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Abstract

Background: Understanding the age-structure of mosquito populations, especially malaria vectors such as
Anopheles gambiae, is important for assessing the risk of infectious mosquitoes, and how vector control
interventions may impact this risk. The use of near-infrared spectroscopy (NIRS) for age-grading has been
demonstrated previously on laboratory and semi-field mosquitoes, but to date has not been utilized on
wild-caught mosquitoes whose age is externally validated via parity status or parasite infection stage. In
this study, we developed regression and classification models using NIRS on datasets of wild An. gambiae
(s.l.) reared from larvae collected from the field in Burkina Faso, and two laboratory strains. We compared
the accuracy of these models for predicting the ages of wild-caught mosquitoes that had been scored for
their parity status as well as for positivity for Plasmodium sporozoites.

Results: Regression models utilizing variable selection increased predictive accuracy over the more common full-
spectrum partial least squares (PLS) approach for cross-validation of the datasets, validation, and independent test sets.
Models produced from datasets that included the greatest range of mosquito samples (i.e. different sampling locations
and times) had the highest predictive accuracy on independent testing sets, though overall accuracy on these samples
was low. For classification, we found that intramodel accuracy ranged between 73.5–97.0% for grouping of mosquitoes
into “early” and “late” age classes, with the highest prediction accuracy found in laboratory colonized mosquitoes.
However, this accuracy was decreased on test sets, with the highest classification of an independent set of wild-caught
larvae reared to set ages being 69.6%.

Conclusions: Variation in NIRS data, likely from dietary, genetic, and other factors limits the accuracy of this technique
with wild-caught mosquitoes. Alternative algorithms may help improve prediction accuracy, but care should be taken
to either maximize variety in models or minimize confounders.
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Background
Knowledge of the age structure of mosquitoes is critical
to understand the spread of vector-borne disease.
Anopheles gambiae, the major vector of malaria-causing
Plasmodium spp. parasites, must undergo a 10–12 day
extrinsic incubation period (EIP) during which a parasite
develops into the human-infectious sporozoite stage and
invades the salivary glands [1]. A large portion of the

mosquito population is therefore unable to spread para-
sites, and very old mosquitoes are disproportionately im-
portant to the transmission cycle. Recent work has
brought about the idea of “evolution-proof” insecticides
that preferentially target older age classes of mosquitoes
that have already exhausted most of their reproductive
potential, but are at the peak of their disease-
transmission potential [2]. Functionally, this approach
can be performed through the use of existing insecti-
cides in lower doses that would only be fatal to older,
infection-stressed adults, or through fungal or biological
control measures that shorten life or are disproportion-
ately effective against older mosquitoes [3–6]. Rapidly
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assessing population-level age-structure is critical to
evaluating the efficacy of these and other control en-
deavors, but there currently are limited tools available to
do so [1].
Mosquito age-structure classifications have most often

relied on female ovary dissections, especially characteriz-
ing the status of ovarian tracheoles [7, 8]. If a mosquito
has not yet undergone a gonotrophic cycle (nulliparous),
the tracheoles tend to be in tightly coiled “skeins.” How-
ever, if the tracheoles are unraveled, follicular develop-
ment and oogenesis has likely occurred at least once
(parous). This methodology has been utilized widely as
it is a relatively simple dissection procedure, though it
results in a coarse metric of age because many mosqui-
toes, particularly An. gambiae, become parous early in
life. Thus, this method can only distinguish the very
young from all other age classes. Further, this technique
can be confounded by indeterminate ovaries due to an
opaque residue after dissection, and ovaries that have a
mix of coiled skeins and unraveled tracheoles on differ-
ent ovarioles [9]. A subsequent dissection technique was
developed by Polovodova [10, 11] that counts the ovar-
ian dilations (relics of past egg batches) that can be
found on the distal end of the ovariole. This technique is
very technically demanding, requiring an injection of
paraffin oil into the ovaries via the oviduct, and delicate
removal of the ovary without damage [12]. Few re-
searchers have successfully used this technique due to
these limitations [13–15], and others have indicated that
even when done successfully, the approach is flawed be-
cause of the presence of “rogue” ovarioles that indicate a
gonotrophic cycle that did not occur [16, 17]. These
non-diagnostic ovarioles increase in their frequency as
the mosquito ages, and can also be confounded by tak-
ing multiple blood meals between age batches [18, 19].
All dissection approaches are also limited by the speed
of the dissection, making high throughput processing
difficult [20].
A range of alternative chemical and molecular ap-

proaches have been considered to address these limita-
tions, including detection of fluorescent pteridines [21],
changes in the ratio of cuticular hydrocarbons [22], tran-
scriptomic variation [23], proteomic analysis [24], and
recently the use of near-infrared spectroscopy (NIRS)
[25]. NIRS is a fast and non-destructive technique that
detects changes in the diffuse reflection of light within
the near-infrared spectrum (780–2500 nm) due to the
rotation, bending and stretching of C-H, N-H, O-H and
other bonds [26]. This technique was first utilized for
the study of moisture content of various grain species,
but has recently been used with insects [26–29].
Mayagaya et al. [25] applied this approach to classify An.
gambiae (s.l.) as young (< 7 days old) and old (≥ 7 days),
and to identify them into An. arabiensis and An.

gambiae (s.s.). Subsequently, this approach has been uti-
lized with mosquitoes reared in semi-field enclosures
and on some wild-caught adults, though importantly
these wild-caught adults were not characterized by other
methods (i.e. parity dissection or sporozoite analysis)
[19, 30–32]. NIRS age-grading has demonstrated some
robustness, with accuracy remaining consistent with
varying developmental status (i.e. oviposition) [19].
However, species diversity, diet, physiological status, and
rearing temperature may alter the accuracy of NIRS-
based age grading techniques [19, 33–35]. These studies
have found that the inclusion of a higher number of
these variables in calibration models increases overall
prediction accuracy when applied to varied test sets.
Lacking, to date, is an evaluation of NIRS’s age-

grading ability with wild-caught vectors compared to
classical measures of age-classification as external valida-
tors of age (parity status and the presence of sporozoites
in the salivary gland). With a combination of these two
independent measures, NIRS-predicted ages can be
compared to known nulliparous (assumed young), par-
ous (assumed mid-to-old), or sporozoite positive (known
old) wild mosquitoes to validate and assess the accuracy
of this methodology. In this study, we performed such
an evaluation, using calibration datasets of An. gambiae
(s.l.) generated from both laboratory colonies and wild
larvae collected in the field to predict age classes with
the above external validators.

Methods
Mosquito rearing
Two strains of laboratory-reared An. gambiae mosquitoes
were utilized in this study: “CSU-IRSS” and “CSU-G3.”
An. gambiae (s.s.) strain “CSU-IRSS” mosquitoes were re-
cently colonized from field-caught larvae collected in
southwestern Burkina Faso by the Institut de Recherche
en Sciences de la Santé (IRSS), shipped to Colorado State
University (CSU). Anopheles gambiae strain “CSU-G3”
mosquitoes were originally colonized in 1975, and have
been in colony at CSU for hundreds of generations [36].
Both colony strains were reared at 28 ± 2 °C and 80% hu-
midity under a 14:10 light:dark photoperiod. Larvae were
hatched in 15 l of tap water with ground Tetramin® fish
food supplementation in 44-l bins.
Field-caught larvae were collected in the rainy season of

2013 and 2014 in natural pools in southwestern Burkina
Faso around Soumousso (Latitude 11.01681, Longitude
-4.052893), Kodeni (11.166667, -4.250000), Bougouriba
(10.9313363, -3.6667348), and Diarkadougou
(10.9014352, -3.5514027) with a mosquito dipper.
Larvae and their collection water were placed in plastic
water bottles and transferred to Bobo-Dioulasso,
Burkina Faso (11.1727, -4.3304). They were placed into
44-l bins with water from the sources they were
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collected in for rearing, and kept outside under a
shaded roof which exposed them to the natural variation
of humidity and temperature present in the region.
Adult mosquito groups of roughly 100 per time point

from both the laboratory and field were collected in
24 h emergence periods (day 0). They were separated via
aspiration (InsectaZooka field aspirator - BioQuip Prod-
ucts, Rancho Dominguez, CA, USA), and placed in con-
tainers with a cotton ball soaked in 10% sucrose and
water provided ad libitum. These mosquitoes were held
for either 3, 6, 9, 12 or 15 days prior to scanning. Blood
meals were offered via the arm of a human volunteer in
compliance with the Helsinki Declaration (Colorado
State University Institutional Review Board approval
#09-1148H) at day 2 post-emergence, and the evening
prior to their designated scan day (12–18 h later). Mos-
quito numbers of those successfully blood-fed in each
calibration set are listed in Additional file 1: Table S1.
Prior to scanning, all adult mosquitoes were classified
under light microscopy to species by taxonomic key
[37]. Samples kept for each dataset were based on collec-
tion amounts for each day. In general, sample sizes were
held to 40 samples per time point in an effort to make
the sample sizes equal across all days. In some instances
this was impossible due to low sample numbers; in these
cases all samples were held to a similar value (i.e. ~32
per time point in DS2).

Near-infrared spectroscopy/scanning
At days 3, 6, 9, 12 and 15, mosquitoes were killed with
triethylamine or chloroform before scanning (for all
strains except CSU-G3). CSU-G3 were killed via freezing
at -20 °C for approximately 30 min, and then left for an-
other 30 min to equilibrate to room temperature (~25 °C).
Our NIRS set-up and data processing largely follows pre-
viously published methodology [25]. Mosquitoes were
placed on their dorsal side on a spectralon plate, and their
head/thorax was scanned with a LabSpec4i spectrometer
with a 3 mm bifurcated reflectance probe at a height of
3 mm (#ASD-135320-RevE - ASD Inc., Boulder, CO,
USA). We centered the scan on the head/thorax to limit
the effects of the blood meal itself on the spectra, though
note there are significant changes to protein expression
and other factors with blood-feeding [38]. The software
was set to take 20 spectra from each mosquito which it
stores as an average spectrum. Absorbance values are re-
corded from 350 to 2500 nm. All scanning was performed
within 6 h of the end of collection, with mosquitoes being
kept alive until immediately prior to knock down/scan-
ning. Delays between collection times and scanning are
due to travel time, and should have no differences be-
tween groups. All field samples were scanned indoors in
Bobo Dioulasso, Burkina Faso, and all laboratory samples
were scanned indoors at Colorado State University. No

preservation approaches were utilized as mosquitoes were
scanned shortly after collection and immediately after they
were killed.

Data analysis and model creation
Spectra were converted to text using ViewSpec Pro ver-
sion 6.2 (ASD Inc.) as wavelength vs Log(1/R). Spectra
were manually viewed using the IQ Predict software,
and any spectral profiles that lacked distinct absorbance
peaks due to poor positioning or poor quality of the spe-
cimen were discarded from analysis (0–3.9% of samples
depending on dataset). Six different sample sets were
created (Additional file 1: Table S1) to represent a range
of collection locations and groupings. These included
two datasets that were combinations of field mosquito
datasets (DS5) and field mosquito datasets plus the re-
cently colonized strain dataset (DS6). The CSU-G3 data-
set (DS4) was left out of these mixed datasets due to the
difference in knockdown technique (freezing vs chemical
anesthesia). Only the region from 500 to 2350 nm was
utilized in analyses to remove regions of poor sensor
sensitivity, and all spectra were pre-processed via mean
centering using the ‘caret’ package in R version 3.3.2
using the RStudio 1.0.44 [39–41].
A range of regression (providing numeric values) and

classification (grouping into a descriptive class of age of
‘young’ or ‘old’) algorithms were utilized for sample
analyses (see Table 1 for a list of all algorithms used).
Additionally, we included the use of full-spectrum PLS
as it has been most commonly utilized for the age-
grading of insect species. All algorithms are assessed for
accuracy using the root mean squared error metric
(RMSE), which allows for assessment of overall predictive
accuracy in a value with interpretable units (i.e. “days”).
The partial least squares (PLS) [42], support vector ma-
chine using a linear kernel (svmLinear) [43], and oblique
random forest (ObliqueRF) [44] algorithms were

Table 1 Algorithms used in analysis

Algorithm Used for
regression or
classification?

Outlier
detection?

Variable
selection?

Partial Least Squares (PLS) Both No No

interval PLS (iPLS) Regression No Yes

ensemble PLS with feature
selection (enPLS)

Regression Yes Yes

Model Adaptive Space
Shrinkage - PLS (MASS)

Regression Yes Yes

Variable Combination
Population Analysis (VCPA)

Regression No Yes

Support Vector Machine-
Linear Kernel (svmLinear)

Both No No

Oblique Random
Forest - Ridge (ORF)

Classification No No
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implemented using the ‘caret’ package. The number of la-
tent variables (nLV) used in PLS models was chosen based
upon the lowest root mean squared error of 5-fold cross-
validation with a maximum of 10 latent variables. The pa-
rameters for svmLinear and ObliqueRF were tuned using
the adaptive resampling search in ‘caret’. The interval PLS
(iPLS) [45, 46] algorithm was implemented using the
‘mdatools’ package [47]. This method uses intervals of
60 nm across the full spectra (500–2350 nm), maximizing
accuracy while keeping the fewest intervals possible based
on Wold’s R criterion. The ensemble PLS (enPLS)
algorithm with variable selection was performed using the
‘enpls’ package in R [48]. In enPLS, the most informative
wavelengths were chosen via Monte-Carlo uninforma-
tive variable elimination as in Cai et al. [46, 49, 50]
(Additional file 2: Figure S1). Additionally, two meth-
odologies were analyzed that use the model popula-
tion analysis framework for chemometrics [51], in
which sub-regression models are created to analyze
the importance of variables (wavelengths) and samples
(to evaluate outliers).
The first, Model Adaptive Space Shrinkage-PLS (MASS)

provides simultaneous variable selection and outlier detec-
tion, and was implemented in MATLAB R2015a (The
MathWorks, Inc., Natick, Massachusetts, USA) using
author-provided code with 10-fold cross-validation [52].
Variable Combination Population Analysis (VCPA) which
provides more aggressive variable selection, was also im-
plemented in MATLAB with author provided code and 5-
fold cross-validation [53]. The results of the root mean
squared error of calibration (RMSEC, the self-prediction
of the full dataset), the root mean squared error of cross-
validation (RMSECV, the average prediction of 5 or 10-
fold cross-validation where 80 or 90% of the model pre-
dicts the 20 or 10% left out that allows for parameter tun-
ing to improve prediction), the root mean squared error
of validation (RMSEV, the error of prediction of the 20%
of the spectra left out prior to model creation that the pa-
rameters are not tuned on), and the root mean squared
error of prediction (RMSEP, the error of a fully independ-
ent test set collected on different days) are presented for
all the regression models presented.
Finally, we included three classification-based models

(classifying mosquito ages of 3 and 6 days as “young”
and days 9, 12 and 15 as “old”). This was done to recap-
itulate the < 7 or > 7 day grouping method used in other
mosquito-age prediction NIRS literature [25]. These al-
gorithms were chosen to compare the more commonly
utilized algorithm (PLS), an alternative linear classifier
(svmLinear), and a tree-based classifier reported to have
success with spectral data (ObliqueRF) [54].
All R and MATLAB code and unprocessed spectral

files are available for download at the link provided in
the “Availability of data and materials” section below.

Validation and independent test sets
Validation sets (Additional file 3: Table S2) were created
by choosing ~20% of the spectra to leave out of the
training set prior to model creation using the “Pick me!”
random file selection software (Matías Nahuel Carballo)
[55]. As above, we attempted to hold sample sizes
consistent across days. Means for each day were
calculated and analyzed via an analysis of variance
(ANOVA) test with Tukey’s multiple comparisons ad-
justment with GraphPad Prism v6.1 (GraphPad Software,
San Diego, CA). Classification models were tested using
Acc > NIR metric of McNemar’s Chi-square test in the
‘caret’ package.
Independent test sets (Additional file 4: Table S3) were

utilized to determine overall prediction accuracy on a
non-biased sample set [25]. These samples were consid-
ered to be independent as they were reared separately,
and were from unique collection days and/or locations
relative to samples in the calibration dataset [35, 56].
This independence distinguishes them from validation
sets. Independent test set 1 (ITS1) was comprised of
adults reared with access to sugar and human blood
meals after being collected from various larval sources
from Burkina Faso in 2013 and 2014 and held for the re-
corded amount of time post-eclosion; thus the exact ages
are known. Due to limited collection numbers and sur-
vivorship, the day 15 group is not included in ITS1.
Independent test sets 2 and 3 (ITS2, ITS3) were com-

prised of adult mosquitoes caught via indoor aspiration
or by a human baited tent-trap and were noted for
blood-fed status, scanned, parity dissected (see below),
and stored in individual 1.5-ml tubes containing t.h.e.
100% indicating silica gel desiccant beads (#EM-
DX0017–1, EMD Millipore, Billerica, MA, USA) for
sporozoite analysis (see below) [57, 58]. ITS3 consisted
of the nulliparous compared to the parous mosquitoes,
while ITS2 consisted of the nulliparous mosquitoes com-
pared to the sporozoite positive mosquitoes. Accuracy
for classification algorithms for ITS1–3 is based on
whether or not the model successfully classified
mosquitoes < 7 days old or that are nulliparous as “early”
or mosquitoes > 7 days old, parous, or sporozoite posi-
tive as “late.” This classification is not based on physio-
logical status, but rather the age or predicted age of
these groups.
To test the role blood-fed status has on model predic-

tion, an additional split of DS6 was performed into non-
blood-fed and blood-fed mosquitoes, comparing these
models to only members of TS1-TS3 that match their
blood-meal status.

Parity dissection and sporozoite analysis
For an externally validated test set, groups of approxi-
mately 20 wild adult mosquitoes per day were caught via
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aspiration in the villages of Bougouriba and Diarkadou-
gou, Burkina Faso in 2013 and were dissected to assess
parity status via Detinova’s method under light micros-
copy [8, 59]. A random selection of these samples was
then created based on the number of samples collected
for each class (Additional file 4: Table S3). From the
saved head/thorax, DNA was extracted with the 96-well
format DNeasy Blood and Tissue Kit (#69504, Qiagen,
Hilden, Germany), and analyzed for the presence of
Plasmodium spp. sporozoites via Taqman quantitative-
Polymerase Chain Reaction (qPCR) [60].

Results
Feature/variable selection and outlier detection
Four of the methods investigated reduced the variable
space from the maximum 1851 spectral wavelengths (i.e.
500–2350 nm) via a range of approaches. VCPA had the
most aggressive selection approach, reducing the vari-
able space to 10–12 wavelengths. MASS tended to keep
the largest number of variables of these selection
methods (140–482 wavelengths) (Table 2). In general,
the region from 500 to 1000 nm was represented most
heavily in the majority of datasets, though few wave-
lengths or sets of wavelengths were consistent between
all algorithms or datasets (Fig. 1). However, while the
iPLS predictions for datasets 3 and 4 chose the same
interval as having the lowest RMSE value in cross-
validation (740–799 nm), there was no ability of these
models to predict each other (data not shown). In gen-
eral, the prediction accuracy of the feature reduction
methodologies was higher than that of PLS, though not
necessarily other full-spectra prediction algorithms such
as svmLinear (Table 2).
Outlier detection was available in two of the six meth-

odologies investigated. Few outliers were marked by ei-
ther method, with a maximum of 3.03% removed in
dataset 6 with enPLS (Table 2). Methodologies with
outlier detection did not appear to have an obvious in-
crease in prediction accuracy over other methods with
our datasets.

Accuracy of calibration, cross-validation, and validation
set prediction
Calibration sets allow for an initial assessment of model
fit, and for a value to compare cross-validation accuracy
to have an indication of overfitting. If not generated na-
tively via the algorithm, this value was not presented
(svmLinear). Of the other five algorithms, enPLS had the
lowest RMSEC for each of the 6 datasets, followed by
MASS. In cross-validations, the root mean squared error
varied from 1.05–3.50 days depending on the dataset
and algorithm used (Table 2). Additionally, the R2 value,
calculated based on the actual vs predicted values for
each of the ages, followed the RMSE (i.e. lower RMSE

has higher R2). The highest errors were predominantly
found in the multi-source datasets (DS5 and DS6), likely
due to the increase in genetic variation and sampling lo-
cations included in these sets. Of the six algorithms in-
vestigated, PLS was the least accurate, having the highest
root mean squared errors among algorithms in the
cross-validation testing set (Table 2). The most accurate
algorithm for cross-validation sets was enPLS for 5 of 6
sets tested. The root mean squared error of the valid-
ation set was lowest for the enPLS model for 3 of 6 data-
sets. In general, the validation sets tended to have over-
predicted ages of younger mosquitoes (+4.54 and
+1.93 days for day 3 and day 6 with PLS dataset 6, re-
spectively) (Fig. 2), though this difference was reduced
by the ensemble PLS algorithm (+2.50 and +1.00 days).
Older mosquitoes tended to be slightly under-predicted
(-1.78 days for day 12, -2.62 for day 15, -3.00 for day 16
with PLS; -0.65 for day 12, -0.67 for day 15, and -1.08
for day 16 with SVM). These under/over-prediction
trends follow what has been reported previously with
age-classification of insects with NIRS [25, 33, 34]. Clas-
sification algorithms accurately grouped validation sets
at a minimum of 70.7% to a maximum of 98.0% correct-
ness (Table 3). For dataset 6, accuracy was highest with
Oblique Random Forest and svmLinear (85.4% and
83.7% classified correctly, respectively).

Accuracy on independent test set 1
Independent test set 1 consisted of 69 mosquitoes
collected as wild-caught larvae, with 57 of 69 being
fully or partially blood-fed. Accuracy for the three
independent test sets varied considerably based on
which set and model was used. The lowest root mean
squared error of prediction for independent test set 1
was with the VCPA model built on dataset 6 (Table
2). This level of error allowed for discrimination be-
tween young and old mosquito ages (3 and 6 com-
pared to 9 and 12 days post-emergence), though this
difference was only significant between Days 3 to 12,
6 to 9, and 6 to 12 via Tukey’s multiple comparisons
test. This was predominantly due to an over-
prediction of Day 3 mosquitoes (+4.15 days) and an
under-prediction of Day 12 mosquitoes (-2.43 days).
The regression model with the clearest delineation
between young and old mosquitoes from the inde-
pendent test set was the ensemble PLS model created
from dataset 6 (Fig. 3b). With classification algo-
rithms for independent test set 1, the svmLinear
model had the best accuracy (Table 3). Misclassifica-
tion (being classed as “old” for days 3 and 6 or
“young” for days 9 and 12) was spread relatively
evenly across days (37.5% misclassified Day 3, 29.6%
Day 6, 15.4% Day 9, and 38.1% Day 12).

Krajacich et al. Parasites & Vectors  (2017) 10:552 Page 5 of 13



Table 2 Calibration, cross-validation, validation and independent test set 1 (ITS1) results for each algorithm on the 6 datasets
Dataset Samples No. var RMSEC R2Cal RMSECV R2CV LV RMSEV RMSEP-ITS1

Dataset 1

PLS 178 1851 2.68 0.55 3.16 0.39 10 2.90 3.88

iPLS 178 180 2.41 0.64 2.92 0.55 10 2.97 5.52

enPLS 175 400 1.71 0.82 2.04 0.74 na 2.62 7.01

MASS 173 258 2.00 0.74 2.28 0.66 10 2.93 4.04

VCPA 178 11 2.36 0.65 2.52 0.60 10 3.11 4.64

svmLinear 178 1851 na na 2.83 0.59 na 2.70 4.29

Dataset 2

PLS 156 1851 1.85 0.83 2.28 0.74 10 2.71 4.08

iPLS 156 120 1.54 0.93 1.20 0.90 10 2.41 3.88

enPLS 152 300 0.81 0.97 1.05 0.95 na 1.89 4.19

MASS 153 385 0.87 0.96 1.10 0.94 10 2.41 4.33

VCPA 156 10 1.88 0.82 2.08 0.78 10 2.49 3.29

svmLinear 156 1851 na na 1.89 0.81 na 2.13 4.60

Dataset 3

PLS 160 1851 2.05 0.80 2.61 0.70 10 2.85 5.53

iPLS 160 60 1.97 0.81 2.41 0.78 10 2.29 5.61

enPLS 158 350 0.76 0.97 1.44 0.90 na 1.96 4.29

MASS 158 441 1.24 0.93 1.59 0.88 10 2.06 4.17

VCPA 160 10 1.95 0.82 2.05 0.80 8 2.55 3.40

svmLinear 160 1851 na na 1.94 0.82 na 2.23 3.76

Dataset 4

PLS 200 1851 2.10 0.76 2.60 0.64 10 2.43 5.18

iPLS 200 60 1.71 0.84 2.17 0.80 10 2.41 4.05

enPLS 195 350 0.85 0.96 1.32 0.90 na 1.49 3.56

MASS 196 140 1.55 0.87 1.78 0.82 10 1.98 3.95

VCPA 200 11 2.28 0.71 2.39 0.69 7 2.72 6.44

svmLinear 200 1851 na na 1.99 0.77 na 1.74 4.32

Dataset 5

PLS 334 1851 2.94 0.50 3.16 0.43 10 3.42 3.57

iPLS 334 180 2.50 0.64 2.76 0.58 10 2.72 6.70

enPLS 330 200 1.77 0.82 2.07 0.75 na 3.10 4.69

MASS 329 466 2.20 0.71 2.36 0.67 10 3.10 3.67

VCPA 334 12 2.82 0.54 2.89 0.51 8 3.70 4.79

svmLinear 334 1851 na na 2.66 0.63 na 2.81 3.70

Dataset 6

PLS 494 1851 3.24 0.43 3.50 0.34 10 3.29 3.43

iPLS 494 120 3.21 0.44 3.36 0.41 8 2.99 5.01

enPLS 479 300 1.76 0.83 2.21 0.73 na 2.77 3.33

MASS 492 482 2.58 0.64 2.83 0.56 10 3.08 2.96

VCPA 494 10 3.43 0.47 3.15 0.46 10 3.43 2.48

svmLinear 494 1851 na na 2.68 0.61 na 2.78 3.49

Note: eEach of the six datasets were used to generate models using six regression algorithms. The root mean squared error (RMSE) is presented for
the calibration, cross-validation and validation sets, and independent test set 1. This measure (with units of “days”) allows for an approximation of
how much error is present across the range of ages present in each dataset
Abbreviations: No. of var. number of variables used, RMSEC root mean squared error of calibration, R2Cal coefficient of variation of calibration, RMSECV root
mean squared error of cross-validation, R2CV coefficient of variation of cross-validation based on the actual vs predicted ages of the average of the 5 or 10
fold cross-validation, LV number of latent variables used in PLS regression (if applicable), RMSEV root mean squared error of validation set, RMSEP-ITS1 root
mean squared error of prediction for independent test set 1, na not available for RMSEC/ R2Cal values (was not calculated natively in the implementation of
svmLinear) or not applicable for LV (due to use of ensemble models in enPLS and not used in support vector machines)
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Accuracy on externally validated independent test sets
(independent test sets 2 and 3)
In total, 40 nulliparous, 39 parous, and 40 sporozoite
positive (all P. falciparum) An. gambiae were used for
independent test sets. These numbers were chosen to
roughly keep classes the same size, with the sporozoite

positive samples being the limiting sample set (due to a
1.5–5.1% sporozoite positive rate in samples tested) [58].
Of these, 28/40 of the nulliparous are non-blood-fed,
27/39 of parous are non-blood-fed, and 8/40 of the
sporozoite positive are non-blood-fed (Additional file 5:
Table S4). As these are field mosquitoes caught as

Fig. 1 Averaged spectra per dataset, and wavelengths utilized by variable selection approaches. Datasets 1–6 are displayed in panels a–f,
respectively. Wavelengths selected by the four algorithms are represented by the tick marks under the spectral profile

Fig. 2 Predicted vs actual age for NIRS validation set 6 (VS6) with two models. Partial least squares (a) and ensemble partial least squares (b) are
displayed. 25–75% confidence (box) and 5–95% confidence intervals (whiskers) are marked. Groups with statistically different means (P < 0.05) via
ANOVA with Tukey’s multiple comparisons adjustment are marked with different letters
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Table 3 Classification model accuracy for cross-validation, validation, and independent test sets. The classification accuracy, i.e. was a
mosquito whose actual age was less than 7 days of age or greater than 7 days of age predicted as “young” or “old,” respectively in
cross-validation, validation, or ITS1; or the accuracy of predicting a nulliparous mosquito successfully as “young”, a parous mosquito
as “old”, or a sporozoite positive mosquito as “old” (ITS2 and ITS3) is presented. All classifications within sets are binary (i.e. young vs
old). If accuracy was significant via McNemar’s Chi-square test, the 5–95% confidence interval is presented in the parenthesis. Degree
of significance is demarcated

Dataset Accuracy CV Accuracy V ITS1 Accuracy ITS2 Accuracy ITS3 Accuracy

Dataset 1

PLS 0.7913 0.7727 (0.6216–0.8853)** 0.5507 0.5625 0.5128

ObliqueRF 0.8649 0.7955 (0.647–0.902)*** 0.5652 0.625 (0.5096–0.7308)* 0.5128

svmLinear 0.8422 0.8636 (0.7265–0.9483)*** 0.6232 (0.4983–0.7371)* 0.6232 (0.4983–0.7371) * 0.5128

Dataset 2

PLS 0.9165 0.8421 (0.6875–0.9398)*** 0.4493 0.6 (0.4844–0.708)* 0.5385

ObliqueRF 0.9354 0.8684 (0.7191–0.9559)*** 0.4058 0.55 0.5385

svmLinear 0.9356 0.8947 (0.752–0.9706)*** 0.4348 0.6 (0.4844–0.708)* 0.5769

Dataset 3

PLS 0.95 0.878 (0.738–0.9592)*** 0.5072 0.4625 0.4872

ObliqueRF 0.9687 0.9756 (0.8714–0.9994)*** 0.5942 0.55 0.4744

svmLinear 0.9562 0.9756 (0.8714–0.9994)*** 0.5217 0.5375 0.4872

Dataset 4

PLS 0.895 0.88 (0.7569–0.9547)*** 0.4928 0.5 0.5128

ObliqueRF 0.97 0.98 (0.8935–0.9995)*** 0.5072 0.525 0.4615

svmLinear 0.945 0.96 (0.8629–0.9951)*** 0.5362 0.55 0.4744

Dataset 5

PLS 0.7726 0.7073 (0.5965–0.8026)*** 0.5942 0.55 0.5385

ObliqueRF 0.8442 0.7805 (0.6754–0.8644)*** 0.6667 (0.5429–0.7756)** 0.525 0.4872

svmLinear 0.8232 0.8049 (0.7026–0.8842)*** 0.6812 (0.5579–0.7883)** 0.5875 0.5769

Dataset 6

PLS 0.7348 0.748 (0.6617–0.8219)*** 0.6812 (0.5579–0.7883)** 0.55 0.4872

ObliqueRF 0.8502 0.8537 (0.7786–0.9109)*** 0.6232 (0.4983–0.7371)* 0.625 (0.5096–0.7308) * 0.5256

svmLinear 0.8518 0.8374 (0.7601–0.8978)*** 0.6957 (0.5731–0.8008)** 0.5625 0.5

*P < 0.05, **P < 0.01, ***P < 0.001
Abbreviations: CV cross-validation, V validation, ITS independent test set, LV latent variables used if applicable

Fig. 3 Comparison of predicted vs actual age for independent test set 1 (ITS1) with two models. Partial least squares (a) and ensemble partial
least squares (b) are displayed
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adults, the exact ages of these samples are unknown.
Due to this, we are unable to calculate the RMSEP, and
instead compare mean age predictions for each class (i.e.
nulliparous, parous, or sporozoite positive) using the re-
gression algorithms with the highest prediction accur-
acies for independent test set 1 (all dataset 6 models
except iPLS due to poor predictive power on ITS2)
(Table 2). None of the regression models used predicted
a difference in means between nulliparous and sporozo-
ite positive mosquitoes via Sidak’s multiple comparisons
test (Fig. 4a), or for nulliparous and parous mosquitoes
(Fig. 4b). Only a few algorithms were able to discrimin-
ate nulliparous from sporozoite positive mosquitoes at a
statistically significant level via McNemar’s Chi-square
test (P < 0.05), though the maximum accuracy was only
62.5% with ObliqueRF from DS1 and DS6.

Discussion
In this study we assessed the use of NIRS for the age-
grading of wild-caught mosquitoes whose age had been
externally validated by existing approaches. Accuracy for
cross-validation and validation datasets indicated that
there may be some loss in accuracy due to high com-
plexity present in the datasets (i.e. the highest RMSECV
and RMSEV values were found in datasets 5 and 6). This
slight decrease in self-predictive accuracy would be ex-
pected as models trained on a diverse set of data should
not capture all of the diversity present, otherwise they
would be over fit to the data [61]. The best measure of
success then should come through independent test sets
that are not generated from calibrated data (i.e. not the
20% left out for validation or the 5/10-fold cross-
validation sets used for model parameter tuning).
Unfortunately, we found difficulty in accurate prediction
of most of the independent test sets including wild-
caught mosquitoes reared to known ages (independent
test set 1, ITS1), and mosquitoes whose age had been
externally validated by parity or presence of sporozoites
(independent test sets 2 and 3, ITS2 and 3). Using the
full-spectrum PLS algorithm, there was limited predict-
ive power with any of the six datasets for ITS1, ITS2 or
ITS3, except for PLS-classification on ITS1. Alternative
algorithms such as VCPA and MASS had some improve-
ment on these test sets for regression-based prediction,
largely on independent test set 1 (Table 2), however
overall accuracy was low with all algorithms. The best
delineation between points came with the largest dataset
(dataset 6) discussed further below. With these
regression models however, we had no indication of
successful discrimination of independent test set 2 (nul-
liparous vs sporozoite-positive) or independent test set 3
(nulliparous vs parous). There was some success with
the classification models with accuracy of cross-
validation and validation being comparable with the de
facto classification (< 7, ≥ 7 day) age prediction used pre-
viously [25], although this accuracy was still relatively
low (Table 3).
Several physical or life history reasons may contribute

to the low predictive power we observed. As mentioned
above, it has been found that diet and physiological sta-
tus can impact the accuracy of age prediction on insects,
and that inclusion of a greater number variety of
samples in the calibration model may improve accuracy
[19, 34, 35]. It was then the hope that the datasets pre-
sented here that spanned a range of years, capture loca-
tions, and larval conditions, while keeping the
instrument parameters stable, would allow for the cre-
ation of a robust model with broad predictive power.
We did attempt to time blood-feeds to be roughly 8–
12 h before the scan, as this would be analogous to the
primarily blood-fed wild-caught vectors collected via

Fig. 4 Prediction of independent test set 2 (ITS2) (nulliparous vs
Plasmodium sporozoite positive, a) and independent test set 3 (ITS3)
(nulliparous vs parous, b) for five algorithms created from dataset 6
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aspiration. A caveat to sampling is that we did include
some partially blood-fed or non-blood-fed mosquitoes in
models to increase numbers for sporozoite detection as
this is a low prevalence population, and also for ease in
parity dissection. While it is possible this somewhat
limits predictive power, controlling for blood-fed status
did not increase predictive power (Additional file 6:
Table S5; Additional file 7: Figure S2).
Additionally, use of natural water sources for mosquito

rearing (datasets 1 and 2) was used to limit the con-
founding factor of larval diet and geographical factors
for prediction. As models built on dataset 6 had the
highest test set prediction accuracy, accounting for these
factors may be important. Future models could also in-
clude very young (day 1) mosquitoes, though as it was
unlikely that these recently emerged mosquitoes would
be collected with the trapping methods used in this
study, they were not included [62].
Other possible confounders limiting predictive power

may be due to the external validators themselves. It is
possible that through a late first blood meal or hetero-
geneity in gonotrophic development [63], some mosqui-
toes may be old but nulliparous. Additionally, if
mosquitoes very rapidly feed post-emergence and have
already been inseminated which has been shown to be
common in nulliparous mosquitoes [64], they may be-
come parous early in life causing overlap with nullipar-
ous mosquitoes. As an additional test, we tried the
classification models with an alternative split of “early”
and “late” samples, including six day-old mosquitoes as
“late” as the mean age of nulliparous mosquitoes has
been previously reported to be 3–4 days old [65]. This
largely did not improve accuracy in classification
(Additional file 8: Table S6), however may have pro-
vided a slight increase in predictive ability for
svmLinear on ITS2 and ITS3. Also, it has been found
that through inadvertent inclusion of midgut tissue
infected with Plasmodium, a mosquito could be called
as sporozoite positive [66]. However, we had known
of this study and were careful when splitting the head
and thorax from abdomen to avoid this.
Finally, there is possibility that, the Plasmodium infec-

tion itself, or the gonotrophic process/physiology could
alter the spectroscopy signal [19]. The calibration mos-
quitoes were kept with males, so mating could occur
though oviposition papers were not provided. As the
calibration mosquitoes were fed on uninfected human
volunteers there would be no Plasmodium infection in
these mosquitoes, and so this possible confounder is un-
accounted for in the models. Likely many of these fac-
tors are small in their impact on the overall evaluation
of the methodology, however their presence cannot be
fully discounted and future studies should attempt to
control for them where possible. Some evidence

indicates that there is something innate about the sam-
ples causing them to be underpredicted, as all
methodologies for age discrimination correlate strongly
(P < 0.0001, Pearson’s r) (Additional file 9: Figure S3).
Another possible methodological cause for the diffi-

culty in this cross-population prediction may be seen in
Fig. 1, which shows that there was limited overlap be-
tween feature/variable selection algorithms with and be-
tween datasets. There was some clustering in the region
from 500 to 1000 nm, though this was not found for
every algorithm and dataset (Fig. 1, VCPA, enPLS and
iPLS algorithms). This differs somewhat from what was
presented previously in Mayagaya et al. [25] based on
PLS regression coefficients that found a more broad
distribution of importance of wavelengths “700, 1000,
1221, 1305, 1412, 1728, 1878, 1947 and 2200 nm”. Add-
itionally, the poor predictive ability may not solely be
based on wavelength selection via the algorithms, as full
spectrum models and models that selected the same
wavelengths (i.e. iPLS for datasets 3 and 4) had poor
ability to predict other datasets (data not shown).
We attempted in a range of ways to cope with these

and other issues in our analytical methodology. The first
is that through using methods that provide variable se-
lection we could help to address the “small n, large p”
problem in which we have relatively few sample num-
bers but many predictors which can easily lead to over-
fitting of models [67]. However, while the variable
selection methods had more accuracy than PLS alone,
overall they were unable to create a parsimonious model
that had robust and broad predictive success. Due to this
failure, we would suggest in future experiments that
dataset complexity be reduced prior to model creation
as much as possible. As it has been previously reported
[25], members of An. arabiensis and An. gambiae (s.l.)
can be delineated via NIRS. Mosquitoes from 2013’s cali-
bration model (DS1) were able to be identified, with
68.0% found to be An. arabiensis (data not shown). Due
to insufficient sample numbers in these periods, we were
unable to split these data into two calibration models for
each identified species. Additionally, attempts to create a
predictive model to distinguish Anopheles species via
NIRS, as in the Mayagaya et al. [25] paper, were unsuc-
cessful with our samples that had been identified to spe-
cies (data not shown). Unfortunately, we were unable to
reliably classify mosquitoes as An. arabiensis or An.
gambiae (s.s.) by PCR from the 2014 collection year in
Burkina Faso likely due to post-NIRS degradation of the
samples, as they were stored dried in tubes with desic-
cant and kept at room temperature [68]. The ability to
classify groups of mosquitoes based on species may have
improved our accuracy as each of the models could have
been specific to one species. With this in mind, future
studies could be improved by accounting for this
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variation, and the recent species delineation of An. gam-
biae (s.s.) and An. coluzzii [69]. To our knowledge, there
has been no publication demonstrating the ability to dis-
tinguish An. gambiae (s.s.) and An. coluzzii with near-
infrared spectroscopy, though this would possibly allow
for the avoidance of more laborious PCR-based identifi-
cation. Additional measures that could be added are data
pre-processing methods that may improve predictive
performance [70]. Unfortunately there is no easy way to
simplify determination of which combinations of prepro-
cessing and algorithms will provide best results for data-
sets as has been popularized by the phrase there is “no
free lunch” to model selection [71]. Finally, while the
same machine was utilized for all scanning performed,
the samples were scanned “on location” and thus there
may be some temperature or other differences year-to-
year and day-to-day between groups which could impact
results [34].

Conclusions
The utilization of NIRS for age-grading of wild mosqui-
toes is a complex problem that remains unsolved by our
extensive analyses presented here. Increasing of sample
diversity, new prediction algorithms, and a reduction of
other confounders may improve outcomes, though in
this study the reliability of this approach was insufficient
for broader use. We suggest a greater control of physio-
logical status, use of local larvae, and careful determin-
ation of species in the calibration steps to improve the
accuracy of the technique. Most importantly, however,
this study shows the importance of having external vali-
dators for evaluation of success in calibration models.
Without some form of external validation, the values
generated by NIRS may be questionable due to the vari-
ation present in wild samples.
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Additional file 1: Table S1. Dataset numbers. Calibration Model sample
size and collection locations of single (DS1-DS4), and multi-source (DS5-
DS6) origin. Soumousso and Kodeni are located in southwestern Burkina
Faso. (XLSX 10 kb)

Additional file 2: Figure S1. Example figure of selection of optimal
number of variables for ensemble PLS. The lowest root mean squared
error of cross-validation for the fewest number of variables was used for
prediction of test sets. In this example, 300 variables was chosen, as it has
lower error in cross-validation compared to other variable amounts
(including the full spectra - 1851 variables). (TIFF 681 kb)

Additional file 3: Table S2. Validation Model sample size and
collection locations. (XLSX 10 kb)

Additional file 4: Table S3. Independent test set sample size and
collection locations. Abbreviations: DK, Diarkadougou, Burkina Faso,
“Unknown” was from a collection in southwestern Burkina Faso; BG,
Bougouriba, Burkina Faso; NP, nulliparous via dissection; P, parous; SP,
Plasmodium sporozoite positive via qPCR. (XLSX 9 kb)

Additional file 5: Table S4. Full listing of ITS1–3 Blood-fed status,
metadata, and spectral data. Each ITS is listed on a new tab of the .xlsx

file. Abbreviations: BF, blood-fed; PBF, partially blood-fed; NBF, non-blood-
fed; Loc, location and trapping method; Sporo: sporozoite (nulliparous
with value of 1, positive with 2; for ITS3 nulliparous mosquitoes have a
value of 1, parous value of 2). (XLSX 5810 kb)

Additional file 6: Table S5. Blood-fed status on regression accuracy for
ITS1. Root mean squared error of prediction for ITS1 with three
algorithms. (XLSX 8 kb)

Additional file 7: Figure S2. Predicted ages of same blood-meal status
(i.e blood-fed or non-blood-fed) mosquitoes from ITS2 using models
generated from only blood-fed or only non-blood-fed calibration
mosquitoes from DS6. Abbreviations: BF, blood-fed; NBF, non-blood-fed;
SVM, SVMLinear; PLS, partial least squares; iPLS, interval PLS. (TIFF 92 kb)

Additional file 8: Table S6. Classification model accuracy with 6-day
old mosquitoes classified as “late”. The original and adjusted tables for
dataset 6 are presented. P-values for the alternative classification table are
listed. Degree of significance is demarcated (*P < 0.05, **P < 0.01,
***P < 0.001). Abbreviations: CV, cross-validation; V, validation; ITS,
independent test set; LV, latent variables used if applicable. (XLSX 10 kb)

Additional file 9: Figure S3. Correlation plot of ages of sporozoite-
positive mosquitoes. The predicted ages of expected old, sporozoite-
positive mosquitoes for each of the four algorithms are shown. Partial
least squares compared to enpls, svmLinear, VCPA (a), enpls compared to
svmLinear and VCPA (b), and svmLinear compared to VCPA (c) are
shown. All models correlated at P < 0.0001 via Pearson’s r. (TIFF 434 kb)
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