A. Dufresne, Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci, vol.376, 2018.

, Nanomaterials, vol.9, p.321, 2019.

R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, Cellulose nanomaterials review: Structure, properties and nanocomposites, Chem. Soc. Rev, vol.40, pp.3941-3994, 2011.

H. A. Khalil, Y. Davoudpour, M. N. Islam, A. Mustapha, K. Sudesh et al., Production and modification of nanofibrillated cellulose using various mechanical processes: A review, Carbohydr. Polym, vol.99, pp.649-665, 2014.

C. Hii, Ø. W. Gregersen, G. Chinga-carrasco, and Ø. Eriksen, The effect of MFC on the pressability and paper properties of TMP and GCC based sheets, Nord. Pulp Pap. Res. J, vol.27, pp.388-396, 2012.

F. W. Brodin and Ø. Eriksen, Preparation of individualised lignocellulose microfibrils based on thermomechanical pulp and their effect on paper properties, Nord. Pulp Pap. Res. J, vol.30, pp.443-451, 2015.

S. Osong, S. Norgren, and P. Engstrand, Paper strength improvement by inclusion of nano-ligno-cellulose to chemi-thermomechanical pulp, Nord. Pulp Pap. Res. J, vol.29, pp.309-316, 2014.

S. Boufi, I. González, M. Delgado-aguilar, Q. Tarrès, M. À. Pèlach et al., Nanofibrillated cellulose as an additive in papermaking process: A review, Carbohydr. Polym, vol.154, pp.151-166, 2016.

D. O. Castro, Z. Karim, L. Medina, J. Häggström, F. Carosio et al., The use of a pilot-scale continuous paper process for fire retardant cellulose-kaolinite nanocomposites, Compos. Sci. Technol, vol.162, pp.215-224, 2018.

S. Josset, P. Orsolini, G. Siqueira, A. Tejado, P. Tingaut et al., Energy consumption of the nanofibrillation of bleached pulp, wheat straw and recycled newspaper through a grinding process 3D Printing of Cellulose Reinforced Composites View project Porous Nanofibrillated Cellulose Functional Materials View project, Nord. Pulp Pap. Res. J, vol.29, pp.167-175, 2014.

A. Naderi, T. Lindström, and J. Sundström, Repeated homogenization, a route for decreasing the energy consumption in the manufacturing process of carboxymethylated nanofibrillated cellulose? Cellulose, vol.22, pp.1147-1157, 2015.

E. Retulainen, P. Moss, and K. Nieminen, Effect of fines on the properties of fiber networks, Proceedings of the Products of Papermaking, 10th Fundamental Research Symposium, pp.727-769, 1993.

W. Fischer, M. Mayr, S. Spirk, D. Reishofer, L. Jagiello et al., Pulp Fines-Characterization, Sheet Formation, and Comparison to Microfibrillated Cellulose, vol.9, 2017.

N. Odabas, U. Henniges, A. Potthast, and T. Rosenau, Cellulosic fines: Properties and effects, Prog. Mater. Sci, pp.574-594, 2016.

T. Lin, X. Yin, E. Retulainen, and M. Nazhad, Effect of chemical pulp fines on filler retention and paper properties, Appita, vol.60, pp.469-473, 2007.

X. Yin, T. Lin, and M. Nazhad, Influence of Chemical Pulp Fines Origin on Fines Quality, Ippta J, vol.25, pp.83-88, 2013.

M. Backstrom and E. Brännvall, Effect of primary fines on cooking and TCF-bleaching, Nord. Pulp Pap. Res. J, vol.14, pp.209-213, 1999.

A. F. Turbak, F. W. Snyder, and K. R. Sandberg, Microfibrillated cellulose, a new cellulose product: Properties, uses, and commercial potential, Proceedings of the Applied Polymers Symposium, vol.37, pp.815-827, 1983.

S. Kalia, S. Boufi, A. Celli, and S. Kango, Nanofibrillated cellulose: Surface modification and potential applications, Colloid Polym. Sci, vol.292, pp.5-31, 2014.

Y. Davoudpour, S. Hossain, H. P. Khalil, M. K. Haafiz, Z. A. Ishak et al., Optimization of high pressure homogenization parameters for the isolation of cellulosic nanofibers using response surface methodology, Ind. Crops Prod, vol.74, pp.381-387, 2015.

L. Jagiello, Separation and Thickening of Pulp Fibers and Fines in the Lab Scale and Application Thereof, 2017.

M. Mayr, R. Eckhart, and W. Bauer, Improved microscopy method for morphological characterisation of pulp fines, Nord. Pulp Pap. Res. J, vol.32, pp.244-252, 2017.

G. Tovar, R. Fischer, W. J. Eckhart, R. Bauer, and W. , White Water Recirculation Method as a Means to Evaluate the Influence of Fines on the Properties of Handsheets, BioResources, vol.10, pp.7242-7251, 2015.

T. Taipale, M. Österberg, A. Nykänen, J. Ruokolainen, and J. Laine, Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength, Cellulose, vol.17, pp.1005-1020, 2010.

Ø. Eriksen, K. Syverud, and Ø. Gregersen, The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper, Nord. Pulp Pap. Res. J, vol.23, pp.299-304, 2008.

H. Sehaqui, M. Allais, Q. Zhou, and L. A. Berglund, Wood cellulose biocomposites with fibrous structures at micro-and nanoscale, Compos. Sci. Technol, vol.71, pp.382-387, 2011.

G. W. Jackson and D. F. James, The permeability of fibrous porous media, Can. J. Chem. Eng, vol.64, pp.364-374, 1986.

J. Su, W. K. Mosse, S. Sharman, W. J. Batchelor, and G. Garnier, Effect of tethered and free microfibrillated cellulose (MFC) on the properties of paper composites, Cellulose, vol.20, 1925.

T. Zimmermann, N. Bordeanu, and E. Strub, Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential, Carbohydr. Polym, vol.79, pp.1086-1093, 2010.

M. Alcalá, I. González, S. Boufi, F. Vilaseca, and P. Mutjé, All-cellulose composites from unbleached hardwood kraft pulp reinforced with nanofibrillated cellulose, Cellulose, vol.20, pp.2909-2921, 2013.

M. Manninen, I. Kajanto, J. Happonen, and J. Paltakari, The effect of microfibrillated cellulose addition on drying shrinkage and dimensional stability of wood-free paper, Nord. Pulp Pap. Res. J, vol.26, pp.297-305, 2011.

J. Joseleau, V. Chevalier-billosta, and K. Ruel, Interaction between microfibrillar cellulose fines and fibers: Influence on pulp qualities and paper sheet properties, Cellulose, vol.19, pp.769-777, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00720306

J. Juntaro, M. Pommet, G. Kalinka, A. Mantalaris, M. S. Shaffer et al., Creating Hierarchical Structures in Renewable Composites by Attaching Bacterial Cellulose onto Sisal Fibers, Adv. Mater, vol.20, pp.3122-3126, 2008.

E. Afra, H. Yousefi, M. M. Hadilam, and T. Nishino, Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps, Carbohydr. Polym, vol.97, 2013.

T. Kang and H. Paulapuro, Effect of External Fibrillation on Paper Strength, Pulp Pap. Can, vol.107, pp.51-54, 2006.

H. Nanko and J. Oshsawa, Mechanisms of fiber bond formation, Fundamentals of Papermaking

C. F. Baker and V. W. Punton, Mechanical Engineering Publications Limited, pp.783-830, 1989.

C. A. Jentzen, The effect of stress applied during drying on some of the properties of individual pulp fibers, TAPPI J, vol.47, pp.412-418, 1964.

T. Lobben, The tensile stiffness of paper. Part 1: A model based on activation, Norsk Skogindustri, vol.29, pp.311-315, 1975.

F. Wuu, R. E. Mark, and R. W. Perkins, Mechanical properties of cut-out fibers in recycling, Proceedings of the TAPPI 1991 International Paper Physics Conference, pp.663-671, 1991.