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Unexpected and increasingly frequent extreme precipitation events result in soil flooding
or waterlogging. Legumes have the capacity to establish a symbiotic relationship
with endosymbiotic atmospheric dinitrogen-fixing rhizobia, thus contributing to natural
nitrogen soil enrichment and reducing the need for chemical fertilization. The impact
of waterlogging on nitrogen fixation and legume productivity needs to be considered
for crop improvement. This review focuses on the legumes-rhizobia symbiotic
models. We aim to summarize the mechanisms underlying symbiosis establishment,
nodule development and functioning under waterlogging. The mechanisms of oxygen
sensing of the host plant and symbiotic partner are considered in view of recent
scientific advances.
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INTRODUCTION

Global population is expected to reach around 9.6 billion in 2050 (Gerland et al., 2014), leading
to a rise in the demand for food. Food issues are also aggravated by unexpected and increasingly
frequent extreme weather events connected to climate change such as soil flooding or waterlogging,
occurring especially in areas close to watercourses, characterized by poor soil drainage or
exposure to monsoons.

In agriculture, the conversion to alternative, more ecologically sustainable sources is moving
toward productive systems that reduce the input of fertilizers. Nitrogen (N) is one of the most
important nutrients for crops and today a reduction in crop dependence on chemical N fertilization
is essential. This is due to the cascade of environmental changes resulted from the huge increase
of ammonia (NH3) production in the last century, such as water and soil pollution (Erisman
et al., 2008). Legumes are well known for their agronomical and food properties, thanks to
their capacity to establish a symbiotic relationship with endosymbiotic atmospheric dinitrogen
(N2)-fixing rhizobia, thus contributing to natural N soil enrichment and reduced need for chemical
fertilization. These crops are also a key protein resource for human and animal foods.

In legume plant roots, the interaction with rhizobia leads to the development of the nodule
organ, where the nitrogenase enzyme reduces atmospheric N2 to NH3 which is afterward
transferred to and assimilated by the plant. In parallel, the plant provides steady carbon source to
the symbiont and a suitable microenvironment for development (Markmann and Parniske, 2009).
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When selecting stress-tolerant legume crops, the impact of
soil flooding and waterlogging on N2 fixation and legume
productivity need to be considered. This is particularly important
in areas where forage and grain legumes are cultivated on
wetlands or temporarily flooded areas. Legume species differ
markedly in adaptation to flood-prone areas (Striker and Colmer,
2017). Tolerant legume species are generally able to sustain the
oxygen (O2) diffusion path under waterlogging via physiological
adaptation. An increased aerenchyma network in the root and
nodule cortex, the presence of a barrier to radial O2 loss in the
outer root tissues and an increased permeability of the nodule
O2 diffusion barrier (ODB) can facilitate tolerance (Striker
and Colmer, 2017). Metabolic acclimation and the presence
of alternative nodulation strategies are additional adaptation
responses to waterlogging (Roberts et al., 2010).

The aim of this mini review is to explore the mechanisms
underlying legume plant adaptation, symbiosis development and
nodule functioning under waterlogging.

WATERLOGGING EFFECTS ON
PLANT-BACTERIA INTERACTION

Effects of Hypoxia on Nodulation
Successful symbiosis involves an initial cross-talk between plants
and bacteria, with the coordinated expression of genes from
both partners to induce molecular re-programming, which
leads to the development of a nodule (Oldroyd and Downie,
2008). Bacteria sense the plant-derived flavonoids of the root
exudates and produce nodulation factors (named Nod factors),
lipochito-oligosaccharide molecules that participate in bacterial
infection and, when perceived by the plant, trigger the nodule’s
specific developmental program (Dénarié and Cullimore, 1993).

Several studies have considered the waterlogging effect on
nodulation capacity. Hypoxia-sensitive legumes, such as pea
(Minchin and Pate, 1975), alfalfa (Arrese-Igor et al., 1993), and
soybean (Sung, 1993) exhibit reduced nodule weight when grown
under hypoxic conditions. Medicago truncatula nodulation
shows a 45% decrease under 0.1 % O2 but is not affected by
4.5% O2 treatment, and the nodule fresh weight per plant is
not dampened by 4 weeks of hypoxia (El Msehli et al., 2016).
Two studies analyzing nodulation ratings of 21 species of annual
pasture legumes and 13 species of perennial legumes (Nichols
et al., 2008a,b) report that most legume, including waterlogging
sensitive species such as Melilotus albus and Medicago sativa,
showed effective nodulation after several weeks of inundation.
In this context, it is unclear whether the nature of nodule
types may support different mechanisms of dealing with the
stress, considering that indeterminate nodules (Medicago spp.,
Pisum spp., and Melilotus spp.) are characterized by a persistent
meristem and a continuous growth, while determinate nodules
(Glycine spp, Vigna spp, and Lotus spp.) are characterized by a
not persistent meristem and a limited growth potential.

In flood-tolerant legume species, the nodulation process
shows some morphological and physiological adaptations. In
Melilotus siculus, nodules formed during waterlogging stress
have been observed above all on adventitious roots (Konnerup

et al., 2018). Under flooding, Sesbania rostrata, a tropical legume
that grows in temporary flooded habitats (Capoen et al., 2010),
switches from a typical root hair curling (RHC) mechanism
of nodulation to a lateral root based (LRB) one (D’Haeze
et al., 2000; Goormachtig et al., 2004). When grown in aerated
soils, S. rostrata nodulation occurs through the mechanism
of RHC, where bacterial colony is entrapped in growing root
hairs that start to curl. When LRB infection occurs, bacteria
enter at the base of the adventitious or lateral roots where
they form an infection pocket prior to bacteria release into the
nodule primordium.

Interestingly, S. rostrata LRB nodulation requires ethylene
(Goormachtig et al., 2004), whose production is stimulated in
plants by flooding and accumulates under water due to a slow
diffusion. Ethylene inhibitors blocks S. rostrata initiation of
nodulation, since bacterial invasion, infection pocket formation
and nodule primordia were not observed in hydroponic roots
(D’Haeze et al., 2003). Moreover, ethylene is likely involved
together with ROS in inducing the programmed cell death of
cortical cells, which is necessary for the formation of the infection
pocket occurring during crack invasion (D’Haeze et al., 2003).

On the other hand, ethylene accumulation inhibits the RHC
invasion of S. rostrata (Goormachtig et al., 2004). The application
of ethylene biosynthesis inhibitors resulted in an increased RHC
nodulation, while the opposite was observed adding ethylene
precursors (Goormachtig et al., 2004). Indeed, ethylene inhibits
nodulation in several legumes, such as M. truncatula (Penmetsa
and Cook, 1997) and Pisum sativum (Guinel and Sloetjes, 2000).

Effects of Oxygen Availability on Nodule
Functioning
Once inside the forming nodule, bacteria differentiate into
bacteroids, which can fix N2 via the activity of nitrogenase
enzyme, representing the fundamental reaction of the symbiosis
(Roberts et al., 2010). Nitrogenase is inactivated by free O2, thus
N2 fixation is made possible thanks to the microoxic conditions
predominant in the nodules. Furthermore, bacterial genes for
nitrogenase assembly are expressed at low O2 concentration
(Soupène et al., 1995). Nodules have evolved adaptations to
maintain an inner low O2 environment, among which the
presence of the ODB and by expressing O2-carrying symbiotic
plant hemoglobins (Appleby, 1992; Berger et al., 2018). Thus,
the developing nodule shifts from a normoxic state during the
formation of the symbiosis to a microoxic one in mature nodules
(Witty and Minchin, 1990). As a consequence, nodules are
naturally microoxic organs that maintain a low O2 level, while
preserving an active energy production.

The presence of a flexible ODB that regulates the O2 influx
into the infected zone of the nodule was questioned over years.
The ODB is likely composed by cortical boundary layers, matrix
glycoproteins and endodermis modifications, which depend on
the nature of the legume-rhizobia association (Minchin et al.,
2008). Early studies on nodule structure identified the absence of
a physical barrier in the soybean nodules cortex and the presence
of continuous air pathways (Bergersen and Goodchild, 1972;
Sprent, 1972). Subsequently, studies on pea and lupine nodules
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identified few intercellular spaces in the cortical cell layers
and the absence of intercellular space connections within the
nodule infected areas (Dixon et al., 1981). Indeed, occlusion in
intercellular spaces were observed in the inner cortex of soybean
nodule exposed to high O2 level, suggesting the presence of a
flexible mechanism of morphological and structural adaptation
(Serraj et al., 1995).

As underground organs, nodules can be exposed to flooding.
The adaptation of functioning nodules to waterlogging includes
structural and metabolic changes. Several adaptive processes
have been described in nodules, including the tight regulation
of the ODB flexibility, the development of aerenchyma and
the setup of a specific ATP regenerating metabolism under
low O2 level. Hypoxia-tolerant Lotus uliginosus nodules under
flooding showed a lower concentration of matrix glycoproteins
within intercellular spaces of the cortex in comparison with the
sensitive species L. corniculatus (James and Crawford, 1998). This
suggests a hypoxia-dependent mechanism capable to decrease
the occlusions under low O2 availability and finalized to open
air pathways when necessary. Recently, nodules of M. truncatula
exposed to high O2 concentration showed a tightening of the
ODB (Avenhaus et al., 2016). As consequence, the modulation of
the O2 supply to the infected zone may be a key factor of nodule
activity regulation. Under high O2 concentration, after a transient
nitrogenase inhibition, the recovery of nitrogenase was observed
and attributed to flexible ODB (Hunt et al., 1989; del Castillo
et al., 1992; Avenhaus et al., 2016).

A crucial trait for plant survival under waterlogging is the
possibility to develop aerenchyma, in order to provide a path
for O2 diffusion along the roots from the aerated organs above
(Colmer and Voesenek, 2009). The fact that some forage legumes
are sensitive to waterlogging has been attributed to the limited
possibility of O2 flux through aerenchyma to the root nodules
(Arrese-Igor et al., 1993; Pugh et al., 1995; Konnerup et al., 2018).
Some tolerant legumes have developed an extensive network
of aerenchyma tissues, as indicated by the tolerant species
phenotype identified in Table 1.

Given that N2 fixation is sensitive to low O2 condition
occurring under flooding, soybean nodules have shown an
impaired N2 fixation activity when transferred to a hydroponic
solution (Justino and Sodek, 2013; Souza et al., 2016). Under
these conditions, a change in N metabolism (Souza et al., 2016)
and in the export of N2 fixation products in the xylem have
been observed (Amarante and Sodek, 2006). In soybean nodules
under flooding, a reduction in asparagine an accumulation
of γ-aminobutyric acid (GABA) has been detected, which
have been suggested to have a temporary storage role (Souza
et al., 2016). These changes were reversible during recovery.
Under hypoxia, the activation of the alanine metabolism was
observed in waterlogging tolerant L. japonicus root and nodules,
independently of the N status of the plant (Rocha et al., 2010b).
Alanine accumulation was also observed in soybean roots under
waterlogging (Rocha et al., 2010a). Alanine metabolism may be
crucial to prevent pyruvate accumulation in order to facilitate
glycolysis during waterlogging (Rocha et al., 2010b).

A further adaptive mechanism is related to the presence
of hemoglobin-like proteins in the nodules, recently renamed

phytoglobins (Hill et al., 2016). Three types of phytoglobins
(phytoglobin1, leghemoglobin, and phytoglobin3) have been
characterized in legume nodules (Bustos-Sanmamed et al., 2011;
Berger et al., 2018). They are known to buffer O2 concentration
and to scavenge nitric oxide (NO). Hypoxia generates NO in
plants, likely with the presence of a cyclic respiration that
improves the plant’s capacity to tolerate hypoxic stress by
maintaining the cell energy status (Igamberdiev and Hill, 2009;
Gupta and Igamberdiev, 2011). This phytoglobin-NO respiration
(PNR) involves the following phases: nitrate to nitrite reduction
via the activity of nitrate reductase; nitrite translocation from the
cytosol into the mitochondria; production of NO through the
reduction of nitrite at both the cytochrome C oxidase and the
alternative oxidase sites of the mitochondrial electron transport
chain, which allows ATP regeneration; NO movement from the
mitochondrial matrix to the cytosol; and NO oxidation to nitrate
by phytoglobins.

Interestingly, functional nodules of M. truncatula (Baudouin
et al., 2006), Glycine max (Meakin et al., 2007), and L. japonicus
(Shimoda et al., 2009), have been shown to produce NO,
and flooding conditions significantly increases NO production
in soybean (Meakin et al., 2007; Sánchez et al., 2010), and
M. truncatula hypoxic nodules (Horchani et al., 2011). In
M. truncatula nodules, energy status appears to be dependent
on the PNR cycle partly under normoxia and totally under
hypoxia (Horchani et al., 2011). Thus, the functioning of PNR
in microoxic nodules enables the plant to oxidize NADH and to
sustain ATP synthesis also under O2 shortage.

OXYGEN SIGNALING IN PLANT AND
BACTERIAL PARTNERS

Oxygen Sensing in the Plant Partner
The Ethylene Responsive Factor group VII family (ERF-VII)
guides the response to O2 level variations to ensure plant survival
(Gibbs et al., 2011; Licausi et al., 2011). In Arabidopsis, this family
is composed of five transcription factors which all possess an
N-terminal amino acid (N-degron) and Cys residue in the second
position of the protein. ERF-VII proteins are degraded via the
N-end rule-dependent proteasome pathway triggered by Plant
Cysteine Oxidases (PCOs) in an O2-dependent manner (Weits
et al., 2014; White et al., 2017; Figure 1A).

Together with O2, NO destabilizes ERF-VIIs, and a reduction
in the availability of either gasses is sufficient to stabilize
them (Gibbs et al., 2014). The discovery of this O2/NO
sensing mechanism has opened up new possibilities for better
understanding the plant adaptation to low O2 and for improving
flooding tolerance in crops.

An interesting link has been found between Arabidopsis ERF-
VIIs and microorganisms. Infection by the obligate biotroph
Plasmodiophora brassicae, which causes clubroot development
(Gravot et al., 2016), was found to involve ERF-VIIs control.
Subsequent to the identification of fermentation-related genes
induced in infected root galls, the authors suggested that N-end
rule-driven hypoxia responses are a general trait of pathogen-
induced gall growth (Gravot et al., 2016). In the context of
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TABLE 1 | Waterlogging tolerant and sensitive legumes.

Species Treatment Phenotype References

Cicer arietinum, Vicia faba (sensitive) Deoxygenated stagnant solution
(7 days)

Death of root tips Munir et al., 2019

Melilotus siculus accessions (tolerant) Deoxygenated stagnant solution
(7 days)

Root phellem abundance Striker et al., 2019

Lotus tenuis, L. tenuis × L. corniculatus
(tolerant)

Partial submergence stress (55 days) Aerenchyma and adventitious root
formation

Antonelli et al., 2018

Melilotus siculus (tolerant) Waterlogging (21 days) Aerenchymatous phellem in hypocotyl,
roots and the outer tissue layers of
nodules

Konnerup et al., 2018

Pisum sativum (tolerant accessions) Waterlogging (4, 8 days) Successful germination Zaman et al., 2018

Phaseolus vulgaris (sensitive and
tolerant accessions)

Flooding conditions (1, 10 days) Root weight and germination rate traits
associated to flooding tolerance

Soltani et al., 2017

Lens culinaris (sensitive and tolerant
genotypes)

Waterlogging (6 days) Successful germination Wiraguna et al., 2017

Vicia faba (tolerant), Pisum sativum
(sensitive), Lupinus albus (sensitive)

Waterlogging at flowering (0, 5, 10, 15,
20 days)

Better seed yield and biomass of
shoots, roots and nodules in tolerant
genotypes

Pampana et al., 2016

Phaseolus coccineus (tolerant) Flooding (24, 48 hours) Vascular cavity formation Takahashi et al., 2016

Pisum sativum, Lens culinaris and
Lathyrus sativus (sensitive and tolerant
genotypes)

Waterlogging (14 days) High root porosity and unaffected shoot
nitrogen content in tolerant genotypes

Malik et al., 2015

Melilotus siculus accessions (tolerant) Hypoxic saline condition (21 days) Plant ability to regulate ions Striker et al., 2015

Aeschynomene americana (tolerant) Waterlogging (30–40 days) High nitrogenase activity and growth Tobisa et al., 2014

Lotus japonicus recombinant inbred
lines (tolerant)

Waterlogging (21 days) Aerenchyma formation and high
stomatal conductance

Striker et al., 2014

Melilotus siculus (tolerant accessions),
Trifolium michelianum (sensitive), and
Medicago polymorpha (sensitive)

Waterlogging combined to salinity
(5 days)

High root porosity in tolerant genotypes Teakle et al., 2012

Melilotus siculus (tolerant) Stagnant solution (21 days) Aerenchymatous phellem development Teakle et al., 2011

Lotus tenuis (tolerant) Waterlogging (30 days) Shoot elongation Manzur et al., 2009

Vigna radiata (tolerant and sensitive
genotypes)

Waterlogging (4, 8 days) Availability of root sugar reserves in
tolerant genotypes

Sairam et al., 2009

Lotus spp (tolerant and sensitive
genotypes)

Waterlogging (19 weeks) Aerenchyma and adventitious roots
formation in tolerant genotypes

Real et al., 2008

Faba bean, yellow lupin, grass pea,
narrow-leafed lupin, chickpea, lentil,
field pea (tolerant and sensitive
genotypes)

Waterlogging (7 days) Adventitious root and aerenchyma
formation in tolerant genotypes

Solaiman et al., 2007

Lupinus luteus (tolerant),
L. angustifolius (sensitive) reciprocal-
and self-grafted combinations

Waterlogging (14 days) Tolerance influenced by the root
genotype

Davies et al., 2000

Trifolium tomentosum (tolerant) and
T. glomeratum (sensitive)

Hypoxic solution (7–21 days) High root porosity in the tolerant
genotype

Gibberd et al., 1999

pathogenesis, the resistance to the hemibiotrophic pathogen,
Pseudomonas syringae pv tomato has been shown to involve ERF-
VIIs substrates to regulate pathogen-induced stomatal closure in
Arabidopsis (Vicente et al., 2018).

To date, no data are available on the ERF-VIIs role in N2-fixing
symbioses in legumes. In fact, the genome of M. truncatula
(version Mt4.01 ) harbors four genes that belong to the ERF-VIIs
group (Boscari et al. (2013), personal communication), and
phylogenetic analysis revealed the presence of ERF-VIIs in the
G. max genome (Licausi et al., 2011). These ERF-VIIs harbor
the conserved N-terminal degron, which suggests their control

1http://www.medicagogenome.org/home

by O2 levels. A previous RNA-Seq analysis of M. truncatula
during the symbiotic interaction with Sinorhizobium meliloti
showed that ERF-VII genes are expressed in both roots and
nodules (Boscari et al., 2013), where they may be crucial
under microoxic conditions. ERF-VIIs might be an excellent
candidate for deciphering O2 perception and NO signaling in
N2-fixing symbioses. Indeed, interesting aspects are related to the
possible targets of ERF-VIIs in nodule, which may be involved
in morphological and metabolic adaptations in the microoxic
nodule niche and under environmental hypoxia. In particular,
speculation can be done on the possible role of ERF-VIIs on the
metabolic modification in order to supply ATP under O2 scarcity
and on the regulation of the ODB flexibility to different O2
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FIGURE 1 | The main O2-sensing pathways described in plants (identified in Arabidopsis and hypothesized to be present in M. truncatula) and S. meliloti N2-fixing
bacteria. (A) In Arabidopsis, the Cys branch of the N-end rule pathway for protein degradation allows the O2-dependent regulation of gene expression (Licausi et al.,
2013). ERF-VIIs are a class of transcription factors characterized by a conserved N-termini (N-degron) in which Cys2 determines the protein’s fate in response to O2

level inside the cell. In aerobic conditions (left), ERF-VIIs are unable to activate the transcription of anaerobic genes. In these conditions, Met Aminopeptidase
(MetAP) removes the N-terminal Met, and PCOs oxidize the resulting exposed Cys (C∗) (Weits et al., 2014; White et al., 2017). After arginylation by Arginyl
Transferases (ATE1-2), an Ubiquitin Ligase (PRT6) identifies the proteins as a degradation substrate for the 26S proteasome. Under O2 deficient conditions (right),
the efficiency of ERF-VIIs oxidation is dampened, allowing the stabilization and translocation into the nucleus to finally induce a set of anaerobic genes (Kosmacz
et al., 2015), with Arabidopsis RAP2.2 and RAP2.12 playing a major role in comparison to the other ERF-VIIs (Bui et al., 2015). This also happens through fine
regulation controlled by the Hypoxia Response Attenuator (HRA1), which antagonizes RAP2.12 through a feedback mechanism that enables a flexible response to
different levels of O2 availability (Giuntoli et al., 2014, 2017). The cis-regulatory element Hypoxia Responsive Promoter Element (HRPE) has been identified as being
enriched in some hypoxia-responsive genes (Gasch et al., 2016). (B) FixL-FixJ two-component regulatory system in S. meliloti symbiotic bacteria regulates the
expression of nif and fix gene clusters in an O2-dependent way. In free-living bacteria (left), FixL is inhibited by the binding of O2 to the heme moiety inside the PAS
domain. By establishing symbiosis with the plant, nodule formation gives rise to a microoxic environment surrounding the microbial cells (right). In turn, FixL is
activated by auto-phosphorylation and transfers the phosphoryl group to the FixJ transcriptional activator, thus regulating nif and fix genes expression.

level. Furthermore, it would be of interest to understand whether
ERF-VIIs nodule targets may be involved in plant interaction
with bacteria during the infection and the N fixation process.

The FixL-FixJ Bacterial Two Component
System
In N2-fixing rhizobia, the nitrogenase expression needs to be
tightly regulated in response to changing O2 concentrations, due

to the fact that O2 irreversibly inhibits the enzyme activity (Poole
and Hill, 1997). The fine-tuning of nitrogenase related genes
expression and the compartmentalization of the enzyme inside
the nodule are thus prerequisites for an efficient N2 fixation
(Soupène et al., 1995).

The induction of the N2-fixing gene cluster in S. meliloti
and other symbiotic bacteria is regulated by a two-component
system composed of the O2-sensing histidine kinase FixL
and the response transcriptional regulator FixJ (Figure 1B;
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De Philip et al., 1990; Bobik et al., 2006). In S. meliloti, FixL
is a protein composed of four transmembrane helices and a
cytoplasmic region comprising a heme-containing Per Arnt
Sim (PAS) domain and a C-terminal histidine kinase domain
(Monson et al., 1992). The O2 sensing relies on the PAS domain
(Gilles-Gonzalez, 2001), which is a widespread sequence found
in bacterial (Green and Paget, 2004), animal (Adaixo et al., 2013),
and plant (Christie et al., 2002) proteins. Oxygen exerts a negative
regulation on FixL through interaction with the PAS domain.

The formation of a microoxic environment hampers
the inhibitions that O2 exerts on FixL, and activates the
reversible autophosphorylation of a His residue in the FixL
kinase domain. Phosphorylated FixL transfers the phosphoryl
group to the signal transducer, FixJ, whose phosphorylation
status induces the transcription of the nif and fix gene
clusters involved in nitrogen fixation and respiration (Reyrat
et al., 1993; Bobik et al., 2006), via the activation of two
intermediary regulatory genes, nifA and fixK. Interestingly,
in S. meliloti, Meilhoc et al. (2010) identified about 100
genes up-regulated by NO, among which 70% have been
described to be induced by microoxia (Bobik et al., 2006)
and regulated through the FixL-FixJ system. NO present in
nodules could serve as a signal to activate the FixL-FixJ system
(Meilhoc et al., 2010).

CONCLUDING REMARKS

The study of symbiotic models in response to waterlogging can
help in deciphering the mechanism that may be crucial for the
isolation of tolerant legume crop species and varieties in the field.
The steps in signal exchange for the mutual recognition, nodule

organogenesis and efficient N2 fixation under waterlogging are
crucial aspects of the symbiosis. It would thus be of interest
to decipher whether the sensing of O2 shortage in plant can
(i) modify the perception of the partner during the symbiotic
establishment, (ii) influence the nodule development, and (iii)
affect the functioning of the nitrogenase enzyme in the bacteroid.
These aspects may be further influenced by the high level of NO
encountered in the nodule organ, which is involved, together
with O2, in ERF-VIIs degradation. At the same time, the PNR
cycle may offer an alternative way to produce energy under
O2 shortage. A detailed analysis of these steps would help in
finding interesting solutions for marginal land cultivation with
waterlogging tolerant legumes capable of fixing N2 where limited
O2 is available.
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