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Histone lysine acetylation is an essential chromatin modification for epigenetic regulation 
of gene expression during plant response to stress. On the other hand, enzymes involved 
in histone acetylation homeostasis require primary metabolites as substrates or cofactors 
whose levels are greatly influenced by stress and growth conditions in plants. In addition, 
histone lysine acylation that requires similar enzymes for deposition and removal as 
histone acetylation has been recently characterized in plant. Results on understanding 
the intrinsic relationship between histone acetylation/acylation, metabolism and stress 
response in plants are accumulating. In this review, we summarize recent advance in the 
field and propose a model of interplay between metabolism and epigenetic regulation of 
genes expression in plant adaptation to stress.
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INTRODUCTION

Due to their sessile life style, plants have developed sophisticated signaling pathways by adjusting 
gene expression, metabolism, cellular activity, and growth to respond to the changing environmental 
conditions. During the last 2 decades, much progress has been made in deciphering signaling 
pathways of plant responses to both biotic and abiotic stresses. More recent data indicate that 
chromatin modification plays an essential role in epigenetic regulation of gene expression and plant 
adaptation to stress (Kim et al., 2015). Chromatin modifications, including DNA methylation, histone 
modifications, histone variant deposition, and nucleosome positioning, are the basis of epigenetic 
regulation. Nucleosome, which is the building block of chromatin, consists of a core histone octamer 
(H2A, H2B, H3, and H4) and a segment of DNA wrapped around the core. The linker histone H1 
binds to the nucleosome at the entry and exit sites of DNA and is involved in the stability of higher-
order structure of chromatin. N-terminal tails of core histones are modified with various chemical 
groups such as methyl, acetyl, acyl, ribosyl, phosphate as well as ubiquitin and SUMO. Histone 
modification affects nucleosome and chromatin structure, thus plays important roles in fine tuning 
of gene expression. Histone modification, in particular histone lysine acetylation, has been shown 
to play an essential role in plant response and tolerance to stress (Servet et al., 2010; Yuan et al., 
2013). In this review we focus on summarizing recent progresses in the field and discussing histone 
acetylation dynamics and its relationship with primary metabolism in plant responses to stress.
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Histone Acetylation Dynamics in Plant 
Responses to Stress
Histone acetylation consists of addition of acetyl group, which 
is provided by acetyl-CoA, to the ε-amine group of N-terminal 
lysine residues. Histone lysine acetylation not only neutralizes 
the positive charge of the amine group, and enhances the 
hydrophobicity and increases the size of the lysine side 
chain, but also provides platforms for binding by regulatory 
proteins of chromatin structure and gene activity to promote  
genes transcription.

Global change in histone acetylation in response to stress has 
been reported in various plants. For example, salt, drought, and 
heat stress increase acetylation of histone H3 lysine 9 (H3K9ac) 
and histone H4 lysine 5 (H4K5ac) levels in different tissues of 
maize (Li et al., 2014; Zhao et al., 2014a; Zhao et al., 2014b; Wang 
et al., 2015). In rice seedlings, drought stress induces H3K9ac, 
H3K18ac, H3K27ac, H3ac, and H4K5ac (Fang et al., 2014). 
However, cold stress dramatically reduces global H3K14ac while 
without altering H3K9ac and H3K27ac in the same plant (Roy 
et al., 2014). Recent results indicate that in rice plants under 
submergence or starvation, genome-wide H3K9ac displays 
dynamic changes which correlates with the stress-induced gene 
activation (Lu et al., 2018). These data illustrate that histone 
H3 and H4 lysine acetylation is mostly elevated during plant 
response to stress. The increase implies that either higher 
acetylation or lower deacetylation activities are induced during 
stress responses. The global change of acetylation at specific lysine 
residues suggests that activity of particular enzymes involved in 
histone acetylation is induced by the stress. However, despite 
that acetylation enzymes may have preferential lysine targets in 
histone H3 or H4 (Henry et al., 2013; Kuo and Andrews, 2013; 
Zhou et al., 2017), acetylation at a particular site can be spread 
to neighboring lysine residues (Earley et al., 2007). On the other 
hand, as primary metabolism is greatly altered by stress or growth 
conditions, a metabolic control of histone acetylation is not 
excluded (see below). It is generally thought that the increase of 
histone acetylation plays an essential role in reprograming gene 
expression for plant response or tolerance to stress. However, the 
increase of histone acetylation at some loci may lag behind gene 
activation, thus appears in this case as the consequence rather 
than the cause of the stress-induced gene expression.

Function of Histone Acetylation Enzymes 
in Plant Response to Stress
Histone lysine acetylation is catalyzed by histone 
acetyltransferases (HATs) and reversed by histone deacetylases 
(HDACs). In plants, the HATs can be grouped into four classes: 
General control nondepressible 5 (GCN5)-related Acetyl 
Transferase (GNAT), MOZ-YBF2/SAS3-SAS2/TIP60 (MYST), 
cAMP-responsive element Binding Protein (CBP), and TATA-
binding protein Associated Factor 1 (TAF1) (Pandey et al., 
2002). Histone acetylation at different lysine residues is carried 
out by specific HATs (Earley et al., 2007). For example, two 
GNAT class HATs, HAG1 and HAG2, catalyze H3K14 and 
H4K12 acetylation respectively. Two MYST class HATs, HAM1 
and HAM2, redundantly acetylate H4K5. However, multiple 

HATs are responsible for acetylation of H3K9, H4K8, and 
H4K16 (Earley et al., 2007). Enzymatic specificities of HATs may 
reflect their specific roles in the regulation of gene expression, as 
recognition of different acetylated lysines of histone by distinct 
reader proteins incur various epigenetic consequences. These 
proteins include chromatin remodelers, BET proteins, histone 
lysine methyltransferases and HATs themselves, all of which 
contain bromodomain that mediates the interaction between 
the reader protein and acetylated lysine (Marmorstein and 
Zhou, 2014). Regulatory function of some of these proteins in 
plant has been characterized. An Arabidopsis ATP-dependent 
chromatin remodeler, BRAHMA (BRM), is required for the 
expression of many genes in concert with or counteracting 
histone variant H2A.Z (Han et al., 2015; Torres and Deal, 2019). 
The bromodomain of BRM is able to bind histones but its 
targeting acetylated lysine has not been identified yet (Farrona 
et al., 2007). The HDACs can be grouped into three families: 
Reduced Potassium Dependency 3 (RDP3)/Histone DeAcetylase 
1 (HDA1), Silent Information Regulator 2 (SIR2), and the plant-
specific Histone Deacetylase 2 (HD2) (Pandey et al., 2002). In 
addition, based on their homology to yeast HDACs the plant 
RPD3/HDA1 family is divided into three classes (I, II, and IV) 
and their activity can be suppressed by different HDAC inhibitors 
respectively (Ueda et al., 2017). Site specificity of HDACs on 
histones has not been clearly demonstrated. Alteration of rice 
HDT701 expression level affects global H4K5 and H4K16 
acetylation levels, while many HDACs regulates H3 acetylation 
at specific genes (Ding et al., 2012; Zheng et al., 2016; Liu et al., 
2017; Ueda et al., 2017; Wang et al., 2017; Cheng et al., 2018; 
Park et al., 2018). In addition to histones, non-histone substrates 
of plant RPD3/HDA1 family HDACs has also been identified 
(Hartl et al., 2017). These proteins localize either in nucleus or 
other organelles. The lysine acetylation sites regulated by HDACs 
account for 10% of total detected lysine acetylation sites (Hartl 
et al., 2017). These results indicate that HDACs have additional 
cellular functions aside from regulation of gene expression via 
histone deacetylation. HAT and HDAC proteins target specific 
genomic or chromatin regions by interacting with transcription 
factors and other chromatin proteins for epigenetic regulation of 
gene expression in response to cellular signals (Servet et al., 2010; 
Liu et al., 2014). It is also possible that the interactions mediate 
reversible acetylation of transcription regulators by HATs and 
HDACs, which is important for the function of the regulators. 
The mechanism has been testified in mammals but not reported 
in plant yet (Lee et al., 2012; Sadler et al., 2015). Besides, 
in  rice, moonlight function of Glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) is modulated by SIR2 family HDAC, 
SRT1, which will be discussed later. Function of HATs and 
HDACs in stress-responses was summarized in the previous 
review (Kim et al., 2015). Here we discuss recent advances in 
functional analysis of HATs and HDACs in regulating plant 
response to stress.

GCN5 is a primary histone acetyltransferase in regulating 
plant gene expression (Servet et al., 2010; Zhou et al., 2017). 
Recent studies demonstrated a primary role of GCN5 in plant 
response and tolerance to stress. Mutation or downregulation of 
GCN5 increases plant sensitivity to varieties of stresses including 
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salt, drought, heat, and disease in different species (Hu et al., 
2015; Kong et al., 2017; Zheng et al., 2018; Li et al., 2019). In 
Arabidopsis, GCN5-mediated salt and heat tolerance is dependent 
on its regulatory function on stress genes expression (Hu et al., 
2015; Zheng et al., 2018). Induction of stress genes is attenuated 
in gcn5 mutants and overexpression of the stress genes in gcn5 
mutant plants can partially restore stress tolerance. In Populus 
trichocarpa, GCN5 is recruited to promoters of the drought-
responsive genes PtrNAC006, PtrNAC007, and PtrNAC120 to 
activate their expression, thus conferring drought tolerance (Li 
et al., 2019). In soybean, GCN5-mediated histone acetylation at 
defense-related genes is important for their activation and plant 
immunity (Kong et al., 2017). The cytoplasmic effector PsAvh23 
produced by the soybean pathogen suppresses histone acetylation 
by disassembling HAT complex to increase plant susceptibility. 
The role of the other HATs in plant stress response has not been 
explored except that HAC1 and HAC5 (HAC1/5) are shown to 
be essential for salicylic acid (SA) -triggered immunity (Jin et al., 
2018). HAC1/5 form a complex with NPR1, which is recruited 
to PR chromatin by TGACG BINDING FACTORs (TGAs) 
to induce PR transcription. HAC1/5 mutation diminishes PR 
induction and plant resistance to pathogen.

Several HDACs have been reported to negatively regulate 
stress tolerance in Arabidopsis such as HDA9, HDA15, HD2C, 
AtSRT1, Class I HDAC (HDA19) in Col-0 ecotype, and HDA6 
in Ler ecotype (Buszewicz et al., 2016; Mehdi et al., 2016; Zheng 
et al., 2016; Liu et al., 2017; Ueda et al., 2017; Wang et al., 2017; 
Park et al., 2018; Ueda et al., 2018; Shen et al., 2019). Consistent 
with the discovery, treatment with HDACs inhibitor Cyclo(-L-2-
amino-8-hydroxamido-suberoyl-aminoisobutylyl-L-phenylalanyl-
D-prolyl-), called Ky-2,  increases plant tolerance to salt stress, 
which is dependent on enhanced Na+ efflux by activation of AtSOS1 
genes (Sako et al., 2016). Defects in AtSOS1 neutralize salt tolerance 
caused by ky2 treatment. The phenomenon has also been observed 
in cassava. Treatment with HDAC inhibitor, suberoylanilide 
hydroxamic acid (SAHA) induces MeSOS1 expression and reduces 
Na+ content thus enhancing tolerance to salinity stress in cassava 
(Patanun et al., 2016). However, other HDACs were found to act as 
positive regulators of stress tolerance. These include HD2C, HDA19 
in Ws ecotype, HDA6 in Ws, and Col-0 ecotype, HD2B and Class II 
HDACs (HDA5/14/15/18) (Chen et al., 2010; Chen and Wu, 2010; 
Luo et al., 2012; Latrasse et al., 2017; Ueda et al., 2017). Surprisingly, 
the same genes in different ecotype appear to function oppositely in 
stress tolerance. The cause of this functional divergence is unclear. 
It is suggested that the functional discrepancy between Class I and 
Class II HDACs may be because they have distinct downstream 
target genes (Ueda et al., 2017). For instance, there are few common 
up-regulated genes in hda19 and hda5/14/15/18 mutants before and 
after salt treatment (Ueda et al., 2017). Moreover, stress tolerance-
related and stress sensitivity-related genes are respectively activated 
in hda19 and hda5/14/15/18 mutants, suggesting mutation of 
two classes HDACs induces opposite responses to salt stress. 
There is also possibility that Class II HDACs target non-histone 
proteins involved in salt tolerance as global histone acetylation 
remains unchanged in the mutant. Alternatively, HDA19 may act 
downstream to Class II HDACs because hda5/14/15/18/19 mutants 
exhibit similar salt tolerance as hda19 (Ueda et al., 2017). To 

dissect specific function of the different HDACs in stress tolerance, 
genome-wide identification of their target genes and analysis of 
changes in histone acetylation at these genes in response to stress 
are required. In addition, how HDACs respond to stress signaling 
to control histone acetylation and expression of specific genes 
remains unclear. The gene or locus specificity of HDACs is at least 
partly determined by interacting with other partner proteins. It was 
shown that HDA19 interacts with transcriptional co-repressors 
such as TOPLESS (TPL), SWI-INDEPENDENT3 (SIN3), and 
SIN3-LIKE (SNL) proteins and transcription factors such as AP2/
EREBP, BES1, SCR-like15, WOX5, etc. to repress genes involved in 
different developmental and stress-responsive pathways (Song et 
al., 2005; Long et al., 2006; Krogan et al., 2012; Wang et al., 2013; 
Ryu et al., 2014; Gao et al., 2015; Pi et al., 2015; Mehdi et al., 2016). 
HDA9 interacts with POWERDRESS (PWR), a SANT-domain 
containing protein to regulate heat stress response (Chen et al., 
2016; Tasset et al., 2018). HDA15 interacts with the transcription 
factor HFR1 (long Hypocotyl in Far Red1) to repress warm-
temperature response (Shen et al., 2019)

It has been shown that redox modification of HDAC is involved 
in stress signaling in mammalian cells. In humans, oxidative stress 
reduces HDAC2 activity by tyrosine nitration, resulting in histone 
hyperacetylation at the target genes and their activation (Ito et 
al., 2004). Additionally, in mammals activity of several HDACs is 
regulated by S-nitrosylation (Nott et al., 2008; Feng et al., 2011; 
Okuda et al., 2015). In Arabidopsis, treatment with the physiological 
NO donor S-nitrosoglutathione (GSNO) increases global histone 
acetylation, which is triggered by inhibition of cellular overall 
HDAC activity (Mengel et al., 2017). Stress responsive genes are 
activated owing to increased histone acetylation. Moreover, SA 
induced abundance of histone acetylation is diminished in the 
presence of the NO scavenger (Mengel et al., 2017). This indicates 
that histone hyperacetylation induced by SA is dependent on NO 
production. However, whether inhibition of HDAC activity by NO 
production involves direct S-nitrosylation of HDAC proteins has 
not been demonstrated yet. It is hypothesized that under normal 
conditions, HDACs maintain repressive chromatin state of stress-
responsive genes by histone deacetylation to keep gene transcripts 
at low levels. SA or stress induces NO accumulation, which 
subsequently inhibits HDAC activity by redox modification of the 
proteins. This leads to histone hyperacetylation and activation of 
stress-responsive genes expression.

Acetyl-CoA Controlled Histone Acetylation 
in Plant Response to Stress
Histone acetylation consumes acetyl-CoA, which is a precursor 
for amino acids, lipids, and many secondary metabolites 
required for plant growth and defense. In addition, acetyl-CoA 
drives the tricarboxylic acid (TCA) cycle for the production of 
ATP under aerobic conditions. Acetyl-CoA can be produced 
by beta-oxidation of fatty acids in peroxisome or by oxidizing 
pyruvate by the pyruvate dehydrogenase complex (PDC) and can 
be synthesized by ATP-citrate lyase (ACL) in the cytoplasm and 
nucleus. Thus, acetyl-CoA level reflects cellular energy status. 
Recent data firmly demonstrates that histone lysine acetylation 
is regulated by acetyl-CoA availability. In yeast, unusually 
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high levels of acetyl-CoA have a determinative role in histone 
acetylation and epigenetic regulation of gene expression (Cai 
et al., 2011; Shi and Tu, 2013). In yeast or mammals, growth-
related genes or genes involved in glucose metabolism are 
up-regulated by histone hyperacetylation in response to growth 
factor stimulation or high glucose availability (Etchegaray 
and Mostoslavsky, 2016). In mammalian cells, up-regulation 
of these genes relies on ACL that converts glucose-derived 
citrate into acetyl-CoA in the nucleus (Wellen et al., 2009). 
Another source of nucleic acetyl-CoA is conversion of acetate 
by acylCoA synthetase short chain family member 2 (ACSS2). 
ACSS2-mediated acetyl-CoA production is crucial for histone 
acetylation as decrease in ACSS2 causes lower level of acetyl-
CoA and histone acetylation (Bulusu et al., 2017). Nuclear-
localized PDC that generates acetyl-CoA from pyruvate is 
also required for histone acetylation at specific lysine residues 
important for expression of cell cycle genes in response to 
growth factor (Sutendra et al., 2014). Lipid-derived acetyl-CoA 
promotes histone acetylation at certain lysine residues to activate 
lipid metabolic genes expression in response to accumulated 
lipid (Mcdonnell et al., 2016). It is intriguing to disclose how 
acetyl-CoA originated from distinct precursors promotes 
acetylation of specific lysine residues of histones and expression 
of specific genes. Most of enzymes responsible for generation of 
acetyl-CoA such as ACL, ACSS2 and PDC has been reported 
to localize in nucleus (Wellen et al., 2009; Sutendra et al., 
2014; Li et al., 2017). Additionally, ACSS2 can be recruited to 
chromatin by interacting with a specific transcription factor (Li 
et al., 2017). Physical association between ACSS2 and CREB-
binding protein (CBP), a histone acetytransferase, has been 
observed indicating that acetyl-CoA is provided locally to 
activate histone acetyltransferase that targets specific genes for 
histone acetylation (Mews et al., 2017). ACL and GCN5 may 
function in the same pathway to promote histone acetylation 
despite direct interaction of the two enzymes is not examined 
(Wellen et al., 2009). These results demonstrate that the acetyl-
CoA producing enzymes form complexes with different HATs to 
enhance acetylation at specific histone lysine residues.

In Arabidopsis, it was shown that increased level of acetyl-
CoA, caused by mutation of cytosolic acetyl-CoA carboxylase1 
(ACC1), predominantly promotes histone hyperacetylation 
at H3K27 (Chen et al., 2017). Conversely, loss-of-function of 
adenosine triphosphate (ATP)-citrate lyase subunit A (ACLA) 
reduces H3K27ac, supporting a causal relationship between high 
levels of acetyl-CoA and H3K27ac elevation. It was also observed 
that increase of H3K27ac at a sub set of genes in acc1 mutant 
was dependent on GCN5 (Chen et al., 2017). Transcriptome 
and metabolome analyses indicate that primary metabolism 
including amino acid biosynthesis is affected in acc1 (Chen et al., 
2017), demonstrating that in plants acetyl-CoA also connects 
metabolic state with epigenetic regulation of gene expression. 
A recent study showed that the fatty acid β-oxidation pathway 
enzymes (acyl-CoA oxidase 4, multifunctional protein 2, and 
3-ketoacyl-CoA thiolase-2) are required for histone acetylation 
and anti-silencing at some endogenous transgenic loci in 
Arabidopsis (Wang et al., 2019). The finding confirms that histone 
acetylation can be regulated by acetyl-CoA availability in plant 

cells and indicate that acetyl-CoA produced from β-oxidation in 
peroxisome participates in histone modification in the nucleus.

Direct evidence supporting how HAT-mediated histone 
acetylation promoted by acetyl-CoA is involved in stress response 
has not yet been clearly demonstrated. Plant needs to reduce 
growth rate to survive from stress conditions, which involves 
carbon flux from primary metabolism to secondary metabolites 
(Caretto et al., 2015). The metabolic transition may trigger acetyl-
CoA accumulation to enhance global histone acetylation. In 
addition, glycolysis is generally induced during plant response 
to stress (Mutuku and Nose, 2012; Lee et al., 2014; Henry et al., 
2015), which raises the possibility that pyruvate produced by high 
glycolytic activity may increase the acetyl-CoA pool. However, 
it was observed that drought stress induces metabolic flux 
conversion from glycolysis into acetate synthesis in Arabidopsis 
(Kim et al., 2017). It was shown that application of exogenous 
acetic acid enhances stress tolerance by promoting histone H4 
acetylation and stimulating jasmonic acid (JA) pathway (Kim et 
al., 2017). Acetate treatment can also increase stress tolerance in 
other plants, suggesting a general function of acetate metabolism 
in stress adaptation (Kim et al., 2017). It can be hypothesized that 
stress induces accumulation of acetic acid which can be converted 
to acetyl-CoA to enhance histone acetylation (Figure  1). 
Nevertheless, more evidence is required to show whether acetate-
promoted histone acetylation is mediated by increased levels of 
acetyl-CoA. Homolog of ACSS2 in Arabidopsis (ACS) catalyzes 

FIGURE 1 | Accumulation of acetyl-CoA stimulates histone acetylation and 
gene expression in plants, synthesis of acetyl-CoA from different sources 
including acetate, citrate and fatty acid can be induced by stress. elevation 
of acetyl-CoA from different sources (citrate and acetate) may stimulate 
distinct histone acetyl transferases (HAT) to promote histone acetylation at 
different histone lysine residues (H3K27 and H4) and stress responsive gene 
expression. PDC, pyruvate dehydrogenase complex; ACS, acetyl-coenzyme 
A (CoA) synthetase; ACL, ATP-citrate lyase.
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acetyl-CoA formation in plastid (Lin and Oliver, 2008). Whether 
this enzyme catalyzes the same reaction in cytosol or nucleus has 
not yet been demonstrated. Similarly, it remains to show whether 
ACS loss-of-function lowers acetyl-CoA content and histone 
acetylation level and affects stress tolerance. The induction of 
H3K27ac by elevated acetyl-CoA in the acc1 mutant may also 
play a significant role in stress response, as many genes involved 
in stress tolerance such as ROS homeostasis, JA response and 
flavonoid metabolism are up-regulated in the mutant (Chen et 
al., 2017). However, increased acetyl-CoA from different sources 
(citrate and acetate) apparently targeted different histone lysine 
residues (Chen et al., 2017; Kim et al., 2017). One possible 
explanation may be that specific HATs interact with different 
enzymatic complexes of acetyl-CoA biosynthesis as described 
above in animal cells. It is of great interest to uncover how plant 
histone acetyltransferases discriminate citrate-derived acetyl-
CoA from acetate-derived acetyl-CoA to acetylate specific histone 
lysine residues in response to stress signals. In addition, exploring 
whether histone acetylation and stress signaling require acetyl-
CoA generated from pyruvate and β-oxidation is equally of great 
importance (Figure 1).

NAD+ -Dependent HDAC in Coordinating 
Metabolism and Stress Response
The sirtuin (SIR2/SIRT)-like proteins require NAD+ to remove 
acetyl from proteins including histones, suggesting that the 
activity of sirtuins may be controlled by NAD+ biosynthesis and 
consumption. NAD+ consumption is likely to be essential in plant 
response to stress conditions. Downregulation of poly(ADP‐
ribose) polymerase (PARP), which encodes enzyme transferring 
ADP-ribose units from NAD+ to target proteins, enhances stress 
tolerance (De Block et al., 2005). However, overexpression of 
NADK encoding enzyme responsible for catalyzing NAD(H) 
and ATP to produce NADP(H) confers stress tolerance (Li et al., 
2018a). Indeed, NADH/NAD+ ratio increases while NAD+ level 
is not affected in response to stress (Wang et al., 2016). It is 
postulated that sirtuins may act as a sensor of cellular redox state 
to modulate histone acetylation and regulate gene expression 
in plants (Shen et al., 2016). However, there is still no direct 
evidence showing that NAD+ fluctuation actually regulates SRT1 
or SRT2 function in plants.

Glycolysis is enhanced in plants undergoing stress responses 
(Mutuku and Nose, 2012; Lee et al., 2014; Henry et al., 
2015). Interestingly, several glycolytic enzymes also display 
transcriptional regulatory activities, which are referred to as the 
moonlighting function of the metabolic enzymes (Boukouris 
et al., 2016). It was shown that plant SRT1 negatively regulates 
glycolysis under stress conditions. SRT1 is found to not only 
deacetylate histones in chromatin of glycolytic genes and reduces 
the enzymatic activities but to also regulate the moonlighting 
function of glycolytic enzymes involved in glycolytic gene 
expression (Liu et al., 2017; Zhang et al., 2017). It was shown 
that Arabidopsis SRT1 deacetylates and stabilizes Arabidopsis 
cMyc-Binding Protein 1 (AtMBP-1), a direct transcriptional 
repressor of both stress master regulatory genes STZ/ZAT10 and 

LOS2/ENO2. The latter encodes glycolytic enolase and AtMBP-1 
itself which is in fact produced from an alternative translational 
initiation of the LOS2/ENO2 mRNA (Kang et al., 2013; Eremina 
et al., 2015; Liu et al., 2017). LOS2 is also required for stress 
tolerance which may be intrinsically related to the alternatively 
translated AtMBP-1 (Lee et al., 2002; Barkla et al., 2009; Kang 
et al., 2013). In rice, OsSRT1 represses glycolytic genes expression 
not only by histone deacetylation of glycolytic genes but also by 
inhibition of nuclear localization and transcriptional activity of 
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) through 
lysine deacetylation (Zhang et al., 2017). As a rate-limiting enzyme 
of glycolysis, GAPDH also functions as a transcriptional activator 
of glycolytic genes under stress, which enhances GAPDH lysine 
acetylation, nuclear accumulation, and transcriptional activity. 
These results indicate that SRT1 has a function to coordinate plant 
sensitivity to abiotic stress and energy metabolism (Figure 2).

As high glycolysis leads to a low NAD+/NADH ratio in the cell, 
which may eventually inhibit SRT1 activity, it can be suggested 
that under stress conditions, enhanced glycolysis in turn inhibits 
SRT1 and consequently reinforces plant stress tolerance or 
resistance. Thus, SRT1 may play an important role to regulate 
carbon metabolic flux of the trade-off between growth and stress 
tolerance, which is essential for plant adaptation to the changing 
environment (Shen et al., 2016).

Histone Acylation and Stress-Response
Recent results indicate that histones also are acylated 
by short-chain fatty acids including butyrate, crotonate, 
2hydroxyisobutyrate, succinate, malonate, glutarate, etc. (Chen 
et al., 2007; Tan et al., 2011; Xie et al., 2012). These modifications 
are similar to lysine acetylation but are distinct in hydrocarbon 
chain length, hydrophobicity or charge. Studies in animal cells 
suggest that these histone acylations affect gene expression and 
are functionally different from histone acetylation (Sabari et al., 
2017). In rice plants, most of histone butyrylation (Kbu) and 
crotonylation (Kcr) sites were shown to overlap with histone 
acetylation (H3K9ac) sites in highly expressed genes, but subsets 
of genes show only Kbu and/or Kcr modifications (Lu et al., 
2018). The latter genes are most under expressed and stress-
inducible. In rice plants under starvation and submergence 
Kbu and Kcr appear to be less dynamic than H3K9ac and 
differential changes of the three marks in different sets of genes 
were observed (Figure 3). Thus, the proportion of histone lysine 
acetylation (H3K9ac) and acylation (Kbu and Kcr) is regulated 
by stress, suggesting that environmental and metabolic cues 
control proportional mixture of histone acetylation and 
acylations in plants, which has functional consequence in 
chromatin modification and gene expression. The relative levels 
between histone acetylation and acylations may be dependent on 
availability of acetyl-CoA and the short fatty acid pools, as same 
HATs (i.e. P300 in animal cells) can undergo both acetylation 
and acylation of histones. The reduction of the cytoplasmic and 
nuclear pools of acetyl-CoA led to an increase in p300-catalysed 
Kcr in animal cells and the increase in Kcr could be reduced 
by replenishing the acetyl-CoA pools (Sabari et al., 2015). 
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Thus, under conditions in which acetyl-CoA is reduced, other 
acyl-CoA forms will be used more often to modify histones. 
Additionally, it was showed that histone Kcr could be removed 
by the NAD+ -dependent histone deacetylase SRT2 to repress 
gene expression in rice (Lu et al., 2018) (Figure 3). These results 
indicate that histone acetylation and acylation are at the nexus 
of the interplay between metabolism, epigenetics, and stress 
response in plants.

CONCLUSION

Plant stress-response signaling pathways have been extensively 
studied. Under stress, plants have to adjust metabolic activities in 
favor of stress tolerance. Whether and how the altered metabolic 
activities are linked to gene regulation are still open questions. 
Recent findings demonstrating that stress induces metabolic 
conversion to enhance acetyl-CoA supply for histone acetylation or 
changes of cellular redox states affecting HDAC activities, establish a 
link between metabolism, epigenetics, and stress response in plants. 
In addition, the proportion of acetyl-CoA and different forms of 
acyl-CoA which can be altered by environmental and metabolic 
changes is also a significant factor in fine-tuning of stress genes 
expression. Thus, further understanding the precise mechanisms by 
which HATs and HDACs activities are modulated by metabolic and 
redox changes will provide new insight into the complex network 
regulating plant adaptation and tolerance to stress.
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FIGURE 3 | Regulation of stress genes by synergistic effect of histone 
acetylation and acylation. Genes poised for activation by stress are marked 
by Kbu and Kcr. Genes activated by stress require histone acetylation. Kcr is 
removed by NAD+ -dependent histone deacetylase SRT2.

FIGURE 2 | Coordinating metabolism and stress response by plant NAD+-dependent histone deacetylase SRT1. (A) Arabidopsis SRT1 deacetylates and stabilizes 
AtMBP-1, a direct transcriptional repressor of both stress master regulatory genes ZAT10 and ENO2. ENO2 encodes the glycolytic enolase and AtMBP-1, which are 
alternative translation products of the ENO2 mRNA and are required for stress tolerance. (B) Rice SRT1 represses glycolytic genes expression not only by histone 
deacetylation of glycolytic genes but also by inhibition of nuclear localization and transcriptional activity of GAPDH through lysine deacetylation.
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