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Abstract 19 

Carbon and water budgets of forest plantations are spatially and temporally variable and 20 

hardly empirically predictable. We applied G’DAY, a process-based ecophysiological model, 21 

to simulate carbon and water budgets and stem biomass production of Eucalyptus plantations 22 

in São Paulo State, Brazil. Our main objective was to assess the drivers of spatial variability 23 

in plantation production at regional scale. We followed a multi-site calibration approach: the 24 

model was first parameterized using a detailed experimental dataset. Then a subset of the 25 

parameters were re-calibrated on two independent experimental datasets. An additional 26 

genotype-specific calibration of a subset of parameters was performed. Model predictions of 27 

key carbon-related variables (e.g., gross primary production, leaf area index and stem 28 

biomass) and key water-related variables (e.g., plant available water and evapotranspiration) 29 

agreed closely with measurements. Application of the model across ca. 27,500 ha of forests 30 

planted with different genotypes of Eucalyptus indicated that the model was able to capture 31 

89% of stem biomass variability measured at different ages. Several factors controlling 32 

Eucalyptus production variability in time and space were grouped in three categories: soil, 33 

climate, and the planted genotype. Modelling analysis showed that calibrating the model for 34 

genotypic differences was critical for stem biomass prediction at regional scale, but that 35 

taking into account climate and soil variability significantly improved the results. We 36 

conclude that application of process-based models at regional scale can be used for accurate 37 

predictions of Eucalyptus production, provided that an accurate calibration of the model for 38 

key genotype-specific parameters is conducted.  39 

Keywords: Eucalyptus plantations, ecophysiological model, G’DAY, optimization, 40 

productivity  41 

 42 
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1. Introduction  43 

Forest vegetation plays a major role in determining the state of the global climate system 44 

and carbon cycle, both of which are undergoing significant anthropogenic perturbations. 45 

Among forest vegetation types, Eucalyptus is the most widely planted tropical hardwood 46 

genus, covering more than 20 million ha worldwide (Albaugh et al., 2013). In Brazil, forest 47 

plantations cover 7.6 million ha, of which 72% are planted with high-productivity Eucalyptus 48 

clones (average annual increment of 40 m3 ha-1 yr-1 of roundwood, ranging from 25 to 60 m3 49 

ha-1 yr-1 (Gonçalves et al., 2013)). Eucalyptus plantations in Brazil are generally managed in 50 

6-7 years rotation, with canopy closure occurring within 2-3 years after planting. The 51 

relatively low susceptibility to pests and diseases, rapid growth and high productivity, 52 

adaptability to varying soil and climate, and adequate fiber quality for the industry explain 53 

the expansion of commercial Eucalyptus tropical plantations worldwide.  54 

Water deficit, nutrient deficiency, soil type and compaction are the main drivers of 55 

Eucalyptus plantation functioning in Southern Brazil (Ryan et al., 2010; Stape et al., 2010). 56 

However, predicting how forests grow in response to soil and climate constraints, and 57 

determining their carbon storage capacities remains a key challenge for modelers. Forest 58 

productivity is driven by complex interactions and feedbacks among biological mechanisms. 59 

Furthermore, spatial variability in resources supplies, management, and characteristics of the 60 

genetic tree material critically influence forest productivity.  61 

Ecophysiological process-based models that simulate water and carbon fluxes in forests 62 

proved to be useful tools to formalize biophysical hypotheses on forest functioning and to test 63 

for the importance of environmental drivers on productivity. Over the last two decades, a 64 

range of process-based models was developed, varying in resolution, complexity, generality, 65 

and applicability (Mäkelä et al., 2000; Battaglia et al., 2004; Corbeels et al., 2005a; Dufrêne 66 

et al., 2005; Marsden et al., 2013). Some of these models were developed for research 67 
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purposes to understand and quantify carbon and water cycling at fine time-scale (Dufrêne et 68 

al., 2005), others were constructed as management tools, in close collaboration with intended 69 

end-users (Landsberg and Waring, 1997; Sands et al., 2000; Almeida et al., 2004b). 70 

Importantly, wood productivity relates on both the net amount of carbon (C) sequestered by 71 

trees (net C balance) and the way this C is allocated among tree organs.  72 

The modelling of Eucalyptus plantations at regional scale is of critical economic 73 

importance and has been the focus of a growing body of studies (e.g., Almeida et al. (2004a).  74 

Marsden et al. (2013) modified the Generic Decomposition And Yield model (G’DAY) to 75 

simulate the productivity of 16 Eucalyptus plantation stands of the same genotype in São 76 

Paulo region, Brazil. It was shown that soil water holding capacity explains a large part of 77 

spatial variability in tree growth rate and biomass productivity in this area. This study also 78 

highlighted two important limitations that currently hinder regional modelling using G’DAY.  79 

First, the impact of water availability on the C allocation toward root growth, leaf growth and 80 

litterfall production is not correctly represented in the model. Because leaf and root areas are 81 

critical C and water exchange surfaces, further improvements of the G’DAY C allocation 82 

scheme is required for accurate simulations of carbon and water fluxes and productivity along 83 

soil water gradients. Second, the diversity of species and hybrid Eucalyptus genotypes used 84 

in Brazil’s plantations was shown to be challenging for large-scale modelling (Almeida et al. 85 

(2010). Eucalyptus materials may indeed strongly differ in the control of several key 86 

processes, such as photosynthesis and light use efficiency (Warrier and Venkataramanan, 87 

2010; le Maire et al., accepted) and carbon allocation (Ngugi et al., 2003). However, a 88 

detailed parameterization of process-based models for each genotype from field 89 

measurements is today out of reach, because physiological and C partitioning measurements 90 

along plantation rotation are missing for most of the numerous cultivated genotypes. Previous 91 

studies therefore generally used a unique model parameterization over a whole region, either 92 
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by using generic parameterization at the level of plant functional type (e.g., Almeida et al., 93 

2004a), or by calibrating  the model based on some genotype-specific measurements 94 

(Almeida et al., 2004a; Gonzalez-Benecke et al., 2016). Calibration can be conducted by 95 

using independent measurements to parameterize the equations of the model, or by inverting 96 

the model to constrain the values of these parameters (Gonzalez-Benecke et al., 2016). This 97 

last option is considered more reliable for application purposes, since the model simulations 98 

are constrained within the range of a plausible domain, even though equifinality of the 99 

simulations (i.e., the possibility of ‘getting the right answers for the wrong reason’) may lead 100 

to a wrong interpretation of the results. Although using a unique parameterization for regional 101 

modelling proved useful to capture the response of productivity to large environmental 102 

gradient, it creates an additional uncertainty that need to be quantified if the simulations are 103 

to be used for management purposes.  104 

The overall objectives of the present study was 1) to predict temporal and spatial 105 

variations of stem biomass production in Eucalyptus plantations in the São Paulo state of 106 

Brazil using the G’DAY model 2) to use the validated model to test for the effect of 107 

genotype, soil and climate on plantation wood productivity at regional scale. Efforts were 108 

done to improve the ability of the model in capturing the responses of forest functioning and 109 

C allocation to water stress. We used a multi-site calibration approach to provide an end-to-110 

end calibration and application scheme from local to regional scale. G’DAY was first 111 

optimized using detailed measurements from one experimental site. A subset of “genotype-112 

specific” parameters was then calibrated at two other sites where physiological data were also 113 

available, and presenting differences in genotype and location. Finally a calibration and 114 

application of the model at large spatio-temporal scale was performed using a network of 115 

1472 stands. Constrained simulations were then conducted using the final model to highlight 116 

the drivers of productivity at regional scale.  117 



6 

 

 118 

2. Materials and Methods 119 

2.1. The four Eucalyptus datasets  120 

The site of the first experimental dataset (DATASET 1) was a commercial plantation of 121 

Eucalyptus grandis, located at 22°58’04’’S, 48°43’40’’W, 750 m.a.s.l, planted in November 122 

2009 at a 3x2 m spacing, and monitored continuously since then as part of the EUCFLUX 123 

project (http://www.ipef.br/eucflux/en/, (Nouvellon et al., 2010; Nouvellon et al., 2018)). The 124 

average annual precipitation was 1540 mm from 2008 to 2016, with an average temperature 125 

of 19.3°C, and a wet hot summer from October to May and dry cold winter from June to 126 

September. A detailed description of the site is given in (Campoe et al., 2013) and (Christina 127 

et al., 2016; Christina et al., 2017)Measurements included volumetric soil moisture content, 128 

tree height, leaf area index (LAI), H2O and CO2 gas exchanges between the ecosystem and 129 

the atmosphere, leaf, bark and branch litterfall, biomass of all tree compartments, leaf 130 

photosynthesis. Daily net ecosystem exchange (NEE) and evapotranspiration (ET) were 131 

obtained from a flux-tower, using the Eddy-covariance method (Christina et al., 2017; 132 

Nouvellon et al., 2018; Vezy et al., 2018). Gross primary productivity (GPP) was estimated 133 

from NEE and meteorological data using the standard computation from Reichstein et al. 134 

(2005). Soil water content was measured using calibrated CS616 probes (Campbell Scientific 135 

Inc., Logan, UT, USA) inserted at 0.15, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 m soil depths. Soil 136 

is sandy loam with an average maximum plant available water (PAWmax) of 92 mm m-1 137 

(Christina et al., 2017). Leaf area index was measured by combining destructive 138 

measurements and dendrometric inventories, and leaf and bark litterfall was collected 139 

monthly using 48 litterfall traps of 0.52 by 0.52 m placed in the field following a voronoï 140 

scheme to sample every distance to trees. Branch litterfall was collected monthly on four 6.6 141 
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m2 area. Litter samples were dried, weighted, and values of dry mass by unit area were 142 

computed (gDM/m2).  143 

The site of the second experimental dataset (DATASET 2), located at Santa Rita 144 

municipality (21°35' 48'' S, 47°36' 0'' W, 761 m.a.s.l.) was planted on April 2004 with a clone 145 

of E. grandis × E. urophylla, at a 3 x 2.4 m spacing. The average annual precipitation is 1500 146 

mm, and mean temperature was 22.1°C. Data collection started two years after planting on 147 

March 2006 until March 2008. Collected data included measurements of soil water content, 148 

LAI, biomass of leaves and stem, fully described in Cabral et al. (2010) and Cabral et al. 149 

(2011). Soil moisture content was measured at 0.1, 0.3, 0.5, 0.7, and 1 m soil depth. The soil 150 

was sandy, with PAWmax of 50 mm m-1 (Cabral et al., 2011). Daily LAI values was 151 

computed from the reflection coefficient of photosynthetically active radiation with a linear 152 

relationship previously calibrated against destructive LAI measurements. NEE and ET were 153 

measured through the Eddy covariance method by using a flux tower at a height of 27 m, 154 

together with meteorological variables, including photosynthetically active radiation 155 

measurements (Cabral et al., 2010; Cabral et al., 2011).  156 

The third experimental stand (DATASET 3) was located at Itatinga (23°02’28’’ S, 157 

48°37’33 W, 850 m.a.s.l) and planted with Eucalyptus grandis seedlings on April 2004. Data 158 

collection started at planting and continued until the end of the rotation, which included soil 159 

water, biomass of leaves, stem, roots, leaf area index, leaf, branch and bark litterfall. Soil 160 

water content was measured using TDR probes installed at various soil depth down to 10 m 161 

depth (Laclau et al., 2010).  The soil was sandy loam, with PAWmax of 110 mm m-1 162 

(Maquere, 2008; Marsden et al., 2013). This site was used in a previous application of 163 

G’DAY model (Marsden et al., 2013). 164 

The fourth dataset (DATASET 4) was made of measurements of 1472 Eucalyptus species 165 

stand polygons comprised in an area ranging from 22°33' S to 20°50' S and 48°14' W to 166 
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46°49'W (i.e., spread on an 183 × 151 km area). The 1472 polygons have an average area of 167 

29 ha, and were planted with various genotypes of Eucalyptus (there is almost no coppicing 168 

practice in this dataset). Soil was highly variable in sand and clay content and therefore 169 

showed a large range of PAWmax (see section 2.2). Plant height and stem biomass were 170 

obtained from field inventories performed at two to three inventory dates (ages) for each 171 

polygon, between 2000 and 2012. The dataset and biomass calculations are presented in le 172 

Maire et al. (2011a), Baghdadi et al. (2014) and Baghdadi et al. (2015). 173 

 174 

2.2. Regional scale soil and meteorological datasets  175 

Application of the model at regional scale required reliable sources of weather and soil 176 

data. We obtained the gridded weather data from the open-access dataset for daily 177 

meteorological variables in Brazil (1980-2013) (Xavier et al., 2016). This dataset provides 178 

high resolution grids (0.25° by 0.25°) of daily precipitation, evapotranspiration, maximum 179 

and minimum temperature, solar radiation, relative humidity, and wind speed developed by 180 

the CLIMA research team using ground-based weather stations in Brazil, operated by federal 181 

(INMET, ANA) and state (DAEE for São Paulo) agencies. This gridded weather dataset was 182 

compared with the three DATASET 1, 2 and 3 for solar radiation, maximum and minimum 183 

temperature, and precipitation. Gridded solar radiation (Supplementary Figs. 1A, 1B, and 1C) 184 

and maximum and minimum temperature recorded at the three sites (Supplementary Figs 1D, 185 

1E, and 1F and Figs. 2A, 2B, and 2C) matched very well the local measurement data. For 186 

precipitations, the errors were larger, but the order of magnitude was respected 187 

(Supplementary Figs. 3 and 4). Overall, the gridded weather data was considered a reliable 188 

source for the regional simulations.  189 

Several sources of soil data were tested to determine the dataset that best captured the 190 

variability of soil texture, and possibly the water retention properties subsequently used in the 191 
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model. The digitized 1:250.000 scale soil map of Sao Paulo state from Rossi (2017) was the 192 

most detailed one and included a soil texture attribute (Fig. 1). We overlay this map with 193 

about 600 soil profiles measured at various locations across São Paulo state obtained from the 194 

forest company, the Brazilian Agricultural Research Corporation (Embrapa) and the 195 

Geological Service of Brazil (CPRM). These soil profiles generally were to 2 m deep and 196 

included soil texture properties, soil organic matter content and bulk density. This 197 

information was used within Tomasella’s pedotransfer function (level 3) to estimate the water 198 

retention parameters (Tomasella et al., 2000), which enables the computation of the 199 

maximum plant available water content (PAWmax) on each soil profile, with a per meter 200 

depth unit (mmwater msoil
-1). The average PAWmax value per soil textural class extracted from 201 

Sao Paulo soil map were computed, together with their standard deviation, and further 202 

extrapolated to the entire map (Supplementary Fig. 5).  203 

 204 

2.3. G’DAY model 205 

In the present study, the G’DAY model (Comins and McMurtrie, 1993; Corbeels et al., 206 

2005a; Corbeels et al., 2005b; Marsden et al., 2013) was used to simulate water and carbon 207 

budgets of Eucalyptus plantations at a number of experimental sites and commercial stands in 208 

the state of São Paulo, Brazil. The G’DAY model is an ecophysiological process-based 209 

model, functioning at a daily time-step, which uses minimum and maximum air temperatures, 210 

precipitation, vapor pressure deficit and solar radiation as daily weather inputs. G’DAY 211 

simulates the water and carbon fluxes between the environment and a number of soil and tree 212 

biomass pools. The ecophysiological processes in the model are represented by several sub-213 

models of plant production, soil water balance, and litter decomposition. Marsden et al. 214 

(2013) modified the soil water balance in order to reflect the dynamics of moisture content in 215 

three layers: litter, top soil, and rooting zone. The maximum PAW in the litter layer was 216 
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modified to increase linearly as the C mass of the forest floor increased, whereas in the 217 

rooting zone the total maximum PAW increased with rooting depth during the rotation. Here, 218 

we used the version presented in details in Marsden et al. (2013), but added a new 219 

modification of the C allocation scheme to better consider the impact of environmental 220 

constraints such as water availability on the partitioning of C between shoots and roots and to 221 

enhance the model capability of capturing seasonal leaf area index (LAI) variations. 222 

Allocation fraction of the net primary production (NPP) to the different organs, is obtained 223 

following a “goal-seeking” scheme, where a constant allocation value was modulated in 224 

function of a target compartment biomass (see Corbeels et al. (2005a) and Marsden et al. 225 

(2013)), and mortality is computed as turnover rates. We slightly modified this C allocation 226 

scheme as following: 227 

i) The proportion of carbon allocated to fine roots compared to foliage 228 

production was based on an assumption of a higher allocation to root when 229 

the soil is dry (Landsberg and Sands, 2010);  230 

ii) The leaf turnover was set to increase when the soil was dry (severe and 231 

prolonged stress episodes) and was positively correlated to the production 232 

of new leaves, as observed in litterfall measurements  (Pook et al., 1997); 233 

iii) The “target” value of leaf area, which came from a height-dependent target 234 

ratio between leaf area and sapwood cross-sectional area (Corbeels et al., 235 

2005a; Corbeels et al., 2005b; Marsden et al., 2013), was previously 236 

reached by modulating the carbon allocation to leaves. Within the new 237 

allocation scheme, we kept the same principle but modulated the leaf 238 

turnover ratio in order to match this algometrical constraint, while C 239 

allocation to new leaves was modulated by the equation described in i) 240 
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Use of water from very deep layers was shown to sustain transpiration of Eucalyptus 241 

plantation during extreme drought events (Christina et al., 2017), permitted by the fast soil 242 

exploration of Eucalyptus trees along the rotation and the ability for the root to access soil 243 

water table. A minimum access to water (i.e, a minimum value for soil PAW), was therefore 244 

included in the model in order to avoid a total transpiration break and reproduce the effect of 245 

deep soil water use on tree functioning observed in the field. Such minimum soil PAW was 246 

however very low, and correspond to high water stress effects on trees (reduced transpiration 247 

and photosynthesis). 248 

 249 

2.4. Model Calibration  250 

2.4.1 Calibration on the detailed DATASET 1 251 

The G’Day model has more than 200 parameters, among which physical constants, 252 

parameters linked to the nitrogen cycle that were not considered in the present study, and a 253 

subset of plant and soil-specific parameters. The entire set of these 57 plant and soil-specific 254 

parameters, described in Supplementary Table 1, were optimized against DATASET 1 using 255 

the Hooke-Jeeves algorithm for derivative-free optimization in the R package dfoptim 256 

(Varadhan, 2018). This algorithm minimizes the residual sum of squares between observed 257 

and predicted data while allowing bond constraints on the parameters. These bonds, given in 258 

Supplementary Table 1, were set based on the literature and previous work on the model 259 

(Marsden et al., 2013). The calibration was done using all the following measurements, after 260 

normalization of their residual sum of squares: plant height (m), LAI, C mass of leaves (kg C 261 

m-2), leaves, branches, and bark litter fall (kg C m-2), stem biomass (kg C m-2), PAW (mm), 262 

evapotranspiration (ET, mm day-1), net ecosystem exchange (NEE, g C m-2 day-1), and gross 263 

primary photosynthesis (GPP, g C m-2 day-1). 264 
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 265 

2.4.2 Calibration on the DATASET 2 and 3 266 

 267 

Only a subset of the parameters were re-calibrated (Supplementary Table 1) using DATASET 268 

2 and 3. A subset of 43 parameters among the 57 was selected based on expert knowledge on 269 

their possible variations among genotypes: parameters which are known to be stables among 270 

genotypes, or showing very low sensitivity of stem biomass evolution through time, were 271 

kept at the values obtained after calibration on DATASET 1. The 43 parameters are mainly 272 

linked to carbon assimilation and allocation, allometry, wood density properties, water 273 

balance submodels. Parameters obtained after calibration on DATASET 1 were used as initial 274 

values of those re-calibrated parameters. The parameters re-calibrated locally were 275 

constrained by new bounds values, based on the calibrated parameters obtained on 276 

DATASET 1. Indeed, these parameters are not expected to vary much among genotypes or 277 

with management practices, and therefore the values obtained on DATASET 1 were 278 

considered reliable priors. Bounds of  +/- 10 %, 20% or 30 % around this value was chosen in 279 

function of the current knowledge on physiological differences among clones (Supplementary 280 

Table 1). When little information was available on literature, larger bounds of 30% was 281 

given. On these 2 datasets, local climate information from meteorological station and fixed 282 

soil parameters were used. The recalibration was done independently for DATASET 2 and 3. 283 

For DATASET 2, the calibration was done on LAI, C mass of stem, NEE, and ET, and for 284 

DATASET 3 on LAI, C mass of leaves and stem, cumulative leaves, branches, bark litterfall, 285 

and PAW. 286 

2.4.3 Calibration on DATASET 4 287 
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Genotypes having fewer than 30 stands on DATASET 4, and therefore with little 288 

representativity for model calibration, were not used.  Eleven genotypes were kept, which 289 

included many common genotypes used in fast growing Eucalyptus plantation in this region 290 

of Brazil at that time, including E. grandis and E urophylla x grandis materials. The dataset 291 

was then partitioned into two equal halves for each genotype, one for calibrating the 292 

parameters of the model and the other for evaluating the model (2*736 stands). Among the 57 293 

parameters of G’DAY calibrated on DATASET 1, only 22 were calibrated for each genotype 294 

(Supplementary Table 1) using DATASET 4, with the same bounds defined for DATASET 2 295 

and 3. Indeed, 21 parameters re-calibrated on DATASET 2 and 3 out of the 43 genotype-296 

specific parameters were found to be hardly variable between the 3 first datasets, or to have 297 

no influence on simulated biomass. Values of the parameters obtained on DATASET 1 were 298 

used as generic values for parameters not recalibrated.  For DATASET 4, the calibration was 299 

performed on two measured variables: plant height (m) and stem biomass (kg C m-2) 300 

measured at two to three inventory dates for each polygon, but on the high range of soil and 301 

climate conditions found in this area. In these simulations, the planting date was prescribed as 302 

its observed value recorded in DATASET 4. The climate and soil information from the 303 

gridded inputs (see section 2.2) was used for each polygon. Model performance was 304 

evaluated by R2, RMSE, relative RMSE, and Nash-Sutcliffe efficiency (NSE) statistics using 305 

modeval function in the R package sirad (Bojanowski, 2016). Because some stands were 306 

measured two or three times during their growth, some of the observations within the 307 

evaluation set were not statistically independent. To avoid this eventual issue, the statistics 308 

described above were computed on a subset where only one measurement per polygon was 309 

randomly selected. This random selection was repeated a thousand time, to generate a 310 

distribution of the model performance statistics, from which the average and standard 311 

deviation was computed.  312 
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 313 

2.5. Analysis of the model results at regional scale  314 

Simulation of biomass at regional scale by G’DAY model was compared to a subset of 315 

736 polygons set apart during the parameter calibration step. We quantified the importance of 316 

spatial variation of climate, soil properties, and genotype specific parameters sets, and their 317 

combinations, for the model accuracy. Eight different simulations were run on all 736 318 

validation polygons (Table 2). The first set was a “base simulation”, representing a scenario 319 

where no spatial variation of climate, soil or genotype was taken into account: one grid point 320 

of the meteorological gridded dataset, chosen at the center of DATASET 4, was selected for 321 

all polygons. Similarly, one value of PAWmax was used, based on the most frequent value in 322 

the total area. In base simulation, the set of parameters obtained on DATASET 1 after 323 

optimization was used for all stands, to eliminate the spatial variability due to change in 324 

genotypes (Table 1). The second, third, and fourth sets of simulations were performed with 325 

spatial variation of climate only, genotype specific parameters only, and soil data only, 326 

respectively. The fifth, sixth, and seventh sets of simulations included combinations of two of 327 

these spatial variability. The last set of simulations had all drivers varying spatially, which 328 

correspond to the more precise parameterization and input data in this study. The abilities of 329 

the eight sets of simulations to predicting stem biomass were compared using Tukey’s HSD. 330 

The absolute difference between stem biomass predictions and observations for each 331 

individual point (inventory date) in the 736 polygons were computed. The dependency of 332 

these absolute differences (a measure of the model performance) to Climate, Genotype and 333 

Soil was quantified using one way ANOVA. Climate, Genotype and Soil were considered as 334 

binary dummy variables, with 0 value when no variation was accounted for, and 1 when 335 

spatial variation of that characteristics was accounted for. All interactions among predictors 336 

were included. This ANOVA therefore allowed to quantify the importance of the spatial 337 
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variability in climate, genotype and soil for the model performance in simulating wood 338 

productivity at regional scale.  339 

 340 

3. Results  341 

 342 

3.1. Model calibration on DATASET 1, 2 and 3 343 

After calibration using DATASET 1, G’DAY model was able to simulate correctly the 344 

seasonal and inter-annual dynamics of many measured variables related to the carbon, water 345 

and energy cycling, from daily to yearly time-steps. Note that parameters for which local 346 

field measurements were available (e.g. leaf photosynthetical parameters from Christina et 347 

al., 2016) were more constrained in the inversion procedure. Calibrated values are given in 348 

Supplementary Table 1. 349 

After calibration, the simulated LAI on DATASET 1 were fairly similar to observed 350 

LAI, except little underestimation in the third and fourth years of the rotation when observed 351 

LAI was measured at approximately 5.7 m²leaf/m²soil while simulated LAI was little less than 352 

5 m²leaf/m²soil (Table 1 and Fig. 2B). The LAI curve followed the typical trend observed in 353 

commercial rotation of Eucalyptus trees, increasing to a maximum value three years after 354 

planting and then gradually decrease until harvest, with seasonal variations. Similar 355 

observations were reported for the prediction of C mass of leaves when the model slightly 356 

underestimated this C variable in the second and third years of the rotation, but matched the 357 

observed data in the following years (Table 1 and Fig. 2C).  358 

Leaf, branch, and bark litterfalls were also correctly predicted by the model for 359 

cumulative sum, with R2 of 0.99 and NSE close to 1 (Table 1 and Fig. 2D). Plant height was 360 

correctly predicted throughout the rotation reaching maximum height of 28 m by the end of 361 

the rotation in 2016 (Fig. 2A).The model also simulated correctly the final stem biomass that 362 

reached 8 kg C m-2 at the end of the rotation (Table 1 and Fig. 2E).  363 
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The calibrated model correctly simulated PAW throughout the rotation, except for a little 364 

underestimation in early 2016 (Table 1). Figure 2F shows observed and predicted PAW and 365 

the green line in the graph represents PAWmax as used in the model. This value do not 366 

corresponds to the real PAWmax experienced by trees (that should be integrated down to the 367 

real depth of roots) but reflects a “functional” PAWmax. Indeed, PAW is used in many 368 

processes of G’DAY, and increasing PAWmax for very deep roots would results in very low 369 

fraction of available water during most of the rotation, even on rainy seasons. As explained in 370 

2.3, we however included a minimum PAW in the model, which represents access to deep 371 

soil water. Such access is important for sustaining transpiration throughout the year, but 372 

represents a small amount of transpired water as shown in Christina et al. (2017) and 373 

confirmed in these simulations.  374 

Simulation of ET correctly matched the observed data throughout the rotation, except a 375 

small underestimation in the second half of 2013 and early 2014 (Fig. 3A). The goodness of 376 

fit statistics of that variable indicated acceptable level of agreement between observed and 377 

simulated data (Table 1). The model reasonably simulated the NEE with NSE of 0.75 and R2 378 

of 0.75 (Fig. 3B), but most importantly showed good seasonality. For GPP, simulated data 379 

followed a temporal dynamic similar to observed data, which show peaks every summer 380 

season along the rotation (Fig. 3C). There was an underestimation of GPP by the model in 381 

2012-2013 which could be attributed to the underestimation of LAI during this period. Other 382 

research is ongoing to provide more confidence on these estimates. Nevertheless, observed 383 

and simulated daily GPP had R2 of 0.92 with NSE of 0.84 and RRMSE of 16.5% (Table 1), 384 

and well simulated seasonality.  385 

A subset of parameters was re-calibrated using DATASET 2 and 3. The model 386 

reasonably simulated LAI and stem biomass of DATASET 2 with average LAI of 3 387 

m²leaf/m²soil and C mass of stem of 3 kg C m-2 in the beginning of 2008 (Figs. 4A and 4B). 388 
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Note that LAI at this site was not measured using destructive sampling but was an estimation 389 

based on reflected light, which may result in higher uncertainty. This site has a sandy soil 390 

with average PAWmax of 50 mm m-1 of soil which could explain the lower values of LAI 391 

and biomass yield at this site compared to DATASET 1. In addition, low precipitation in 392 

March to November of 2006 and 2007 resulted in reduced LAI (Supplementary Fig. 3D and 393 

E). The model was able to capture the seasonal variations of NEE (Fig. 4C) and ET (Fig. 4D), 394 

except for underestimation of NEE at the beginning of 2007. The high ET values in summer 395 

2007 were most likely due to the high precipitation (about 1000 mm) observed at that time 396 

(Supplementary Fig. 3D). The model predicted ET with R2 of 0.76 and RMSE of 1.08 (mm    397 

day-1) and NEE with R2 of 0.28 and RMSE of 1.7 (g C m-2 day-1) (Table 1). To reach this 398 

result, only some of the re-calibrated parameters were significantly changed such as those 399 

controlling the relationship between stem biomass and height (Ht0 and Htpower), turnover 400 

rate (Bfall), stomatal conductance (Fs1 and Fs2) and photosynthesis (Jref) (Supplementary 401 

Table 1). 402 

Results at DATASET 3 included the model simulations of LAI, carbon mass of leaves 403 

and stem, litterfall, and PAW (Fig. 5). Overall, after calibration, the model correctly 404 

simulated LAI and C mass of leaves throughout the 6-year rotation (Table 1), except for a 405 

little underestimation of LAI in 2006 and overestimation of C mass of leaves in 2007 (Fig. 406 

5A and B). Other plant compartments of leaves, branches, and bark litterfall were also well 407 

simulated with R2 ranging from 0.99 to 0.80 and NSE close to 1 (Fig. 5C) as well as C mass 408 

of stem with RMSE of 0.33 (kg C m-2), RRMSE of 14.7% and NSE close to 1 (Fig. 5D). 409 

Simulated and observed PAW were comparable with R2 of 0.71 and NSE of 0.69, apart from 410 

some underestimation in the first half of 2006 which could be related to the underestimation 411 

of LAI in this period (Figs. 5A and G). Similarly to DATASET 2, to reach these results, only 412 

some of the re-calibrated parameters were significantly changed such as parameters of growth 413 
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efficiency (GrowthEff), relationship between stomatal conductance and VPD (gmax and Fs2), 414 

relationship between stem biomass and height (Ht0 and Htpower), and turnover rates (Bdecay 415 

and Bfall) (Supplementary Table 1).  416 

Finally, based on the results from DATASET 1, 2 and 3, we concluded that: 1) the model 417 

is flexible and generic enough to represent the main processes controlling carbon and water 418 

balance of these eucalypt plantations; 2) the use of large dataset including many field 419 

measured variables, and the choice of adequate bounds for parameters based on field 420 

measurements and literature, allow to constrain enough the model in a calibration procedure; 421 

3) only a small subset of 22 parameters is necessary to be modified in the model to be able to 422 

simulate very different plantations, in terms of climate conditions, soils and genotypes. The 423 

procedure was therefore considered suitable, and was extrapolated to DATASET 4, which 424 

have large range of spatial and genotype variation. In that case, the model was calibrated at 425 

genotype-scale on biomass and stand height measurements.  426 

 427 

 428 

3.1. Model calibration and validation at regional scale (DATASET 4) 429 

The large scale spatio-temporal DATASET 4 included measurements of plant height and 430 

stem biomass on commercial plantations. Calibrated values from DATASET 1 were used for 431 

the regional simulation along with genotype specific parameters that were calibrated for each 432 

genotype in the regional simulations (Supplementary Table 1). Plant height was fairly well 433 

simulated with some differences in the level of precision among genotypes. For instance, 434 

prediction of plant height on independent stands of genotypes C, D, F, and K had greater 435 

correlation with observed data and lower RMSE values than genotypes B, H, and J where the 436 

level of correlation was lower and the RMSE was greater (Supplementary Figs 6, 7, and 8). 437 
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Across all genotypes, simulated and observed height were correlated by 93% with RMSE of 438 

1.83 m and RRMSE of 10.47% and NSE 0.86 (Fig. 6).  439 

Similar results was obtained for biomass yield as the model performances were higher for 440 

genotypes C, F, and G with R2 of 0.91-0.93 and RMSE of 0.63-0.73 kg C m-2, while for some 441 

other genotypes like B the R2 was ca. 0.80 and RMSE was 0.84 kg C m-2 (Supplementary 442 

Figs. 6, 7, and 8). Nonetheless, the overall correlation between observed and simulated 443 

biomass was 89% and RMSE was 0.75 kg C m-2 (Fig. 6, All genotypes), on stands 444 

independent from model calibration.  445 

3.2. Impact of climate, genotype specific parameters, soil data, and their combinations on 446 

model error estimation 447 

There was significant differences among simulation scenarios for stem biomass 448 

prediction (Figure 7 and Table 3). Prediction of stem biomass and plant height without taking 449 

into account the spatial variation of climate, soils and genotypes had the greatest error. 450 

Improvement of the model to simulate stemwood biomass was drastically improved when 451 

including differences of Genotype, then Climate and then Soil. Effect of Genotype was even 452 

further improved when climate or soil was considered together (Figure 7). The results of the 453 

ANOVA similarly showed significant individual and two-way interaction effects of climate, 454 

soil, and genotype on the accuracy of stem biomass prediction (Table 3). Fisher values 455 

confirmed the dominant effect of Genotype calibration, followed by Climate and Soil. 456 

Interactions reached a high level, in particular the Soil x Genotype interactions.       457 

4. Discussion 458 

 459 

4.1. Parameterization and evaluation of the model  460 

We used a slightly modified version of the G’DAY allocation model based on the “balanced 461 

growth hypothesis” that postulates that plants invest more carbon to roots when the limiting 462 
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factor for growth is water or nutrients, and reduce the foliage size as drought avoiding 463 

mechanism (Shipley and Meziane, 2002). In addition, the influence of water stress on 464 

litterfall production and LAI dynamics was also taken into consideration, as observed on long 465 

term measurements (Pook et al., 1997). Evaluation of the model showed that the 466 

incorporation of the modified carbon scheme enhanced the model’s ability to capture the 467 

decline of LAI as a result of soil drought, and consequently improved the simulation of leaf 468 

biomass.  469 

In the DATASET 1 calibration, the final values of some parameters were restrained 470 

by the lower or upper bounds of prior distributions (Supplementary Table 1). In the present 471 

work the objective was mainly to get plausible prior probability distribution of parameters to 472 

be further included on larger scale applications. These parameter values, even when 473 

constrained on bound limits, are still plausible and gave good results at this site with respect 474 

to carbon and water measurements. On other datasets, parameters also were constrained by 475 

bounds, but this was necessary because of the fewer measurements available for calibration. 476 

The overall picture and the good results obtained on independent data on DATASET 4 477 

showed that these limits were sufficient for a first trial. More spatial information on 478 

vegetation characteristics, such as variables estimated from remote sensing (le Maire et al., 479 

2011b; Baghdadi et al., 2014; Baghdadi et al., 2015), and to more datasets could allow to 480 

improve data assimilation, with a refinement of the distribution of calibrated parameters 481 

probability distribution. 482 

Widely distributed Eucalyptus species show high levels of genetic diversity in light 483 

absorption, gross primary production and differences in C allocation which determine 484 

together genotype productivity (Aspinwall et al., 2018; le Maire et al., accepted). In the 485 

current study, we calibrated 22 parameters to address differences among genotype. 486 

Parameters related to leaf and branch mortality and turnover rate, C allocation, and stomatal 487 
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conductance in response to climatic factors showed the greatest variations among genotypes 488 

(Supplementary Table 1). Previous research on similar Brazilian Eucalyptus plantations has 489 

reported variations in photosynthetic capacity between E. grandis × urophylla hybrids in 490 

comparison with E. grandis impacting productivity (Almeida et al., 2004a). Leaf 491 

photosynthetic parameters of Eucalyptus plantations can also vary considerably within clones 492 

of the same species (Shem et al., 2009; Warrier and Venkataramanan, 2010; le Maire et al., 493 

accepted). Other reports suggested that C allocation to roots and other C sinks may be 494 

dominant drivers of genotypic variation in productivity in response to environmental factors 495 

(Resco de Dios et al., 2016). This results in large differences in light absorption and light use 496 

efficiencies and growth along rotations (le Maire et al., accepted).   497 

4.2. Drivers of modelled spatial variability of stand biomass 498 

Several factors influence biomass production in Eucalyptus plantations among which 499 

the climate, soil type, genetic material, and their interactions. One of the main advantages of 500 

process-based models, following proper parameterization, is the possibility to identify, 501 

quantify and disentangle the influence of spatial variation in soil, climate, and genotypes on 502 

productivity. Among these factors, genotype specific parameters were the most important for 503 

the accuracy of stem biomass predictions (Fig. 7 and Table 3). Genotype-specific calibration 504 

of ecophysiological models is critical for accurate characterization of stem biomass 505 

production among stands planted with different hybrids of Eucalyptus. In the present study, 506 

genotype-specific parameters were obtained by constrained optimization on only two 507 

variables, trunk biomass and height. In the future, other measurements could help improving 508 

the estimation of these parameters, such as data issued from remote sensing (le Maire, 2018). 509 

The spatial variability of climate was the second factor in importance for prediction 510 

accuracy of stem biomass (Fig. 7 and Table 3). G’DAY was sensitive to varying climate 511 

scenarios: a reduced error in stem biomass and plant height predictions of about 20% was 512 
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obtained when taking into account the local climate compared with holding the climate 513 

scenario constant for all stands (from a gridded dataset). While this result is expected on large 514 

climate gradient (“regional scale”), we showed here that even on reduced area (“regional 515 

scale”) of 183 × 151 km the climate has a major importance. Rainfall and drought occurrence 516 

was the most important climatic factor constraining the growth of Eucalyptus in this area, as 517 

observed in other studies (Mummery and Battaglia, 2004; Stape et al., 2004; Whitehead and 518 

Beadle, 2004). In addition, research conducted in tropical Brazilian forest, near the Atlantic 519 

Coast, reported 70 to 110% annual variations in production in response to soil and air 520 

humidity (Almeida et al., 2010). Accuracy of the input rainfall dataset could be ameliorated 521 

using denser networks of pluviometers. 522 

Among the three drivers of modelled spatial variability of stand biomass, varying the soil 523 

type parameter was the least important driver, reducing the error in prediction by only 15% 524 

(Fig. 7 and Table 3). Nevertheless, the soil x climate or soil x genotype interaction effects 525 

reduced the error in stem biomass prediction in a larger way than climate alone or genotype 526 

alone, indicating an improvement of the simulations when considering variations in soil water 527 

holding capacity, in the studied range. A previous study aiming at simulating the spatial 528 

variability of Eucalyptus plantation in São Paulo state using the G’DAY model reported 529 

significant improvement in stem biomass prediction when using stand-specific PAW values 530 

compared with holding it constant for all stands (Marsden et al., 2013). The authors attributed  531 

the higher performances of simulations using stand-specific PAW values to the linkage of 532 

maximum PAW with tree height. The current version of the model has shown improvements 533 

in simulation of stem biomass using stand-specific PAW values as well; however, it did not 534 

show much improvements when comparing all drivers variable (scenario 8) with varying 535 

climate and genotype (scenario 5) (Figure 7). This indicates that further improvements in the 536 

model responses to the climate x genotype x soil interactions is needed. Improvement should 537 
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also be done on spatial parameterization of the maximum plant available water (PAWmax). 538 

In the current study, this gridded map has several limitations:  1) the texture class associated 539 

to each soil type of the soil map was not always precise, in particular for some complex soils;  540 

2) associating a unique soil textural class in function of soil types do not allow to represent 541 

eventual variability within a soil type;  3) the association of a texture class to a single 542 

PAWmax value does not reflect the variability visible on Supplementary Figure 5; 4) 543 

differences in soil depth is not taken into account: here all stands are supposed to have access 544 

to the first ~3 meters of soil, and keep having minimal water access along their rotation. 545 

However, even with these limitations, the use of these gridded estimates of soil PAWmax did 546 

improved the results compared to using a single value at all location.   547 

 548 

5. Conclusions  549 

A modified version of the G’DAY model was able to simulate seasonal variations in 550 

growth and the exchange of key C and H2O variables between the ecosystem and the 551 

atmosphere along complete commercial rotations of Eucalyptus plantations. Application of 552 

the model at the regional scale showed reasonable level of accuracy in the simulation of stem 553 

biomass and plant height. The main drivers of spatial variability in simulated stem 554 

productivity was the genetic differences among genotypes followed by climatic and soil 555 

variables. This work will benefit in the future from other data sources, such as remote-556 

sensing, allowing to further constrain the mechanisms embodied in ecophysiological models 557 

at various temporal and spatial scales.  558 

 559 
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Figure 1. Soil map of São Paulo state (Rossi, 2017) showing the location of the four datasets. 

 

Figure 2. Comparison of measured (OBS, black line/symbol) and simulated (SIM, red 

line/symbol) variables after on calibration DATASET1: (A) plant height (m), (B) leaf area 

index (m2 m-2), (C) C mass of green leaves (kg C m-2), (D) cumulative dead leave, branch, and 

bark litterfall (kg C  m-2), (E) C mass of stem (kg C m-2), and (F) plant available water (mm). 

The green line represents simulated PAWmax.  

 

Figure 3. Comparison of measured and simulated variables on DATASET 1: (A) 

evapotranspiration (mm day-1), (B) net ecosystem exchange (g C m-2 day-1), and gross primary 

production (g C m-2 day-1).  

 

Figure 4. Comparison of measured and simulated variables on DATASET 2: (A) leaf area 

index (m2 m-2), (B) C mass of stem (kg C m-2), (C) net ecosystem exchange (g C m-2 day-1), 

and (D) evapotranspiration (mm day-1).  

 

Figure 5. Comparison of measured and simulated variables on DATASET 3: (A) leaf area 

index (m2 m-2), (B) C mass of leaves (kg C m-2), (C) cumulative leave, branch, and bark 

litterfall (kg C m-2), and (D) C mass of stem (kg C m-2), and plant available water (mm). The 

green line represents simulated maximum PAW. 

 



Figure 6.  Measured vs. simulated plant height (m) and stem biomass (g C m-2) of all 

Eucalyptus genotypes on commercial stand (DATASET 4).  Model performance statistics 

were described in the section 2.4.3. 

 

Figure 7. Quantifying the effects of including the spatial variation of climate, soil properties, 

and genotype specific parameters sets, and their combinations, on the model error estimation. 

Eight different simulations were run on all 736 validation polygons (see description of the 

scenarios in Table 2). Scenarios with the same letter are not significantly different.  
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Table 1. Model performance statistics after model calibration on three experimental stands 

(DATASET 1, 2, and 3) : coefficient of determination (R2), root mean square error (RMSE), 

relative RMSE (RRMSE), and Nash-Sutcliffe efficiency (NSE).  

Variables 
Corresponding 

Figure 
R2 RMSE RRMSE NSE 

DATASET 1      

Plant height Fig. 2A 0.98 1.03 (m) 11.4% 0.98 

Leaf area index Fig. 2B 0.94 0.42 13.1% 0.93 

C mass of leaves Fig. 2C 0.85 0.03 (kg C m-2) 21.7% 0.82 

Leaves litterfall Fig. 2D 0.99 0.03 (kg C m-2) 6.2% 0.99 

Branches litterfall Fig. 2D 0.99 0.02 (kg C m-2) 9.5% 0.98 

Bark litterfall Fig. 2D 0.97 0.004 (kg C m-2) 13.3% 0.96 

C mass of stem Fig. 2E 0.99 0.33 (kg C m-2) 10.2% 0.98 

Plant available water Fig. 2F 0.86 38.6 (mm) 37.9% 0.81 

Evapotranspiration Fig. 3A 0.71 0.91 (mm day-1) 24.1% 0.66 

Net ecosystem 

exchange 
Fig. 3B 0.75 1.64 (g C m-2 day-1) 57.9% 0.74 

Gross primary 

production 
Fig. 3C 0.85 1.5 (g C m-2 day-1) 16.5% 0.84 

DATASET 2      

Leaf area index Fig. 4A 0.31 0.28 9.8% 0.29 

C mass of stem Fig. 4B 0.99 0.25 (kg C m-2) 13.4% 0.96 

Net ecosystem 

exchange 
Fig. 4C 0.28 1.7 (g C m-2 day-1) 55.2% 0.24 

Evapotranspiration Fig. 4D 0.76 1.08 (mm day-1) 32.9% 0.72 

DATASET 3      

Leaf area index Fig. 5A 0.95 0.23 7.6% 0.95 

C mass of leaves Fig. 5B 0.93 0.02 (kg C m-2) 16.9% 0.85 

Leaves litterfall Fig. 5C 0.97 0.09 (kg C m-2) 15.5% 0.92 

Branches litterfall Fig. 5C 0.99 0.03 (kg C m-2) 29.8% 0.94 

Bark litterfall Fig. 5C 0.80 0.01 (kg C m-2) 87.5% 0.73 

C mass of stem Fig. 5D 0.99 0.33 (kg C m-2) 14.7% 0.96 

Plant available water Fig. 5E 0.71 46.6 (mm) 33.4% 0.69 

 

  



Table 2: The height different simulations scenarios at regional scale, taking into account or 

not the spatial variation in climate, Eucalyptus genotype and soil. When no climate variation 

were input, the meteorology from the central grid point was used. When no soil variation were 

input, the more frequent soil type was used. When no genotype variation were input, the 

genotype from DATASET1 was used. 

Simulation 

number 

Simulation name Spatial 

variation of 

Climate ? 

Spatial 

variation of 

Genotypes ? 

Spatial 

variation of 

Soil ? 

1 All constant No No No 

2 Climate Yes No No 

3 Genotype No Yes No 

4 Soil No No Yes 

5 Climate+Genotype Yes Yes No 

6 Climate+Soil Yes No Yes 

7 Genotype+Soil No Yes Yes 

8 Climate+Soil+Genotype Yes Yes Yes 

 

 

  



Table 3. Analysis of variance of simulation scenarios described in section 2.5. The variance of 

the residuals  (absolute values of measured and simulated stand height or stem biomass) is 

analysed in function of the use of spatially variables information on Climate, Genotype and 

Soil and their interactions.  Analysis was performed on stem biomass and plant height. *, **, 

and *** refer to p values lower than 0.05, 0.01, and 0.001, respectively. ns: not significant 

 

Source Plant 

height  

F value 

Stem 

biomass 

 F value 

Climate 480.3*** 106.41*** 

Genotype 3292.39*** 260.77*** 

Soil 20.12*** 48.87*** 

Climate × Genotype 0.085ns 15.75*** 

Climate × Soil 6.29* 11.77*** 

Genotype × Soil 305.67*** 27.23*** 

Climate×Soil×Genotype 69.99*** 1.29 ns 

 

 




