T. Pederson, The nucleolus, Cold Spring Harb. Perspect. Biol, 2011.

D. Stanek and A. H. Fox, Nuclear bodies: News insights into structure and function, Curr. Opin. Cell Biol, vol.46, pp.94-101, 2017.

Y. S. Mao, B. Zhang, and D. L. Spector, Biogenesis and function of nuclear bodies, Trends Genet, vol.27, pp.295-306, 2011.

S. P. Shevtsov and M. Dundr, Nucleation of nuclear bodies by RNA, Nat. Cell Biol, vol.13, pp.167-173, 2011.

C. Szostecki, H. H. Guldner, and H. Will, Autoantibodies against "nuclear dots" in primary biliary cirrhosis, Semin. Liver Dis, vol.17, pp.71-78, 1997.

J. A. Dyck, G. G. Maul, W. H. Miller, . Jr, J. D. Chen et al., A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein, Cell, vol.76, pp.333-343, 1994.

K. Weis, S. Rambaud, C. Lavau, J. Jansen, T. Carvalho et al., Retinoic acid regulates aberrant nuclear localization of PML-RAR ? in acute promyelocytic leukemia cells, Cell, vol.76, pp.345-356, 1994.

H. R. Chang, A. Munkhjargal, M. J. Kim, S. Y. Park, E. Jung et al., The functional roles of PML nuclear bodies in genome maintenance, Mutat. Res, 2017.

S. Muller, M. J. Matunis, and A. Dejean, Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus, EMBO J, vol.17, pp.61-70, 1998.

S. Zhong, S. Muller, S. Ronchetti, P. S. Freemont, A. Dejean et al., Role of SUMO-1-modified PML in nuclear body formation, Blood, vol.95, pp.2748-2752, 2000.

A. Guo, P. Salomoni, J. Luo, A. Shih, S. Zhong et al., The function of PML in p53-dependent apoptosis, Nat. Cell Biol, vol.2, pp.730-736, 2000.

P. Salomoni and P. P. Pandolfi, The role of PML in tumor suppression, Cell, vol.108, pp.165-170, 2002.

G. Dellaire, R. W. Ching, K. Ahmed, F. Jalali, K. C. Tse et al., Promyelocytic leukemia nuclear bodies behave as DNA damage sensors whose response to DNA double-strand breaks is regulated by NBS1 and the kinases ATM, CHK2, and ATR, J. Cell Biol, vol.175, pp.55-66, 2006.

S. Zhong, P. Hu, T. Z. Ye, R. Stan, N. A. Ellis et al., A role for PML and the nuclear body in genomic stability, Oncogene, vol.18, pp.7941-7947, 1999.

L. B. Schultz, N. H. Chehab, A. Malikzay, and T. D. Halazonetis, P53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks, J. Cell Biol, vol.151, pp.1381-1390, 2000.

I. M. Ward, K. Minn, J. Van-deursen, and J. Chen, P53 binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice, Mol. Cell. Biol, vol.23, pp.2556-2563, 2003.

H. Takai, A. Smogorzewska, and T. De-lange, DNA damage foci at dysfunctional telomeres, Curr. Biol, vol.13, pp.1549-1556, 2003.

F. Rodier, D. P. Munoz, R. Teachenor, V. Chu, O. Le et al., DNA-SCARS: Distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion, J. Cell Sci, vol.124, pp.68-81, 2011.

A. Pombo, P. Cuello, W. Schul, J. B. Yoon, R. G. Roeder et al., Regional and temporal specialization in the nucleus: A transcriptionally-active nuclear domain rich in PTF, Oct1 and PIKA antigens associates with specific chromosomes early in the cell cycle, EMBO J, vol.17, pp.1768-1778, 1998.

J. A. Harrigan, R. Belotserkovskaya, J. Coates, D. S. Dimitrova, S. E. Polo et al., Replication stress induces 53BP1-containing OPT domains in G1 cells, J. Cell Biol, vol.193, pp.97-108, 2011.

L. Li, K. Roy, S. Katyal, X. Sun, S. Bleoo et al., Dynamic nature of cleavage bodies and their spatial relationship to DDX1 bodies, Cajal bodies, and gems, Mol. Biol. Cell, vol.17, pp.1126-1140, 2006.

S. Bekker-jensen, C. Lukas, F. Melander, J. Bartek, and J. Lukas, Dynamic assembly and sustained retention of 53BP1 at the sites of DNA damage are controlled by MDC1/NFBD1, J. Cell Biol, vol.170, pp.201-211, 2005.

C. Lukas, V. Savic, S. Bekker-jensen, C. Doil, B. Neumann et al., 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress, Nat. Cell Biol, vol.13, pp.243-253, 2011.

J. Falck, J. Coates, and S. P. Jackson, Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage, Nature, vol.434, pp.605-611, 2005.

T. Uziel, Y. Lerenthal, L. Moyal, Y. Andegeko, L. Mittelman et al., Requirement of the MRN complex for ATM activation by DNA damage, EMBO J, vol.22, pp.5612-5621, 2003.

S. Matsuoka, B. A. Ballif, A. Smogorzewska, and E. R. Mcdonald,

K. E. Hurov, J. Luo, C. E. Bakalarski, Z. Zhao, N. Solimini et al., ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage, Science, vol.316, pp.1160-1166, 2007.

E. P. Rogakou, D. R. Pilch, A. H. Orr, V. S. Ivanova, and W. M. Bonner, DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139, J. Biol. Chem, vol.273, pp.5858-5868, 1998.

M. Stucki, J. A. Clapperton, D. Mohammad, M. B. Yaffe, S. J. Smerdon et al., Mdc1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks, Cell, vol.123, pp.1213-1226, 2005.

N. Mailand, S. Bekker-jensen, H. Faustrup, F. Melander, J. Bartek et al., RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins, Cell, vol.131, pp.887-900, 2007.

T. Thorslund, A. Ripplinger, S. Hoffmann, T. Wild, M. Uckelmann et al., Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage, Nature, vol.527, pp.389-393, 2015.

F. Mattiroli, J. H. Vissers, W. J. Van-dijk, P. Ikpa, E. Citterio et al., RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling, Cell, vol.150, pp.1182-1195, 2012.

A. Fradet-turcotte, M. D. Canny, C. Escribano-diaz, A. Orthwein, C. C. Leung et al., 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark, Nature, vol.499, pp.50-54, 2013.

B. Sobhian, G. Shao, D. R. Lilli, A. C. Culhane, L. A. Moreau et al., RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites, Science, vol.316, pp.1198-1202, 2007.

J. M. Daley and P. Sung, 53BP1, BRCA1, and the choice between recombination and end joining at DNA double-strand breaks, Mol. Cell. Biol, vol.34, pp.1380-1388, 2014.

M. Isono, A. Niimi, T. Oike, Y. Hagiwara, H. Sato et al., BRCA1 directs the repair pathway to Homologous Recombination by promoting 53BP1 dephosphorylation, vol.18, pp.520-532, 2017.

A. Shibata, Regulation of repair pathway choice at two-ended DNA double-strand breaks, Mutat. Res, pp.51-55, 2017.

V. Gomez-godinez, T. Wu, A. J. Sherman, C. S. Lee, L. H. Liaw et al., Analysis of DNA double-strand break response and chromatin structure in mitosis using laser microirradiation, Nucleic Acids Res, vol.38, 2010.

A. Moreno, J. T. Carrington, L. Albergante, M. Al-mamun, E. J. Haagensen et al., Unreplicated DNA remaining from unperturbed S phases passes through mitosis for resolution in daughter cells, Proc. Natl. Acad. Sci, vol.113, pp.5757-5764, 2016.

D. L. Croteau, V. Popuri, P. L. Opresko, and V. A. Bohr, Human recq helicases in DNA repair, recombination, and replication, Annu. Rev. Biochem, vol.83, pp.519-552, 2014.

C. P. Wardlaw, A. M. Carr, and A. W. Oliver, TopBP1: A BRCT-scaffold protein functioning in multiple cellular pathways, DNA Repair, vol.22, pp.165-174, 2014.

R. T. Pedersen, T. Kruse, J. Nilsson, V. H. Oestergaard, and M. Lisby, TopBP1 is required at mitosis to reduce transmission of DNA damage to G1 daughter cells, J. Cell Biol, vol.210, pp.565-582, 2015.

T. Gudjonsson, M. Altmeyer, V. Savic, L. Toledo, C. Dinant et al., TRIP12 and UBR5 suppress spreading of chromatin ubiquitylation at damaged chromosomes, Cell, vol.150, pp.697-709, 2012.

N. M. Shanbhag, I. U. Rafalska-metcalf, C. Balane-bolivar, S. M. Janicki, and R. A. Greenberg, ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks, Cell, vol.141, pp.970-981, 2010.

P. Beli, N. Lukashchuk, S. A. Wagner, B. T. Weinert, J. V. Olsen et al., Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response, Mol. Cell, vol.46, pp.212-225, 2012.

O. Yuce and S. C. West, Senataxin, defective in the neurodegenerative disorder ataxia with oculomotor apraxia 2, lies at the interface of transcription and the DNA damage response, Mol. Cell. Biol, vol.33, pp.406-417, 2013.

E. Hatchi, K. Skourti-stathaki, S. Ventz, L. Pinello, A. Yen et al., BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair, Mol. Cell, vol.57, pp.636-647, 2015.

L. Li, D. R. Germain, H. Y. Poon, M. R. Hildebrandt, E. A. Monckton et al., DEAD box 1 facilitates removal of RNA and homologous recombination at DNA double-strand breaks, Mol. Cell. Biol, vol.36, pp.2794-2810, 2016.

L. Li, E. A. Monckton, and R. Godbout, A role for DEAD box 1 at DNA double-strand breaks, Mol. Cell. Biol, vol.28, pp.6413-6425, 2008.

F. Lang, X. Li, W. Zheng, Z. Li, D. Lu et al., CTCF prevents genomic instability by promoting homologous recombination-directed DNA double-strand break repair, Proc. Natl. Acad. Sci, vol.114, pp.10912-10917, 2017.

Y. H. Lee, C. Y. Kuo, J. M. Stark, H. M. Shih, and D. K. Ann, HP1 promotes tumor suppressor BRCA1 functions during the DNA damage response, Nucleic Acids Res, vol.41, pp.5784-5798, 2013.

A. Mund, T. Schubert, H. Staege, S. Kinkley, K. Reumann et al., SPOC1 modulates DNA repair by regulating key determinants of chromatin compaction and DNA damage response, Nucleic Acids Res, vol.40, pp.11363-11379, 2012.

G. R. Kafer, X. Li, T. Horii, I. Suetake, S. Tajima et al., 5-Hydroxymethylcytosine marks sites of DNA damage and promotes genome stability, Cell Rep, vol.14, pp.1283-1292, 2016.

J. Dabin, A. Fortuny, and S. E. Polo, Epigenome maintenance in response to DNA damage, Mol. Cell, vol.62, pp.712-727, 2016.

O. L. Kantidze and S. V. Razin, 5-Hydroxymethylcytosine in DNA repair: A new player or a red herring, Cell Cycle, vol.16, pp.1499-1501, 2017.

V. Foltankova, S. Legartova, S. Kozubek, M. Hofer, and E. Bartova, DNA-damage response in chromatin of ribosomal genes and the surrounding genome, Gene, vol.522, pp.156-167, 2013.

S. Legartova, P. Sehnalova, B. Malyskova, T. Kuntziger, P. Collas et al., Localized movement and levels of 53BP1 protein are changed by ?-irradiation in PML deficient cells, J. Cell. Biochem, vol.117, pp.2583-2596, 2016.

A. R. Barr, S. Cooper, F. S. Heldt, F. Butera, H. Stoy et al., DNA damage during S-phase mediates the proliferation-quiescence decision in the subsequent G1 via p21 expression, Nat. Commun, vol.8, 2017.

M. V. Botuyan, J. Lee, I. M. Ward, J. E. Kim, J. R. Thompson et al., Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and CRB2 in DNA repair, Cell, vol.127, pp.1361-1373, 2006.

S. Giunta, R. Belotserkovskaya, and S. P. Jackson, DNA damage signaling in response to double-strand breaks during mitosis, J. Cell Biol, vol.190, pp.197-207, 2010.

A. Orthwein, A. Fradet-turcotte, S. M. Noordermeer, M. D. Canny, C. M. Brun et al., Mitosis inhibits DNA double-strand break repair to guard against telomere fusions, Science, vol.344, pp.189-193, 2014.

D. H. Lee, S. S. Acharya, M. Kwon, P. Drane, Y. Guan et al., Dephosphorylation enables the recruitment of 53BP1 to double-strand DNA breaks, Mol. Cell, vol.54, pp.512-525, 2014.

D. R. Mackay and K. S. Ullman, ATR and a Chk1-Aurora B pathway coordinate postmitotic genome surveillance with cytokinetic abscission, Mol. Biol. Cell, vol.26, pp.2217-2226, 2015.

R. Cescutti, S. Negrini, M. Kohzaki, and T. D. Halazonetis, Topbp1 functions with 53BP1 in the G1 DNA damage checkpoint, EMBO J, vol.29, pp.3723-3732, 2010.

S. Pellegrino, J. Michelena, F. Teloni, R. Imhof, and M. Altmeyer, Replication-coupled dilution of H4K20me2 guides 53BP1 to pre-replicative chromatin, Cell Rep, vol.19, pp.1819-1831, 2017.

C. Escribano-diaz, A. Orthwein, A. Fradet-turcotte, M. Xing, J. T. Young et al., A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CTIP controls DNA repair pathway choice, Mol. Cell, vol.49, pp.872-883, 2013.

N. Hustedt and D. Durocher, The control of DNA repair by the cell cycle, Nat. Cell Biol, vol.19, pp.1-9, 2016.

I. Magdalou, B. S. Lopez, P. Pasero, and S. A. Lambert, The causes of replication stress and their consequences on genome stability and cell fate, Semin. Cell Dev. Biol, vol.30, pp.154-164, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01006536

M. K. Zeman and K. A. Cimprich, Causes and consequences of replication stress, Nat. Cell Biol, vol.16, pp.2-9, 2014.

R. A. Burrell, S. E. Mcclelland, D. Endesfelder, P. Groth, M. C. Weller et al., Replication stress links structural and numerical cancer chromosomal instability, Nature, vol.494, pp.492-496, 2013.

M. Macheret and T. D. Halazonetis, DNA replication stress as a hallmark of cancer, Annu. Rev. Pathol, vol.10, pp.425-448, 2015.

S. Negrini, V. G. Gorgoulis, and T. D. Halazonetis, Genomic instability-An evolving hallmark of cancer, Nat. Rev. Mol. Cell Biol, vol.11, pp.220-228, 2010.

S. Rohban and S. Campaner, Myc induced replicative stress response: How to cope with it and exploit it, Biochim. Biophys. Acta, vol.1849, pp.517-524, 2015.

S. W. Luebben, T. Kawabata, C. S. Johnson, M. G. O'sullivan, and N. Shima, A concomitant loss of dormant origins and FANCC exacerbates genome instability by impairing DNA replication fork progression, Nucleic Acids Res, vol.42, pp.5605-5615, 2014.

J. Bartkova, P. Hamerlik, M. T. Stockhausen, J. Ehrmann, A. Hlobilkova et al., Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas, Oncogene, vol.29, pp.5095-5102, 2010.

V. G. Gorgoulis, L. V. Vassiliou, P. Karakaidos, P. Zacharatos, A. Kotsinas et al., Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions, Nature, vol.434, pp.907-913, 2005.

J. Bartek, . Jr, O. Fornara, J. M. Merchut-maya, A. Maya-mendoza et al., Replication stress, DNA damage signalling, and cytomegalovirus infection in human medulloblastomas, Mol. Oncol, vol.11, pp.945-964, 2017.

M. Kwok, N. Davies, A. Agathanggelou, E. Smith, C. Oldreive et al., ATR inhibition induces synthetic lethality and overcomes chemoresistance in TP53-or ATM-defective chronic lymphocytic leukemia cells, Blood, vol.127, pp.582-595, 2016.

P. Haahr, S. Hoffmann, M. A. Tollenaere, T. Ho, L. I. Toledo et al., Activation of the ATR kinase by the RPA-binding protein ETAA1, Nat. Cell Biol, vol.18, pp.1196-1207, 2016.

A. N. Blackford, R. A. Schwab, J. Nieminuszczy, A. J. Deans, S. C. West et al., The DNA translocase activity of fancm protects stalled replication forks, Hum. Mol. Genet, vol.21, 2005.

M. R. Higgs, J. J. Reynolds, A. Winczura, A. N. Blackford, V. Borel et al., required to suppress deleterious resection of stressed replication forks, Mol. Cell, vol.59, pp.462-477, 2015.

S. W. Luebben, T. Kawabata, M. K. Akre, W. L. Lee, C. S. Johnson et al., Helq acts in parallel to Fancc to suppress replication-associated genome instability, Nucleic Acids Res, vol.41, pp.10283-10297, 2013.

S. G. Durkin and T. W. Glover, Chromosome fragile sites, Annu. Rev. Genet, vol.41, pp.169-192, 2007.

A. G. Georgakilas, P. Tsantoulis, A. Kotsinas, I. Michalopoulos, P. Townsend et al., Are common fragile sites merely structural domains or highly organized "functional" units susceptible to oncogenic stress?, Cell. Mol. Life Sci. CMLS, vol.71, pp.4519-4544, 2014.

L. Tallec, B. Koundrioukoff, S. Wilhelm, T. Letessier, A. Brison et al., Updating the mechanisms of common fragile site instability: How to reconcile the different views?, Cell. Mol. Life Sci, vol.71, pp.4489-4494, 2014.

S. Ying, S. Minocherhomji, K. L. Chan, T. Palmai-pallag, W. K. Chu et al., Hickson, I.D. MUS81 promotes common fragile site expression, Nat. Cell Biol, vol.15, pp.1001-1007, 2013.

V. Naim, T. Wilhelm, M. Debatisse, and F. Rosselli, ERCC1 and MUS81-EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis, Nat. Cell Biol, vol.15, pp.1008-1015, 2013.

V. Bergoglio, A. S. Boyer, E. Walsh, V. Naim, G. Legube et al., DNA synthesis by Pol ? promotes fragile site stability by preventing under-replicated DNA in mitosis, J. Cell Biol, vol.201, pp.395-408, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02325739

A. Bhat, P. L. Andersen, Z. Qin, and W. Xiao, Rev3, the catalytic subunit of polzeta, is required for maintaining fragile site stability in human cells, Nucleic Acids Res, vol.41, pp.2328-2339, 2013.

E. Walsh, X. Wang, M. Y. Lee, and K. A. Eckert, Mechanism of replicative DNA polymerase ? pausing and a potential role for DNA polymerase ? in common fragile site replication, J. Mol. Biol, vol.425, pp.232-243, 2013.

S. S. Lange, J. P. Wittschieben, and R. D. Wood, DNA polymerase ? is required for proliferation of normal mammalian cells, Nucleic Acids Res, vol.40, pp.4473-4482, 2012.

E. Despras, M. Sittewelle, C. Pouvelle, N. Delrieu, A. M. Cordonnier et al., RAD18-dependent SUMOylation of human specialized DNA polymerase ? is required to prevent under-replicated DNA, Nat. Commun, 2016.

R. Betous, M. J. Pillaire, L. Pierini, S. Van-der-laan, B. Recolin et al., DNA polymerase kappa-dependent DNA synthesis at stalled replication forks is important for CHK1 activation, EMBO J, vol.32, pp.2172-2185, 2013.

S. F. Mansilla, A. P. Bertolin, V. Bergoglio, M. J. Pillaire, M. A. Gonzalez-besteiro et al., Cyclin kinase-independent role of p21CDKN1A in the promotion of nascent DNA elongation in unstressed cells
URL : https://hal.archives-ouvertes.fr/hal-02325733

M. J. Jones, L. Colnaghi, and T. T. Huang, Dysregulation of DNA polymerase kappa recruitment to replication forks results in genomic instability, EMBO J, vol.31, pp.908-918, 2012.

M. Ogrunc, R. I. Martinez-zamudio, P. B. Sadoun, G. Dore, H. Schwerer et al., Bischof, O. USP1 regulates cellular senescence by controlling genomic integrity, Cell Rep, vol.15, pp.1401-1411, 2016.

A. Singh and Y. J. Xu, The cell killing mechanisms of hydroxyurea, Genes, vol.7, p.99, 2016.

S. Minocherhomji, S. Ying, V. A. Bjerregaard, S. Bursomanno, A. Aleliunaite et al., Replication stress activates DNA repair synthesis in mitosis, Nature, vol.528, pp.286-290, 2015.

K. L. Chan, T. Palmai-pallag, S. Ying, and I. D. Hickson, Replication stress induces sister-chromatid bridging at fragile site loci in mitosis, Nat. Cell Biol, vol.11, pp.753-760, 2009.

V. Naim and F. Rosselli, The fanc pathway and blm collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities, Nat. Cell Biol, vol.11, pp.761-768, 2009.

R. Bhowmick, S. Minocherhomji, and I. D. Hickson, RAD52 facilitates mitotic DNA synthesis following replication stress, Mol. Cell, vol.64, pp.1117-1126, 2016.

J. H. Guervilly, A. Takedachi, V. Naim, S. Scaglione, C. Chawhan et al., The SLX4 complex is a SUMO E3 ligase that impacts on replication stress outcome and genome stability, Mol. Cell, vol.57, pp.123-137, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01429041

J. Ouyang, E. Garner, A. Hallet, H. D. Nguyen, K. A. Rickman et al., Noncovalent interactions with SUMO and ubiquitin orchestrate distinct functions of the SLX4 complex in genome maintenance, Mol. Cell, vol.57, pp.108-122, 2015.

S. Sarbajna, D. Davies, and S. C. West, Roles of SLX1-SLX4, MUS81-EME1, and GEN1 in avoiding genome instability and mitotic catastrophe, Genes Dev, vol.28, pp.1124-1136, 2014.

D. Marco, S. Hasanova, Z. Kanagaraj, R. Chappidi, N. Altmannova et al., RECQ5 helicase cooperates with MUS81 endonuclease in processing stalled replication forks at common fragile sites during mitosis, Mol. Cell, vol.66, pp.658-671, 2017.

H. D. Wyatt, S. Sarbajna, J. Matos, and S. C. West, Coordinated actions of SLX1-SLX4 and MUS81-EME1 for holliday junction resolution in human cells, Mol. Cell, vol.52, pp.234-247, 2013.

X. Lai, R. Broderick, V. Bergoglio, J. Zimmer, S. Badie et al., MUS81 nuclease activity is essential for replication stress tolerance and chromosome segregation in BRCA2-deficient cells, Nat. Commun, vol.8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02325713

K. L. Chan and I. D. Hickson, On the origins of ultra-fine anaphase bridges, Cell Cycle, vol.8, pp.3065-3066, 2009.

R. C. Hengeveld, H. R. De-boer, P. M. Schoonen, E. G. De-vries, S. M. Lens et al., Rif1 is required for resolution of ultrafine DNA bridges in anaphase to ensure genomic stability, Dev. Cell, vol.34, pp.466-474, 2015.

P. Kotsantis, L. M. Silva, S. Irmscher, R. M. Jones, L. Folkes et al., Increased global transcription activity as a mechanism of replication stress in cancer, Nat. Commun, 2016.

S. Hamperl and K. A. Cimprich, Conflict resolution in the genome: How transcription and replication make it work, Cell, vol.167, pp.1455-1467, 2016.

P. Moudry, C. Lukas, L. Macurek, B. Neumann, J. K. Heriche et al., Nucleoporin NUP153 guards genome integrity by promoting nuclear import of 53BP1, Cell Death Differ, vol.19, pp.798-807, 2012.

L. Schmidt, M. Wiedner, G. Velimezi, J. Prochazkova, M. Owusu et al., Atmin is required for the ATM-mediated signaling and recruitment of 53BP1 to DNA damage sites upon replication stress, DNA Repair, vol.24, pp.122-130, 2014.

A. Kondratova, T. Watanabe, M. Marotta, M. Cannon, A. M. Segall et al., Replication fork integrity and intra-S phase checkpoint suppress gene amplification, Nucleic Acids Res, vol.43, pp.2678-2690, 2015.

L. Macurek, J. Benada, E. Mullers, V. A. Halim, K. Krejcikova et al., Downregulation of Wip1 phosphatase modulates the cellular threshold of DNA damage signaling in mitosis, Cell Cycle, vol.12, pp.251-262, 2013.

W. Feng and M. Jasin, BRCA2 suppresses replication stress-induced mitotic and G1 abnormalities through homologous recombination, Nat. Commun, vol.8, p.525, 2017.

R. D. Rasmussen, M. K. Gajjar, L. Tuckova, K. E. Jensen, A. Maya-mendoza et al., regulated RRM2 expression protects glioblastoma cells from endogenous replication stress and promotes tumorigenicity, Nat. Commun, 2016.

K. Somyajit, S. Saxena, S. Babu, A. Mishra, and G. Nagaraju, Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart, Nucleic Acids Res, vol.43, pp.9835-9855, 2015.

K. Schlacher, N. Christ, N. Siaud, A. Egashira, H. Wu et al., Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11, Cell, vol.145, pp.529-542, 2011.

K. Schlacher, H. Wu, and M. Jasin, A distinct replication fork protection pathway connects fanconi anemia tumor suppressors to RAD51-BRCA1/2, Cancer Cell, vol.22, pp.106-116, 2012.

H. Sun, L. He, H. Wu, F. Pan, X. Wu et al., The FEN1 L209P mutation interferes with long-patch base excision repair and induces cellular transformation, vol.36, pp.194-207, 2017.

S. Jimeno, E. Herrera-moyano, P. Ortega, and A. Aguilera, Differential effect of the overexpression of RAD2/XPG family endonucleases on genome integrity in yeast and human cells, DNA Repair, vol.57, pp.66-75, 2017.

J. Stingele, R. Bellelli, and S. J. Boulton, Mechanisms of DNA-protein crosslink repair, Nat. Rev. Mol. Cell Biol, vol.18, pp.563-573, 2017.

R. S. Maskey, M. S. Kim, D. J. Baker, B. Childs, L. A. Malureanu et al., SPARTAN deficiency causes genomic instability and progeroid phenotypes, Nat. Commun, vol.5, 2014.

A. Janssen, G. J. Kops, and R. H. Medema, Targeting the mitotic checkpoint to kill tumor cells, Horm. Cancer, vol.2, pp.113-116, 2011.

R. Pedersen, G. Karemore, T. Gudjonsson, M. B. Rask, B. Neumann et al., Profiling DNA damage response following mitotic perturbations, Nat. Commun, 2016.

H. Beck, V. Nahse-kumpf, M. S. Larsen, K. A. O'hanlon, S. Patzke et al., Cyclin-dependent kinase suppression by WEE1 kinase protects the genome through control of replication initiation and nucleotide consumption, Mol. Cell. Biol, vol.32, pp.4226-4236, 2012.

A. K. Ahuja, K. Jodkowska, F. Teloni, A. H. Bizard, R. Zellweger et al., A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells, Nat. Commun, 2016.

E. Mullers, H. Silva-cascales, K. Burdova, L. Macurek, and A. Lindqvist, Residual CDK1/2 activity after DNA damage promotes senescence, Aging Cell, vol.16, pp.575-584, 2017.

K. W. Overton, S. L. Spencer, W. L. Noderer, T. Meyer, and C. L. Wang, Basal p21 controls population heterogeneity in cycling and quiescent cell cycle states, Proc. Natl. Acad. Sci, vol.111, pp.4386-4393, 2014.

S. L. Spencer, S. D. Cappell, F. C. Tsai, K. W. Overton, C. L. Wang et al., The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit, Cell, vol.155, pp.369-383, 2013.

M. Arora, J. Moser, H. Phadke, A. A. Basha, and S. L. Spencer, Endogenous replication stress in mother cells leads to quiescence of daughter cells, Cell Rep, vol.19, pp.1351-1364, 2017.

A. Lezaja and M. Altmeyer, Inherited DNA lesions determine G1 duration in the next cell cycle, Cell Cycle, 2017.

J. H. Chen, C. N. Hales, and S. E. Ozanne, DNA damage, cellular senescence and organismal ageing: Causal or correlative?, Nucleic Acids Res, vol.35, pp.7417-7428, 2007.

D. Di-fagagna, F. Reaper, P. M. Clay-farrace, L. Fiegler, H. Carr et al., A DNA damage checkpoint response in telomere-initiated senescence, Nature, vol.426, pp.194-198, 2003.

A. Galbiati, C. Beausejour, and F. Di-fagagna, A novel single-cell method provides direct evidence of persistent DNA damage in senescent cells and aged mammalian tissues, Aging Cell, vol.16, pp.422-427, 2017.

F. Aymard, M. Aguirrebengoa, E. Guillou, B. M. Javierre, B. Bugler et al., Genome-wide mapping of long-range contacts unveils clustering of DNA double-strand breaks at damaged active genes, Nat. Struct. Mol. Biol, vol.24, pp.353-361, 2017.

B. Blumenfeld, M. Ben-zimra, and I. Simon, Perturbations in the replication program contribute to genomic instability in cancer, Int. J. Mol. Sci, vol.18, 1138.

H. Gaillard, T. Garcia-muse, and A. Aguilera, Replication stress and cancer, Nat. Rev. Cancer, vol.15, pp.276-289, 2015.

M. Fragkos and V. Naim, Rescue from replication stress during mitosis, Cell Cycle, vol.16, pp.613-633, 2017.

A. Mazouzi, G. Velimezi, and J. I. Loizou, DNA replication stress: Causes, resolution and disease, Exp. Cell Res, vol.329, pp.85-93, 2014.

K. Matsuda, S. Miura, T. Kurashige, K. Suzuki, H. Kondo et al., Significance of p53-binding protein 1 nuclear foci in uterine cervical lesions: Endogenous DNA double strand breaks and genomic instability during carcinogenesis, Histopathology, vol.59, pp.441-451, 2011.