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Abstract

Denoising of magnetic resonance (MR) images enhances diagnostic accuracy, the quality of image 

manipulations such as registration and segmentation, and parameter estimation. The first objective 

of this paper is to introduce a new, high-performance, nonlocal filter for noise reduction in MR 

image sets consisting of progressively-weighted, that is, multispectral, images. This filter is a 

multispectral extension of the nonlocal maximum likelihood filter (NLML) combining both spatial 

and spectral information, that is, signal intensities across multiple image weightings, to perform 

efficient denoising. Performance was evaluated on synthetic and in-vivo T2- and T1-weighted 

brain imaging data, and compared to the nonlocal-means (NLM) and its multispectral version, that 

is, MS-NLM, and the nonlocal maximum likelihood (NLML) filters. Visual inspection of filtered 

images and quantitative analyses showed that all filters provided substantial reduction of noise. 

Further, as expected, the use of multispectral information improves filtering quality. In addition, 

numerical and experimental analyses indicated that the new multispectral NLML filter, MS-

NLML, demonstrated markedly less blurring and loss of image detail than seen with the other 

filters evaluated. In addition, since noise standard deviation (SD) is an important parameter for all 

of those nonlocal filters, a multispectral extension of the method of maximum likelihood 

estimation (MLE) of noise amplitude is presented and compared to both local and nonlocal MLE 

methods. Numerical and experimental analyses indicated the superior performance of this 

multispectral method for estimation of noise SD.
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I. Introduction

Diagnostic magnetic resonance imaging (MRI) often requires high signal-to-noise ratio 

(SNR) and high spatial resolution. For example, high spatial resolution is required for brain 

imaging to delineate small structures that are of potential clinical significance. However, the 

ability to provide such images is often constrained by acquisition time, especially for 

subjects with limited ability to cooperate. In conjunction with optimal acquisition strategies, 

SNR improvement may be achieved through post-acquisition application of image filtering 

[1]. Available algorithms include the anisotropic diffusion filter [2]–[3], the nonlocal-means 

algorithm (NLM) [4]–[6], the bilateral and trilateral filters [7]–[8], the wavelet transform 

[9]–[16], the nonlocal maximum likelihood (NLML) filter [17]–[21] and total variation 

minimization [22], with a recent review provided in [23]. Of these, the NLM and NLML 

class of filters provide a high degree of overall image denoising while preserving edges and 

small structures [1], [4], [17]–[20].

In many applications, MR imaging protocols are multispectral or multicomponent in the 

sense of acquiring images at different echo times (TEs), repetition times (TRs), flip angles 

(FAs), or diffusion b-values. Manjón et al. [24]–[25] extended the NLM filter to the 

multicomponent case by averaging similar voxels through joint use of the information from 

T1-, T2- and proton density (PD)-weighted images and showed greatly improved denoising 

quality. Furthermore, Wiest-Daesslé et al. [26] extended the NLM filter to the multispectral 

case of diffusion tensor imaging of the brain, and found that the use of information acquired 

from different diffusion gradient directions improved upon classical denoising methods. In a 

more recent application of multispectral filtering, Zhou et al. [27] found that the use of 

redundant information acquired with different b-values produced a reliable estimation of 

diffusion kurtosis in human brain.

While both NLML and NLM filters are nonlocal, one fundamental difference between them 

is that the NLM algorithm uses an averaged weighted mean to restore the amplitude of a 

given voxel, with weights calculated between the voxel being filtered and every other voxel 

in a large search window. This can introduce partial volume effects especially in the case of 

low SNR or limited contrast between tissues due to potential error in the calculation of the 

weights. Moreover, the weights are parameterized by the smoothing parameter h which is an 

user defined parameter. A careful selection of h is required which may add a further 

complexity in the use of the NLM filter. In contrast, the NLML algorithm excludes 

dissimilar voxels to restore the amplitude of the voxel being analyzed. Several studies have 

shown the high performance of the NLML filter [17]–[20]. However, neither a multispectral 

nor a multicomponent version of the NLML filter has yet been introduced. In this work, we 

extended the NLML filter to the multispectral case to denoise full datasets of weighted MR 

images. Performance was evaluated on synthetic and in-vivo T2- and T1-weighted 
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multispectral brain imaging data and compared to both the marginal, that is, monospectral 

versions of both NLM and NLML filters, and the multispectral version of the NLM filter, 

that is, MS-NLM.

Noise standard deviation (SD) is an important parameter in both NLM and NLML filtering 

[1], [4]–[6], [17]–[20]. Several methods have been developed for the estimation of noise SD 

from the background of magnitude images where the underlying signal is null [28]–[30]. 

However, background regions are not always available or sufficient to ensure accurate 

determination of noise SD. For such cases, a local maximum likelihood (LML) estimation 

approach has been proposed [28], [30]–[31]. LML assumes that the underlying signal and 

noise amplitude are constant within the voxels belonging to the local neighborhood. 

However, this assumption may not hold at the edges where signal intensities vary rapidly. In 

this work, we extended the LML approach to the nonlocal and the multispectral nonlocal 

cases and compared the performance of these extensions to LML on synthetic and in-vivo 
multispectral brain imaging data.

II. THEORY

We are considering perfectly registered multispectral images defined on a discrete grid I, 
which describes the bounded 3D spatial domain spanned by the image, given by S = {S(i)|i 
∈ I, S(i) ∈ RK}, where K is the number of frames of the multispectral data set. We define a 

frame k as a particular image within the multispectral dataset obtained with a particular 

value of a varying acquisition parameter. As in related literature, we define this as a spectral 

dimension. The measured signal intensity, Sk(i), obtained in voxel i of frame k is drawn from 

a conditional Rician probability distribution p(Sk(i)|Ak(i),σk(i)), with Ak the unknown 

underlying amplitude and σk the unknown noise standard deviation (SD) considered 

spatially constant set to σ.

II. 1. Noise standard deviation estimation

Accurate estimation of σ is critical for filtering quality as well as for other image processing 

tasks, such as segmentation, registration and parameter estimation [1], [4]–[6], [17]–[20], 

[32]-[32]. The LML approach has been proposed when backgrounds are not available or 

sufficient to ensure accurate determination of σ [28], [30]–[31]. In this work, we extended 

the MLE approach to the nonlocal and the multispectral nonlocal cases and compared their 

performance to LML.

II.1.1. Noise estimation using local maximum likelihood estimation (NE-LML)—
σ can be marginally estimated in each frame, k, by maximizing the logarithm of the Rician 

likelihood function with respect to the unknowns σ̂ and Âk [29] through

σ, Ak = arg max
σ, Ak

∑
m

M
 log 

Sk(m)
σ2 − ∑

m

M Sk
2(m) + Ak

2

2σ2 + ∑
m

M
 log I0

Sk(m) + Ak

σ2 (1)
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where I0 is the zero-order modified Bessel function of the first kind. For optimal estimation 

accuracy, m should span the largest possible set of voxels over which both Ak and σ may be 

assumed constant. The local ML solution considers this assumption valid in a local 

neighborhood centered on i. Formally, let nk(i) denote the vectorized signal intensities Sk 

coming from a local neighborhood (i.e. square patch) containing a total of L voxels centered 

on voxel i of frame k (i.e. nkl(i) refers to the lth signal intensity around the voxel i of the 

frame k). The LML estimate can be written as

σ(i), Ak(i) = arg max 
σ, Ak

∑
l = 1

L
 log 

nkl(i)
σ2 − ∑

l = 1

L nkl
2 (i) + Ak

2

2σ2 + ∑
l = 1

L
 log I0

nkl(i)Ak

σ2 . (2)

In the following, we will refer to this method as noise estimation (NE) using LML (NE-

LML).

II.1.2. Noise estimation using nonlocal maximum likelihood estimation (NE-
NLML)—The NE-LML assumes Ak and σ to be constant within the L voxels of the local 

neighborhood. This assumption may not hold if L encompasses tissue interfaces. This 

problem can be ameliorated by selecting M voxels over a larger search window, R, centered 

around a voxel i, that have signal intensities similar to the intensity within the voxel i of 

interest [33]. Similar to the nonlocal means algorithm [4]–[6], [34], the similarity between 

two voxels i and j of the frame k can be calculated using the Gaussian weighted Euclidean 

distance (GWED) given by

dk(i, j) = ∑l = 1
L G(l)(nkl(i) − nkl( j))2, (3)

where G is a normalized Gaussian weighting function with SD = 1, centered at voxel i 
ensuring that more weight is given to pixels near the center of the local patch. The M voxels 

with the smallest values of dk(i, j) are then selected. This defines a subset of M voxels 

similar to i from which σ̂(i) is computed using Eq. 1. In the following, we will refer to this 

method as NE-NLML.

II.1.3. Noise estimation using multispectral NLML estimation (NE-MS-NLML)—
As noted, in many applications, MR imaging protocols are multispectral in the sense of 

acquiring images across a range of TEs, TRs, FAs, or b-values. The NE-NLML approach 

can be readily extended to the multispectral case by extending the calculation of the GWED 

(Eq. 3) to

d(i, j) = ∑k = 1
K dk(i, j) . (4)

The procedures for selecting M voxels similar to i and the calculation of σ̂(i) are unchanged. 

Our NE-MS-NLML scheme can therefore be expressed as follows:
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• Input: A multispectral image, S, of K frames with spatially stationary Rician 

noise in each frame (i.e. k = 1, …, K)

• For each voxel i of the image:

- Compute the multispectral distances d(i, j) defined in Eq. 4 over a large 

search window of size R centered around i

- Sort d(i, j) in order of increasing magnitude

- Select the subset of M voxels with the lowest d

- For each frame (i.e. k = 1, …, K), compute the ML estimate Âk(i) and 

σ̂(i) using Eq. 2 with initial values set respectively to M−1∑m
M Sk(m) and 

M−1∑m
M (Sk(m) − M−1∑m

M Sk(m))2. The Bessel function calculations 

required to analyze the Rician noise distribution were implemented 

with the Matlab function besseli(0, Z, 1) = besseli(0, Z)*exp(−Z), with 

argument Z = Sk(m)Ak/σ2.

• Output: Â and σ̂

The value of σ̂ used in the filters below was taken as the mode over space within brain 

regions defined by manual segmentation [28]–[30].

II. 2. Noise reduction

The underlying idea of quantitative filters is to reduce noise by replacing the noisy intensity 

of voxel i by an unbiased estimation of its underlying amplitude. As for the previous 

estimation of noise SD, this requires selection of voxels that are likely to come from similar 

tissue.

II.2.1. Noise reduction using the nonlocal-means (NR-NLM) filter—The nonlocal-

means (NLM) filter was first introduced by Buades et al. [34]. The intensity in voxel i is 

estimated as the weighted mean of signal intensities calculated over all voxels j in a large 

search window of size R centered around the voxel i of interest [4]–[6], [34]. The weight 

w(i, j) quantifying the similarity between two voxels i and j in a frame k is calculated 

according to

wk(i, j) = exp −
dk(i, j)

h2 . (5)

The weighting of the GWED is parameterized by the smoothing parameter h. For the case of 

magnitude MR images, the estimate Âk(i) of the amplitude Âk in the voxel i of the kth frame 

is given by
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Ak(i) = max
∑ j

Rwk(i, j)Sk
2( j)

∑ j
Rwk(i, j)

− 2σ2, 0 , (6)

which is a modification of the original filter defined by Buades et al. to account for Rician 

noise [35]. In the following, we will refer to this filter as noise reduction (NR) using NLM 

(NR-NLM).

II.2.2. Noise reduction using the multispectral nonlocal-means (NR-MS-NLM) 
filter—Manjón et al. and Wiest-Daesslé et al. extended the NR-NLM filter to include data 

from MR images obtained with weightings of different parameters in the calculation of w(i, 
j) [24]–[26], simply by replacing the GWED given in Eq. 5, by its multispectral extension 

through

w(i, j) = exp −
∑k = 1

K dk(i, j)
K h2 . (7)

The estimate Âk(i) of the amplitude in voxel i of the kth frame is given by

Ak(i) = max
∑ j

Rw(i, j)Sk
2( j)

∑ j
Rw(i, j)

− 2σ2, 0 . (8)

In the following, we will refer to this filter as NR-MS-NLM.

II.2.3. Noise reduction using the nonlocal maximum likelihood (NR-NLML) 
filter—The NLML filter introduced by He et al. [17] provides an estimate Âk of the 

underlying amplitude in a given voxel i of the kth frame using Eq. 1, but with σ taken as 

known a priori. As expected, this prior knowledge results in more rapid convergence and 

more accurate estimation of Ak [17]–[18]. The intensities Sk(m) are obtained from the subset 

of M voxels similar to i as described in section II.1.2.

II.2.4. Noise reduction using multispectral nonlocal maximum likelihood (NR-
MS-NLML) filter—As outlined in section II.2.2 for defining a multispectral version of the 

NLM filter, the principle introduced in II.1.3 can be applied for selecting the subset of M 
voxels similar to i and then introducing a multispectral version of the NLML filter. As for 

the original NR-NLML filter, σ is assumed to be known a priori. To obtain this estimate 

prior to filtering, the NE-MS-NLML scheme is implemented to estimate σ̂, as outlined in 

section II.1.3. Our NR-MS-NLML filter scheme can be expressed as follows:

• Input:
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- A multispectral image, S, of K frames with spatially stationary Rician 

noise in each frame (i.e. k = 1, …, K)

- σ, if known. If not, estimate σ̂ with the NE-MS-NLML method

• For each voxel i of the image:

- Compute the multispectral distances d(i, j) defined in Eq. 4 over a large 

search window of size R centered around i

- Sort d(i, j) in order of increasing magnitude

- Select the subset of M voxels with the lowest d

- For each frame (i.e. k = 1, …, K), compute the ML estimate Âk(i) using 

Eq. 1 with initial value set to M−1∑m
M Sk(m)

• Output: Filtered image Â

II.2.5. List of the main abbreviations and notations

NLM Nonlocal means

LML Local maximum likelihood

NLML Nonlocal maximum likelihood

MS Multispectral

NE Noise estimation

NR Noise reduction

AE Absolute error

SD Standard deviation

SNR Signal-to-noise ratio

L Local patch size

R Search window size

M Total number of similar voxel

K Total number of frames (i.e. MS images)

III. MATERIALS & METHODS

The performance of each noise estimation or reduction method was evaluated numerically 

and experimentally. Numerical analyses were performed on synthetic 2D T2-weighted 

(T2W) images of human brain generated with representative T2 values for white matter of 60 

ms, gray matter of 85 ms and cerebrospinal fluid of 180 ms. Images were generated with 

200 pixels × 180 pixels, and TE increasing uniformly from 10 to 200 ms resulting in 20 

frames taken as the multispectral data. For each TE, Rician noise was incorporated by 

adding zero-mean Gaussian noise to both the real and the imaginary channels of the complex 

signal, from which magnitude images were calculated. SNR was defined as A0/σ, where A0 

is the signal amplitude at TE = 0 ms, and set to 10 (i.e. A0 = 100 and σ = 10) for all analyses 

presented below.
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Likewise, the experimental analyses were performed on in-vivo imaging data acquired from 

the brain of a 23 year-old healthy female volunteer on a 3T whole-body MRI system 

(Achieva, Philips Medical Systems, Best, Netherlands) using the internal quadrature body 

coil for both signal transmission and reception. Specifically:

• Axial 2D T2W images were acquired using a multi-spinecho sequence with TR = 

1300 ms, field of view (FOV) = 22 cm × 19.2 cm, matrix = 448 × 440, with 3 

slices acquired, each of 2 mm thickness. Images were obtained with TE 

increasing linearly from 7 to 224 ms resulting in 32 frames taken as the 

multispectral images. The total acquisition was ~10 min.

• Axial 3D T1W images were acquired using a spoiled gradient recalled echo 

sequence with TR = 6 ms, TE = 2 ms, FOV = 22 cm × 20 cm × 0.9 cm, and 

matrix = 224 × 224 × 3. Images were obtained with FA increasing linearly from 

4 to 20° resulting in 9 frames taken as the multispectral images. The total 

acquisition was ~40 ms.

Written informed consent was obtained from the volunteer prior to participation. All 

examinations were performed with approval of the local Institutional Review Board. All 

calculations were performed with MATLAB (MathWorks, Natick, MA, USA).

III. 1. Numerical analysis

III.1.1. Noise estimation: Comparison of methods—In this analysis, we compared 

performance of the noise SD estimation methods described above. For the NE-LML method, 

the quality of the estimation of σ was evaluated for local neighborhood size of L = 3 × 3, L = 

5 × 5 or L = 7 × 7. For both NE-NLML and NE-MS-NLML methods, the search window 

size was set to R = 25 × 25, M was fixed to 50, and the quality of the estimation of σ was 

evaluated for three different patch sizes of L = 1 × 1 (i.e. no patch), L = 3 × 3, or L = 5 × 5. 

In addition to visual inspection, performance of each method was evaluated quantitatively 

through absolute error (AE) maps calculated for each TE as the absolute difference between 

the estimated and the true input values of noise SD.

III.1.2. Noise reduction: Marginal vs. multispectral filtering—In this analysis, we 

evaluated and compared the performance of marginal (single frame) and multispectral 

filtering. For both the NR-NLM and NR-MS-NLM filters, h was set to the true input value 

of σ, as was found to be optimal in previous studies [1], [5]–[6], [24]–[27]. For both the NR-

NLML and NR-MS-NLML filters, M was fixed to 50 and σ was set to the true input value. 

In all cases, R and L were fixed to 25 × 25 and 3 × 3, respectively. In addition to visual 

inspection, filtering quality was evaluated quantitatively through AE maps calculated as the 

absolute difference between the noise-free images and the filtered noisy images for each TE.

III.1.3. Noise reduction: Effect of patch size on multispectral filtering—In this 

analysis, we evaluated the impact of patch size on the quality of multispectral filtering. For 

that, image filtering was performed using the NR-MS-NLM or the NR-MS-NLML filters for 

patch sizes of L = 1 × 1 (i.e. no patch), L = 3 × 3, or L = 5 × 5. In all cases, R was fixed to 

25 × 25, M to 50 and σ to the true input value. The quality of filtering was evaluated both 

visually and quantitatively as described above.
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III. 2. Experimental analysis

As in the numerical analyses, we evaluated and compared experimentally the performance of 

the noise estimation and reduction methods described above. For noise estimation, input 

parameters were similar to those used in the numerical analysis described above. Analysis 

was performed on T2W human brain images described above with the quality of noise 

estimation evaluated both visually and quantitatively as described above. For the quantitative 

evaluation, the true input value of σ was calculated from the background of the multispectral 

images using the second moment of the Rayleigh distribution [28]–[32]. Likewise, for noise 

reduction, we compared marginal and multispectral filtering and the effect of patch size on 

multispectral filtering. Analyses were performed on both T2W and T1W human brain images 

described above with filtering parameters similar to those used in the numerical analyses. 

Evaluation of filtering quality was restricted to visual inspection.

IV. RESULTS

IV. 1. Numerical analysis

Fig. 1 shows the performance of the NE-LML, NE-NLML, and NE-MS-NLML methods for 

the estimation of σ, the noise SD. Analyses were performed on simulated noisy T2W brain 

images with SNR = 10. The NE-LML method shows excellent performance especially at 

short TEs with relatively high SNR. This can be seen from the σ- and AE-maps exhibiting 

relatively low error. At long TE (i.e. low SNR) this method provides high performance only 

in the homogenous regions, with the performance clearly degraded in edge regions with 

rapidly varying intensities. This problem increases with increasing patch size. While the 

errors at edges were greatly reduced with NE-NLML, they remain substantial in the 

homogenous regions of the images, especially at long TEs. Finally, the NE-MS-NLML 

method demonstrated the highest performance for the determination of σ. This is clearly 

seen from the σ- and AE-maps showing very low errors in both edge and homogenous 

regions for all images obtained at different TEs. While increasing the patch size serves to 

decrease the performance of the method, especially at edges, this degradation remains 

negligible. Computational time requirements using a 2.6 GHz computer were ~3 hours for 

one complete dataset with K = 20 for each method.

Fig. 2 shows qualitative and quantitative comparisons between marginal and multispectral 

filtering on simulated T2W brain images obtained with SNR = 10. Both visual inspection of 

filtered images and AE-maps showed that all filters provided substantial reduction of noise. 

However, the multispectral filters, that is, NR-MS-NLM and NR-MS-NLML, exhibited 

minimal error compared to the marginal filters, that is, NR-NLM and NR-NLML. Although 

the error was low in the homogenous regions of the images using the NR-MS-NLM filter, it 

was very high at the edges, where intensities vary rapidly, and increased with decreasing 

SNR (i.e. increasing TE). In contrast, the error was very low in all spectral images and 

image regions, including edges, using the NR-MS-NLML filter, with images exhibiting 

minimal blurring and excellent preservation of detail. Total computation times using a 2.6 

GHz computer were ~6 min, ~7 min, ~98 min and ~107 min for NR-NLM, NR-MS-NLM, 

NR-NLML, and NR-MS-NLML, respectively.
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Fig. 3 shows qualitative (Fig. 3a) and quantitative (Fig. 3b) analyses of the effect of patch 

size on multispectral filtering. The performance of NR-MS-NLM and NR-MS-NLML were 

evaluated for three different patch sizes on simulated T2W brain images obtained with SNR 

= 10. Visual inspection of filtered images shows that, unlike NR-MS-NLML, NR-MSNLM 

exhibits substantial blurring and loss of detail (Fig. 3a). This problem is exacerbated with 

increasing patch size as clearly seen from the AE-maps (Fig. 3b). In contrast, the NR-MS-

NLML filter exhibits minimal blurring with preservation of detail, especially with patch size 

of L = 1 × 1 (i.e. no patch). Visual inspection of filtered images and AE-maps did show 

some persistent random variations due to the residual noise.

IV. 2. Experimental analysis

Figs. 4 shows the performance of the NE-LML, NE-NLML, and NE-MS-NLML methods 

for estimation of σ, the noise SD. Analyses were performed on in-vivo T2W images 

obtained at different TEs. The NE-LML method performed well only in homogenous 

regions with clear performance degradation at the edges, especially with increasing patch 

size. While the error in the edges was greatly reduced with NE-NLML, it remains 

substantial in the homogenous regions of the images, especially at long TEs (i.e. low SNRs). 

Finally, the NE-MS-NLML method demonstrated the best performance for the 

determination of σ especially with patch size of 1 × 1 (i.e. no patch). Results were in good 

agreement with the numerical analysis shown in Fig. 1.

Figs. 5 and 7 show comparisons between marginal and multispectral filtering of in-vivo 
human brain images obtained at different TEs (Figs. 5) or FAs (Fig. 7). Visual inspection of 

filtered images showed that all of the filters provided substantial noise reduction. However, 

the multispectral filters, that is, NR-MS-NLM and NR-MS-NLML, demonstrated higher 

performance compared to the marginal filters, that is, NR-NLM and NR-NLML. However, 

unlike NR-MS-NLML, NR-MS-NLM suffers from visually apparent blurring and loss of 

image detail, as clearly visible from the filtered T2W images in regions of rapidly varying 

intensity, especially at edges and within small structures (Fig. 5). This problem is 

exacerbated with increasing patch size (Fig. 6). In contrast, NR-MS-NLML exhibits minimal 

blurring with excellent preservation of detail, especially with a patch size of L = 1 × 1 (Figs. 

6). Unlike T2W images, T1W images were less affected by noise and reflected high contrast 

between white and gray matter. This resulted in high image quality filtering with both NR-

MS-NLM and NR-MS-NLML filters (Figs. 7–8).

V. DISCUSSION

The presence of noise in MR images affects diagnostic accuracy, the quality of image 

manipulations such as registration and segmentation, and extraction of quantitative tissue 

information [1], [31]–[32], [36]–[40]. To partially overcome limitations imposed by noise, 

noise reduction filters may be applied during post-processing. However, filtering can 

introduce bias or produce blurring effects, affecting the accuracy of data analysis or 

obscuring small tissue structures. Further, noise SD is a crucial parameter in most filtering 

algorithms and requires careful estimation.
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In the present study, we extended the LML estimation of noise to both the nonlocal and 

multispectral cases. In addition, we extended the NLML filter to the multispectral case. 

Extensive numerical and experimental analyses were conducted to evaluate the performance 

of these new noise estimation and reduction methods, with systematic comparison to 

existing and widely used methods. Through numerical and experimental analyses, we have 

demonstrated that the NE-MS-NLML method for the estimation of noise SD is more 

effective than both NE-LML and NE-NLML. In fact, while NE-LML showed excellent 

performance in homogenous regions, errors were large at edges due to partial volume 

effects. While this issue was attenuated with the NE-NLML filter, the error in the estimation 

of noise SD was considerable in homogenous regions due to the difficulty in determining 

similar patches between voxels, especially at low SNR. However, use of multispectral 

information with NE-MS-NLML allows more accurate determination of similar voxels, and 

hence higher quality estimation of noise SD (Figs. 1 and 4). In fact, voxels belonging to the 

same tissue have similar signal evolution as a function of frame number k, defined as a 

variation of a given acquisition parameter, such as TE, TR, FA or b-value. Likewise, 

comparison of different filters indicates the superior performance of multispectral filtering 

compared to marginal filtering. Thus, here as well, use of multispectral information allows 

more accurate determination of similar voxels. Moreover, our results showed that although 

patch-based similarity calculations provide optimal results in homogenous image regions 

(Figs. 3, 6 and 8), performance is limited in spatially heterogeneous regions, such as edges 

and small structures, where patch redundancy is relatively poor. Finally, while NR-MS-NLM 

showed substantial reduction of noise, NR-MS-NLML showed much higher performance 

with images exhibiting minimal blurring and excellent preservation of detail (Figs. 2, 3, 5, 6, 

7 and 8). In fact, NR-MS-NLM is based on a weighted mean of signal intensities calculated 

between the voxel being filtered and all other voxels in a large search window. In the case of 

low contrast between tissues or low SNR, the calculated weights are likely to be inaccurate. 

This translates directly into incorporation of inappropriate pixels into the calculation of the 

estimated intensity of the pixel of interest, leading to, in effect, partial volume effects. This 

is seen as blurring of the filtered images (Figs. 2, 3, 5 and 6). In contrast, NR-MS-NLML 

uses only similar voxels to restore the amplitude of the voxel being analyzed.

NE-MS-NLML and NR-MS-NLML achieve noise estimation or reduction using 

multispectral amplitude values from M similar voxels, where M is user-defined. The value of 

M needs to be carefully selected. We observed suboptimal denoising for relatively small 

values of M. In addition, larger values of M degrade the quality of noise estimation or 

reduction by including voxels that are progressively less similar to the voxel being analyzed. 

Adaptive selection of M is therefore advantageous and may be performed following the 

methodology described in [33], at the expense of further increase in processing time. 

Likewise, NR-MS-NLM requires appropriate selection of the smoothing parameter h. While 

it has been established that noise SD can represent an optimal value for h, our analysis 

showed that this parameter is highly dependent on SNR and contrast between tissues (Figs. 

2–3, 5–8.

Finally, although we compared all noise estimation and reduction methods using a 2D 

implementation, that is, voxel similarities were calculated in a single slice, these methods 

can readily be extended to 3D data sets at the expense of increased processing time. 
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Moreover, we have used the Rician distribution, as is appropriate for single-coil signal 

reception. Multiple receiver coils are widely used to increase speed or SNR. If uncorrelated 

and equally distributed noise is assumed, the noise distribution in the resulting magnitude 

images is described by generalizations of the Rician, known as noncentral χ-distributions. 

Even if correlations do exist between different coils, the non-central χ-distributions can still 

be assumed, using pre-calculated effective values for the number of coils and noise SD, as 

described in [41].

In conclusion, we have presented efficient methods for noise estimation and reduction in 

multispectral MR images. Extensive numerical and experimental analyses indicate that the 

methods introduced show overall improved performance compared to other well-established 

methods.
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Fig. 1. 
Performance of NE-LML, NE-NLML, and NE-MS-NLML methods for noise estimation. 

Analyses were performed on simulated T2W human brain images. σ and absolute error (AE) 

maps are displayed for two different echo times (TEs). For each method, analyses were 

performed for three different patch sizes. These results clearly indicate the superior 

performance of NE-MS-NLML for the determination of σ.
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Fig. 2. 
Comparison of marginal and multispectral filtering. Comparison of the performance of NR-

NLM, NR-NLML, NR-MS-NLM and NR-MS-NLML filters was performed on simulated 

T2W brain images. Noise-free, noisy and filtered images are displayed for two different TEs. 

For each TE, the windowing of gray levels was adjusted to compensate for signal loss. 

Absolute error (AE) maps are displayed for each filter and each TE. The windowing of gray 

levels was identical between different methods to ensure a direct comparison between 

different methods. The results clearly show the superior performance of the NR-MS-NLML 

filter.
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Fig. 3. 
a. Evaluation of patch size effect on multispectral filtering. The performance of the NR-MS-

NLM and NR-MS-NLML filters was evaluated on simulated T2W brain images for three 

different patch sizes. Noise-free, noisy and filtered images are displayed for two different 

TEs. For each TE, the windowing of gray levels was adjusted to compensate for signal loss. 

The windowing of gray levels was identical between different methods to ensure a direct 

comparison between different methods.

b. Absolute error maps calculated from the noise-free and the filtered images obtained using 

the NR-MS-NLM or NR-MS-NLML filters for three different patch sizes. Results are shown 

for TEs that correspond to the images presented in Fig. 3a.
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Fig. 4. 
Performance of NE-LML, NE-NLML, and NE-MS-NLML methods for noise estimation. 

Analyses were performed on in-vivo T2W human brain images. σ and absolute error (AE) 

maps are displayed for two different echo times (TEs). For each method, analyses were 

performed for three different patch sizes. The results clearly demonstrate the superior 

performance of NE-MS-NLML for the determination of σ.

Bouhrara et al. Page 19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Comparison of marginal and multispectral filtering. Comparison of the performance of NR-

NLM, NR-NLML, NR-MS-NLM and NR-MS-NLML filters was performed on in-vivo T2W 

human brain images. Noisy and filtered images are displayed for two different TEs. For each 

TE, the windowing of gray levels was adjusted to compensate for signal loss. The 

windowing of gray levels was identical between different methods to ensure a direct 

comparison between different methods. A zoomed region is displayed for each filter and 

each TE. The results clearly show the superior performance of the NR-MS-NLML filter.
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Fig. 6. 
Evaluation of the effect of patch size on multispectral filtering. The performance of the NR-

MS-NLM and NR-MS-NLML filters was evaluated on in-vivo T2W human brain images for 

three different patch sizes. Noisy and filtered images are displayed for two different TEs. For 

each TE, the windowing of gray levels was adjusted to compensate for signal loss. The 

windowing of gray levels was identical to ensure a direct comparison of different methods.
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Fig. 7. 
Comparison of marginal and multispectral filtering. Comparison of the performance of NR-

NLM, NR-NLML, NR-MS-NLM and NR-MS-NLML filters was performed on in-vivo T1W 

human brain images. Noisy and filtered images are displayed for two different flip angles 

(FA). For each FA, the windowing of gray levels was adjusted to compensate for signal loss. 

The windowing of gray levels was identical to ensure a direct comparison between different 

methods.
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Fig. 8. 
Evaluation of the effect of patch size on multispectral filtering. The performance of the NR-

MS-NLM and NR-MS-NLML filters was evaluated on in-vivo T1W human brain images for 

three different patch sizes. Noisy and filtered images are displayed for two different flip 

angles (FA). For each FA, the windowing of gray levels was adjusted to compensate for 

signal loss.
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