydroxy-benzaldehyde, benzaldehyde, benzeneacetaldehyde, 2-isobutylthiazole, 6-methyl-5-

hepten-2-one, heptanal, (E)-2-heptenal, (E)-2-pentenal) are significantly positively correlated with 

consumer preferences (Klee and Tieman, 2018; Zhang et al., 2016). Analysis of transcripts of key 

genes from the different volatile pathways showed that they were greatly reduced (Fig. 4b), 

including genes encoding branched-chain aminotransferases (BCAT1) (7.9% and 9.0% of the WT 

level), lipoxygenase C (LoxC) (5.4%, 3.5%), LoxB (6.9%, 8.0%), hydroperoxide lyase (HPL) 

(41.4%, 48.5%), alcohol dehydrogenase 2 (ADH2) (69.5%, 72.5%), alcohol acetyltransferase 1 

(AAT1) (10.4%, 6.6%), L-phenylalanine ammonia lyase (PAL3) (43.8%, 33.9%). Several of these 

genes have been identified previously as direct targets of RIN including LoxC, HPL, AAT1 and 

BCAT1, which could also be induced by ethylene in RIN-CRISPR fruits (Zhong et al., 2013; 

Fujisawa et al., 2012; Fig. 4b). A
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RIN-deficient fruits soften extensively

Softening is a major component of fleshy fruit ripening. At early ripening stages, WT and 

RIN-CRISPR tomato fruits softened at a similar rate and pericarp firmness of mutant lines, 

measured by penetrometer, was not significantly different from that of the WT fruit from breaker 

(B) to breaker+10 (B+10) (Fig. 5a). Up to 35 days postharvest there was no significant difference 

in water loss between RIN-deficient and WT fruits during prolonged postharvest storage (Fig. 5b). 

Transcripts of cellulase (CEL2) were greatly reduced in RIN-deficient fruits (less than 1% WT) 

and polygalacturonase (PG) transcripts were also initially strongly reduced but reached higher 

levels when fruits were picked at late stages (Fig. 6). Transcripts of other cell wall-related genes 

such as expansin 1 (EXP1), pectate lyase (PL), β-D-xylosidase (XYL1), β-mannosidase (Mside1) 

and pectinmethylesterase (PE1/PME1.9) were also decreased but still accumulated to relatively 

high levels. CEL2, EXP1, PL and XYL1 have all been reported to be directly targeted by RIN 

(Fujisawa et al., 2013; Zhong et al., 2013). Of particular note, transcripts of 

endotransglucosylase/hydrolase (XTH5 and XTH8), which have not been identified among RIN 

targets (Fujisawa et al., 2013; Zhong et al., 2013), were significantly higher in RIN-deficient fruits 

compared to WT. Over longer timecales the RIN-deficient fruits stored less well than WT fruit 

(Fig. 5c). The internal structure visibly showed greater disruption and loss of integrity than WT 

fruits (Fig. 5d). Transcripts of other genes, such as α-mannosidase (MAN1), endo-1,4-β-

mannosidase 7 (Mside7), endo-1,4-β-mannanase (MAN4a), tomato β-galactosidase (TBG4), 

polygalacturonase (PG) and pectinmethylesterase (PME2.1) were present at higher levels at later 

ripening stages in RIN-deficient fruits compared to WT (Fig. 6). Of these, PG, TBG4, Mside7 and 

MAN4a have been reported to be directly targeted by RIN (Fujisawa et al., 2013; Zhong et al., 

2013).

Exogenous ethylene treatment enhanced the expression of several cell wall modifying genes 

in WT fruit, whereas the same treatment of RIN-deficient fruit resulted in a much smaller up-

regulation of some genes, including PG, XYL1 and TBG4 (Fig. S6a), while Mside7 and PME1.9 

transcripts were slightly reduced by ethylene treatment in RIN-deficient fruits (Fig. S6b). In 

contrast, transcripts of CEL2, EXP1, PL, Mside1, MAN4a and PME2.1 were not affected by 

supplying ethylene externally (Fig. S6c). Further, transcripts for genes such as XTH5, XTH8 and 

MAN1 displayed no obvious response to ethylene treatment in RIN-deficient fruits and were 

present at similar or higher levels than in WT (Fig. S6d) and XTH1-4, 6, 7 were undetectable. A
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Discussion

Ethylene is sufficient to initiate ripening in mature RIN-deficient fruit

Ethylene has long been implicated in the control of ripening. Ethylene action inhibitors Ag+ 

and later 1-MCP slow or inhibit ripening and there is a requirement for ethylene for the stable and 

continuous expression of ripening genes in fruit expressing RIN (Davies et al., 1988; Grierson, 

2013). Reducing expression of ACS and ACO ethylene biosynthesis genes by antisense/RNAi also 

slowed or prevented ripening (Oeller et al., 1991; Hamilton et al., 1990; Picton et al., 1993). 

Kevaney et al. (2007) concluded that degradation of ethylene receptors, which are negative 

regulators, could influence the timing of ripening but this analysis was performed with plants 

expressing an intact functional RIN gene. A striking feature revealed by the present study is that 

the reduced amount of endogenous ethylene generated by RIN-deficient fruits is sufficient to 

intitiate ripening in the absence of RIN (Fig. 1, 2) as proposed by Ito et al. (2017). The inhibition 

of colour change by 1-MCP and the responsiveness of carotenoid biosynthesis genes such as PSY1 

and others upon ethylene treatment (Fig. 1, 3) confirms this directly and indicates that this is a 

genuine ethylene response. However, ethylene treatment of RIN-deficient lines did not restore full 

ripening and, unlike the situation in WT fruits, system-2 ethylene production could not be induced 

by propylene in RIN-CRISPR fruits (Fig. 2). The response to the ethylene analogue propylene is a 

classic test for initiation of autocatalytic ethylene synthesis during ripening (McMurchie et al., 

1972) and the lack of a response in RIN-deficient tomatoes indicates RIN is required for the 

induction of system-2 ethylene production (Fig. 2). These results are all consistent with the 

suggestion that the observed RIN-independent initiation of ripening in mature RIN-deficient fruits 

is actually caused by the low endogenous ethylene that they produce at maturity. This does not 

solve the ripening initiation problem completely, however, since it is known that an increase in 

synthesis and responsiveness to ethylene only occurs in MG fruit and does not occur in immature 

fruit.

Discrepancies between fruits of the rin mutant and RIN-deficient fruit

The original rin mutation was known to involve a deletion and fusion of parts of two adjacent 

genes, called RIN and MC (Vrebalov et al., 2002); rin was thought to correspond to a loss-of-

function mutation and the analysis of the phenotype of rin mutant fruits was influential in shaping 

the conclusions about RIN function. Recent studies, however, have shown that RIN-MC protein is 

an active transcription factor with a repressor function (Ito et al., 2017; Li et al., 2018). A
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Our data show that RIN-deficient fruits are able to initiate ripening at a similar time to WT 

fruit (Fig. 1), supporting the conclusion that RIN is not required for ripening initiation, although it 

is needed for the progression and completion of ripening (Ito et al., 2017; Li et al., 2018). This 

poses the question: what initiates ripening and what is the role of RIN in ripening progression? 

RIN-deficient (RIN-CRISPR) fruits can respond to ethylene treatment, as indicated by changes in 

transcript levels of carotenoid pathway genes, required for pigment accumulation, and the 

accumulation of only a very limited quantity of carotenoids, especially lycopene (Fig. 3). The 

involvement of ethylene is confirmed by the demonstration that it is inhibited by the ethylene 

perception inhibitor 1-MCP (Fig. 1d). Our study clarifies the role of RIN in the control of 

climacteric ripening and highlights the importance of autocatalytic system-2 ethylene production 

(Fig. 2) for the subsequent progression of ripening and development of quality attributes such as 

coloured carotenoids and volatiles. The observed differences between the original rin mutants and 

the RIN-CRISPR lines described in the present study relate to the strong transcription repressor 

activity of the chimeric RIN-MC transcription factor generated by the mutation (Ito et al., 2017; Li 

et al., 2018). Key differences are that RIN is required for volatiles production but not softening, 

whereas RIN-MC, generated by the rin mutation, inhibits both.

Post-harvest RIN-deficient fruit soften extensively

Breeders have used the rin mutation in hybrids to reduce tomato fruit softening and prolong 

shelf-life. In the present experiments, removal of RIN greatly reduced the production of ethylene, 

carotenoids and volatiles but extensive softening still occurred (Fig. 5-6). This is inconsistent with 

RIN being a ‘master regulator’ of all aspects of ripening. The accumulation of cell wall modifying 

enzymes is greatly reduced in rin mutant fruit (Knapp et al., 1989; Tucker at al., 2017) and this 

may be related to the repressor function of the RIN-MC protein generated by the rin mutation (Li 

et al., 2018). In contrast, however, in RIN-deficient fruits we found that transcripts of some 

softening enzyme genes including XTH5 and XTH8 were expressed at higher levels compared to 

WT at most stages of ripening. This might explain why RIN-deficient fruits softened similarly to 

WT fruits at early ripening stages (Fig. 5). Surprisingly, early softening occurred in the almost 

complete absence of CEL2 and reduced levels of EXP1, PL, XYL1, Mside1 and PME1.9 

transcripts (Fig. 6), although at later stages MAN1, Mside7, MAN4a, TBG4, PG and PME2.1 

transcripts were significantly more abundant than in WT (Fig. 6). The XTH genes, which encode 

xyloglucanendo-transglucosylase/hydrolases (XTHs: EC2.4.1.207 and/or EC3.2.1.151) have been A
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proposed to have a dual role integrating newly secreted xyloglucan chains into an existing wall-

bound xyloglucan and restructuring the existing cell wall material by catalyzing transglucosylation 

between previously wall-bound xyloglucan molecules (Miedes and Lorences, 2009; Muñoz-

Bertomeu et al., 2013). XTH5 and XTH8 are the only XTHs reported to be expressed in fruits 

(Miedes and Lorences, 2009) and the higher levels of XTH5 and XTH8 transcripts that we 

measured (Fig. 6a) might cause cell wall structural changes affecting texture or softening of RIN-

deficient fruits. The fact that these genes are expressed more highly in RIN-deficient lines may 

indicate that, when present, RIN can actually repress their expression, but this needs experimental 

confirmation. RIN-deficient tomato fruits showed further abnormal softening late in the ripening 

process (Fig. 5). This is likely to be related to the late accumulation of abnormally high levels of 

transcripts for several wall-modifying enzymes, including Mside7, MAN1, MAN4a, TBG4, PG and 

PME2.1 transcripts (Fig. 6). Mside7 and MAN1, encoding endo-1,4-β-mannosidase 7 and α-

mannosidase, respectively, are likely to affect cell wall structure, since fruits of transgenic α-Man 

(MAN1) tomato RNAi lines were approximately 2.5-fold firmer with approximately 30 days 

extended shelf life, compared to WT, whereas over-expression of α-Man resulted in excessive 

fruit softening (Meli et al., 2010).

RIN, ethylene acting via ERFs and other TFs are involved in regulating fruit softening

Early studies showed that application of ethylene action inhibitors to tomatoes inhibited 

accumulation of PG and other gene transcripts (Davies et al., 1988; 1990) and the present findings 

support the conclusion that ethylene enhances accumulation of PG transcripts (Fig. S6). This is in 

disagreement with results of Oeller et al., (1991) but supports the conclusion of Sitrit and Bennett 

(1998). An ethylene response element (GCC-box) is present in the PG gene promoter (Fig. S7). 

Transcripts of cell wall modifying genes were much lower in response to ethylene in RIN-

deficient fruits compared to ethylene-treated WT fruits (Fig. S6). Without RIN, the fold-increase 

in response to ethylene was similar to WT, although the actual value was much lower (Fig. S6). 

This may indicate that RIN and ethylene, acting via ERFs and possibly other TFs, are both 

required for maximum expression of these cell wall genes. These results support a model where 

RIN and ethylene are both required for normal softening during ripening. Direct enhancement of 

transcription would be expected to involve an ERF activator, but the absence of the classical ERF 

GCC-box binding site in the promoters of all cell wall genes except PG has raised doubts about 

this possibility. There is, however, evidence for involvement of ERFs in recognising alternative A
cc

ep
te

d 
A

rt
ic

le
 

©2019 The Authors New Phytologist ©2019 New Phytologist Trust 

 



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Li, S., Zhu, B., Pirrello, J., Xu, C., Zhang, B., Bouzayen, M., Chen, K., Grierson, D. (2019).

Roles of RIN and ethylene in tomato fruit ripening and ripeningassociated traits. New
Phytologist. , DOI : 10.1111/nph.16362

promoter motifs. Tomato MADS protein FUL1 has been shown to interact with ERF8 in vivo 

(José Ripoll et al., 2015), and in Arabidopsis it has been shown that the AtRAP2.2 ERF binds an 

ATCTA motif and not the classical GCC-box. We note that ATCTA motifs are present in all the 

promoters of the cell wall genes we examined (Fig. S7). Thus, full expression of cell wall enzymes 

may require RIN and ERFs.

Evidence from other recent work (Gao et al., 2018) has confirmed that other TFs, including 

NACs, also modulate expression of genes involved in cell wall metabolism. There is some 

evidence that RIN interacts with a NAC protein, NAC4 (Zhu et al., 2014), and may also form 

heterodimers with other MADS TFs, such as TAGL1, AGL11 and FUL1/2 (reviewed in Li et al., 

2019). Cel2, EXP1 and MAN4a gene promoters can also be direct targets of both FUL1 and FUL2, 

whereas PL and XTH5 are only targeted by FUL1 (Fujisawa et al., 2014). NOR-like1, another 

NAC TF, has recently been shown to directly regulate PG, PL, CEL1 and EXP1 genes and also 

enhances ethylene production (Gao et al., 2018). Thus, RIN, NAC(s) and an ERF that recognizes 

the ATCTA motif may all contribute to the regulation of the expression of tomato cell wall 

modifying genes.

Effect of manipulation of RIN on tomato fruit volatiles 

The major reduction in aroma volatiles (Fig. 4, S5) in RIN-deficient fruits was related to the 

reduction in transcripts of key genes that operate in three different biosynthetic pathways to 

generate compounds that contribute to aroma and flavour (Fig. 4b). These include BCAT1, which 

is important in the production of branched-chain amino acids (Zhang et al., 2016; Kochevenko et 

al., 2012; Maloney et al., 2010), transcripts of LoxC, LoxB, HPL, ADH2 in the lipid pathway, 

where production of the C5 volatile 1-penten-3-ol is dependent upon LoxC action (Shen et al., 

2014) and the C6 volatiles require sequential activity of LoxC and HPL (Chen et al., 2004). AAT1 

is important in volatile esters synthesis (Yahyaoui et al., 2002; Goulet et al., 2015) and the final 

step in the pathway, conversion of aldehydes to alcohols, requires ADH2 activity (Speirs et al., 

1988). A major group of amino acid-derived flavour and aroma compounds, benzenoids (C6-C1), 

are synthesized from L-phenylalanine, including benzaldehyde and benzyl alcohol (Fig. S5). The 

first step in the biosynthesis of these compounds is catalyzed by L-phenylalanine ammonia lyase 

(PAL), which converts phenylalanine to E-cinnamic acid (Aragüez and Valpuesta, 2013) and the 

reduction in PAL3 transcripts in RIN-deficient fruits is consistent with the reduced products from 

this pathway (Fig. 4b). AADC1A mediates the first step in the production of phenylalanine-derived A
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volatiles in tomato fruits (Tieman et al., 2006). These transcripts were reduced in RIN-deficient 

fruits (Fig. 4b) and this is consistent with lower levels of aroma volatiles from the amino acid 

pathway (Fig. 4a, S5). Although transcripts of the CCD1B gene were not significantly different in 

RIN-deficient fruits, the accumulation of volatiles such as (E)-3-buten-2-one, 6-methyl-5-hepten-

2-one were reduced (Fig. 4). These compounds are carotenoid derivatives and the severely 

reduced carotenoid content of RIN-deficient fruits (Ito et al., 2017; Li et al., 2018) probably 

explains the reduced levels of these volatiles.

The use of the rin mutation by tomato breeders to generate hybrids with improved shelf-life 

has an adverse effect on tomato flavour (Osorio et al., 2019). Our results indicate that the normal 

RIN protein in WT fruit make a major contribution to volatile formation, which suggests if other 

RIN mutations were used for breeding, they could also have an adverse effect on flavour.

Models for initiation and progression of ripening and generation of quality attributes

The physiological and molecular analysis of RIN-deficient tomato fruits sheds new light on 

the mechanisms underlying initiation and progression of fruit ripening. First, there is a 

requirement for ethylene to initiate ripening via a RIN-independent route (Fig. 1). Second, this 

leads to the induction of RIN (Giovannoni et al., 2017; Li et al., 2018; Lü et al., 2018). The effect 

of ethylene on RIN transcripts was quantified in our previous experiments (Li et al., 2018) and we 

found that RIN mRNA was reduced 4-5-fold by treating MG WT fruit with 1-MCP compared to 

the control. RIN and TAGL1 may also be involved in a positive feedback loop leading to system-2 

ethylene production, since ethylene biosynthesis genes have been reported to be directly targeted 

by a RIN-TAGL1 complex (L ü  et al., 2018). We propose a working model (Fig. 7a) where 

ethylene is required to initiate ripening and activate expression of a subset of ripening genes. 

Among these genes is the regulator MADS-RIN, which activates a further subset of ripening genes, 

including those required for system-2 autocatalytic ethylene synthesis, such as ACS2, ACS4, 

ACO1 (Fig. S3, Liu et al., 2015).  However, the inability of RIN-deficient fruits to produce 

system-2 ethylene is not sufficient to explain their failure to ripen, since these fruit do not ripen 

completely, even after 15 days exposure to 100 ppm ethylene (Fig. 1d). This suggests that other 

factors may also contribute to the regulation of this process, including other phytohormones such 

as auxin (Shin et al., 2019). RIN promotes transcript accumulation from some genes involved in 

cell wall metabolism (Fig. 6 and S6) and ethylene stimulates the accumulation of others, discussed 

in the legend to Fig. 7b. Increases in PG, TBG4, PME2.1, Mside7 and MAN4a transcripts are A
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delayed but they eventually reach very high levels in RIN-deficient fruits (Fig. 6). XTH5 and 

XTH8 transcripts, on the other hand, accumulate to higher levels in the absence of RIN, suggesting 

that when present RIN may cause a significant reduction in their expression.It is important to test 

these various possibilities in order to clarify the mechanism whereby ethylene stimulates 

expression of cell wall modifying and other ripening-related genes. 
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Figures
Fig. 1 Phenotypes, RIN protein content and ethylene response of wild type (WT) and RIN-deficient 

tomato fruits.  (a) The detection of RIN protein by western blotting in WT but not RIN-CRISPR fruits, 

using RIN-poly-antibody. Actin was used as internal control. (b) Tomato fruits from the RIN-MC mutant 

(rin mutant) and three RIN-CRISPR lines (RIN-CRISPR-1-3) generated by CRISPR/Cas9-mediated 

mutagenesis of the RIN gene are shown at 25 days after anthesis (dpa), 38 dpa, 43 dpa, 48 dpa, and 

compared to WT fruit. The scale bar indicates 2 cm. (c) Number of days from anthesis to ripening of AC, 

RIN-CRISPR and rin mutant tomato fruits. (d) Effect of exogenous ethylene and ethylene perception 

inhibitor 1-MCP treatment on ripening progression of RIN-CRISPR tomato fruit. WT and RIN-CRISPR 

tomato fruits were picked at MG stages and treated and. replenished daily with ethylene (100 ppm) and 1-

MCP (10 ppm) or air continually for up to 15 days. Fruits in horizontal rows are biological replicates. 

Enlarged photos of representative samples are shown compared to WT fruits on the right. The scale bar 

represents 2cm.

Fig. 2 Ethylene production and response of wild type (WT) and RIN-deficient tomato fruits to propylene.  

(a) Ethylene production in WT and RIN-CRISPR tomato fruits at immature (IM), breaker (B), breaker+5 

(B+5), breaker+10 (B+10) stages, measured by GC (average of 3 biological replicates). (b) Ethylene 

production of tomato WT and RIN-CRISPR fruits treated with propylene. Fruit were picked at MG stages 

and treated with propylene (1000 ppm) (equivalent to 10 ppm ethylene treatment) (McMurchie et al., 1972) 

or air (control) continually for 12, 24, 36, 48 and 72 hours to test for induction of endogenous system-2. 

Propylene was replenished every 12 hours. The error bars represent Mean +/- SD, the lowercase letters 

indicate significant difference at P=0.05.

Fig. 3 Comparison of changes in pigment production and qRT-PCR assay of genes involved in pigment 

accumulation in wild type (WT)  and RIN-deficient tomato fruits. (a) Carotenoid content of WT and 

RIN-CRISPR measured by HPLC (average of 3 biological replicates). (b) qRT-PCR of gene transcripts 

involved in carotenoids biosynthesis (average of 3 biological replicates). Relative transcript levels are 

expressed relative to the tomato ACTIN gene internal control, expressed as 2-ΔΔCt (Livak and Schmittgen, 

2001). 1-D-deoxyxylulose 5-phosphate synthase (DXS1); geranylgeranyl pyrophosphate synthases 

(GGPS2); phytoene synthases 1 (PSY1); phytoene desaturase (PDS); zeta-carotene desaturase (ZDS); 

carotene isomerase (CRTISO); non-heme hydroxylases (SlBCH2/CHY); zeaxanthin epoxidase (ZEP). The 

error bars represent Mean +/- SD, the lowercase letters indicate significant difference at P=0.05. Genes 

identified as having low level of transcripts by RNA-Seq (Li et al., 2018) were not measured. 

Fig. 4 Volatile content and qRT-PCR assay of genes involved in volatile formation during ripening of wild 

type (WT) and RIN-deficient tomato fruits. (a) Aroma volatiles produced from different pathways 

including amino acid (phenylethyl alcohol, 2-hydroxy-benzaldehyde, 2-methoxy-phenol, 

benzeneacetaldehyde, benzaldehyde, 2-isobutylthiazole), carotenoid (6-methyl-5-hepten-2-one, (E)-3-

buten-2-one), lipid (hexanal, heptanal, (E)-2-heptenal, (E)-2-pentenal). Volatiles were measured by GC or A
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GC-MS. (b) qRT-PCR of gene transcripts involved in major tomato fruit pathways forming volatiles, 

relative to the expression of the tomato ACTIN gene as internal control, expressed as 2-ΔΔCt (Livak and 

Schmittgen, 2001). Lipoxygenase (LoxA, LoxB, LoxC); hydroperoxide lyase (HPL); alcohol dehydrogenase 

2 (ADH2); alcohol acetyltransferase 1 (AAT1); branched-chain aminotransferases (BCAT1); L-

phenylalanine ammonia lyase (PAL3); aromatic amino acid decarboxylase (AADC1A); carotenoid 

cleavage dioxygenase 1 (CCD1B). RNA-Seq has shown previously that genes such as 

carboxymethylesterase (carboxylesterase 1 (CXE1)); PAL2,4,6 have only low transcript levels and PAL1,5 

are unaffected if RIN is silenced (Li et al., 2018). The error bars represent Mean +/- SD, the lowercase 

letters indicate significant difference at P=0.05.

Fig. 5 Texture change, water loss and phenotype during postharvest stages. (a) Fruit firmness in wild type 

(WT) and RIN-CRISPR tomato measured by penetrometer. Tomato fruits from two RIN-CRISPR 

homozygous mutant lines (RIN-CRISPR-1, RIN-CRISPR-2) and WT were picked at four different ripening 

stages, including immature (IM), breaker (B), breaker+5 (B+5), breaker+10 (B+10). (b) Water loss by WT 

and RIN-CRISPR tomato fruits during postharvest storage. Tomato fruits from RIN-CRISPR-1, RIN-

CRISPR-2 and WT were picked at early breaker (B), and stored for 0 days (d), 10d, 20d, 25d, 30d, 35d. 

Measurement of water loss was as described in Materials and Methods. The error bars represent Mean +/- 

SD. (c) Phenotype of both WT, RIN-CRISPR and rin mutant tomato fruits during postharvest ripening and 

storage. Tomato fruits from RIN-CRISPR-1, RIN-CRISPR-2, rin mutant and WT were picked at early B 

stage and stored for 0 days (d), 10d, 20d, 25d, 30d, 35d. (d) Tomato fruits from RIN-CRISPR-1, RIN-

CRISPR-2, rin mutant and WT were picked at early B stage and stored for 35d and photographed. Enlarged 

photos of representative samples are shown compared to WT fruits on the right. The scale bar represents 

2cm. 

Fig. 6 Transcripts of cell wall modifying enzymes in RIN-deficient and wild type (WT) fruits measured by 

qRT-PCR. (a) Genes whose transcripts are higher in RIN-deficient fruits compared to WT fruits during at 

least one ripening stage. (b) Genes whose transcripts are lower in RIN-deficient fruits compared to WT. 

Expression of genes was measured in fruits selected at the breaker (B), breaker+5 (B+5), breaker+10 

(B+10) stages. Transcript levels were determined by qRT-PCR, relative to the expression of the tomato 

ACTIN gene internal control, expressed as 2-ΔΔCt  (Livak and Schmittgen, 2001): polygalacturonase (PG), 

expansin 1 (EXP1), cellulase (CEL2), pectinesterase (PE1/PME1.9, PME2.1), pectate lyase (PL), α-

mannosidase (MAN1), endo-1,4-β-mannanase (MAN4a), β-D-xylosidase (XYL1), β-mannosidase (Mside1), 

endo-1,4-β-mannosidase 7 (Mside7), tomato β-galactosidase (TBG4), xyloglucan 

endotransglucosylase/hydrolase (XTH5 and XTH8). The error bars represent Mean +/- SD, the lowercase 

letters indicate significant difference at P=0.05.

Fig. 7 Model outlining the role of ethylene and RIN in initiation and progression of climacteric ripening in 

tomato fruit. (a) Ethylene can initiate ripening in a RIN-independent way leading to partial ripening (data 

provided herein). However, RIN is required for autocatalytic system-2 of ethylene production and A
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subsequent full ripening. RIN expression is enhanced by ethylene (Giovannoni et al., 2017; Li et al., 2018; 

Lü et al., 2018). Other factors such as NOR, NOR-like1, ERFs, ARFs and TAGL1, not mentioned in this 

model, are also involved in the ripening genetic program (Li et al., 2019; Gao et al., 2018). (b) A model of 

the role of RIN and ethylene in regulating tomato fruit cell wall changes and softening. Accumulation of 

CEL2, XYL1, EXP1, PL, Mside1, PG and TBG4 transcripts is stimulated by ethylene (Fig. S6). RIN also 

regulates the transcription of genes involved in cell wall metabolism, such as CEL2, XYL1, EXP1, PL, 

Mside1 and PME1.9 (Fig. 6 and S6), whereas genes such as XTH5 and XTH8 are expressed at a higher level 

in the absence of RIN. In contrast, increases in transcripts of PG, TBG4, PME2.1, Mside7 and MAN4a are 

delayed but eventually reach very high levels in the absence of RIN (Fig. 6). 
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Supporting Information
Fig. S1 Construction of RIN-CRISPR tomato mutants. 

Fig. S2 Phenotype of RIN-CRISPR tomato fruits.

Fig. S3 qRT-PCR assay of genes involved in ethylene biosynthesis, perception and signaling. 

Fig. S4 Colour development in WT and RIN-CRISPR tomato fruits. 

Fig. S5 Biochemical origin of tomato fruit volatiles and the content in WT, RIN-CRISPR-1 and RIN-CRISPR-2 

tomato fruits.  

Fig. S6 Transcripts of cell wall modifying enzymes in RIN-deficient and WT fruits treated with ethylene and 1-

MCP measured by qRT-PCR.  

Fig. S7 RIN and ERF binding motifs in promoters of cell wall metabolising genes. 

Table S1 Primer pairs for vector construction and target site mutation analysis.

Table S2 Primer pairs for qRT-PCR assay.

Table S3 Volatile components of AC, RIN-CRISPR-1 and RIN-CRISPR-2 tomato fruits at B, B+5 and B+10 

stages. 
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