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Alternative methods improve the accuracy
of genomic prediction using information
from a causal point mutation in a dairy
sheep model
Claire Oget1* , Marc Teissier1, Jean-Michel Astruc2, Gwenola Tosser-Klopp1† and Rachel Rupp1†

Abstract

Background: Genomic evaluation is usually based on a set of markers assumed to be linked with causal mutations.
Selection and precise management of major genes and the remaining polygenic component might be improved
by including causal polymorphisms in the evaluation models. In this study, various methods involving a known
mutation were used to estimate prediction accuracy. The SOCS2 gene, which influences body growth, milk
production and somatic cell scores, a proxy for mastitis, was studied as an example in dairy sheep.

Methods: The data comprised 1,503,148 phenotypes and 9844 54K SNPs genotypes. The SOCS2 SNP was
genotyped for 4297 animals and imputed in the above 9844 animals. Breeding values and their accuracies were
estimated for each of nine traits by using single-step approaches. Pedigree-based BLUP, single-step genomic BLUP
(ssGBLUP) involving the 54K ovine SNPs chip, and four weighted ssGBLUP (WssGBLUP) methods were compared. In
WssGBLUP methods, weights are assigned to SNPs depending on their effect on the trait. The ssGBLUP and
WssGBLUP methods were again tested after including the SOCS2 causal mutation as a SNP. Finally, the Gene
Content approach was tested, which uses a multiple-trait model that considers the SOCS2 genotype as a trait.

Results: EBV accuracies were increased by 14.03% between the pedigree-based BLUP and ssGBLUP methods and
by 3.99% between ssGBLUP and WssGBLUP. Adding the SOCS2 SNP to ssGBLUP methods led to an average gain of
0.26%. Construction of the kinship matrix and estimation of breeding values was generally improved by placing
emphasis on SNPs in regions with a strong effect on traits. In the absence of chip data, the Gene Content method,
compared to pedigree-based BLUP, efficiently accounted for partial genotyping information on SOCS2 as accuracy
was increased by 6.25%. This method also allowed dissociation of the genetic component due to the major gene
from the remaining polygenic component.

Conclusions: Causal mutations with a moderate to strong effect can be captured with conventional SNP chips by
applying appropriate genomic evaluation methods. The Gene Content method provides an efficient way to
account for causal mutations in populations lacking genome-wide genotyping.
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Background
By estimating genetic parameters, such as the heritability
of a given trait, individuals could be selected according to
their genetic value, based on the Estimated Breeding
Values (EBVs) for that trait, and the whole species might
be genetically improved for traits such as production,
health, morphology, etc. Schemes were therefore set up to
select improved males and use their semen on livestock
breeding farms. The genetic architecture of traits of inter-
est in livestock species has been widely studied since the
1920s [1]. Such traits can be governed by genes with small
effects but also by large Quantitative Trait Loci (QTLs) or
major genes. Studies of this complex architecture have been
facilitated by new technologies and molecular markers such
as microsatellites or single nucleotide polymorphisms
(SNPs) which make it possible to detect the regions of the
genome responsible for genetic variation and measure their
respective effects [1].
Genetic selection methods were initially based on pedi-

gree approaches and the method first employed to estimate
breeding values was the Best Linear Unbiased Prediction
method (BLUP) [2]. Approaches based on SNP chips were
then quickly developed from the 1990s onwards [3–6].
These approaches allowed EBVs to be estimated from pedi-
gree information, from genotyping data about a proportion
of the population (males in testing stations for example),
and from performance data. Performance data could be
based on means of progeny performance, e.g. Daughter
Yield Deviations (DYD), as in the two-step pedigree-based
BLUP [2] or Genomic BLUP (GBLUP) [3, 4] approaches.
More recently, methods to directly use raw phenotypes of
non-genotyped individuals in the so-called single-step
GBLUP approach (ssGBLUP) were developed [5, 6]. A few
studies showed that the prediction accuracy of evaluations
could be increased by using ssGBLUP, rather than two-step
pedigree-based BLUP or GBLUP approaches [7–9].
Two studies, in the same dairy Lacaune breed sheep

population investigated here, resulted in the develop-
ment of genetic evaluation models based on molecular
markers [10, 11]. Duchemin et al. (2012) [10], after com-
paring the BLUP, Bayes Cπ, Partial Least Squares (PLS),
and sparse PLS methods, reported that depending on
the trait and compared to the BLUP method, EBV accur-
acies could be increased by 18 to 25% by including
markers in the models, with minor differences between
the genomic approaches. Baloche et al. (2014) [11] then
adopted BLUP-like methods to implement a single-step
model in the evaluation and compared pseudo-BLUP
and pseudo-ssGBLUP (using all rams and their DYDs in
both methods), and regular ssGBLUP (using individual
phenotypes and pedigree in an animal model), and ob-
tained the best results with regular ssGBLUP. In 2015,
the ssGBLUP approach was therefore implemented in
the French official genetic evaluations of Lacaune sheep

[12] and is used as a reference method in this study.
However, the previously tested methods, and the one
currently used in official evaluations, do not allow a
higher weight to be assigned to markers in QTL regions
or to a major gene such as the SOCS2 gene, which influ-
ences many traits due to the mutation present in this
population.
In the ssGBLUP approach, all SNPs are given the same

weight during construction of the relationship matrix.
Methods have since been developed to assign more weight
to markers that are more strongly associated with the trait
under study [13, 14] or to a major gene influencing the
trait, in a multi-trait approach (called Gene Content) [15].
These methods have been tested in goats and have been
shown to improve evaluation accuracy [16–18].
In this study, we chose the causal mutation for mastitis

resistance characterized in a dairy sheep association
study: namely the R96C point mutation in the SOCS2
gene (suppressor of cytokine signaling 2) [19]. This mu-
tation, which consists of a modification in a single base
pair (substitution of an allelic base C into an allelic base
T), introduces a SNP at this locus and modifies the affin-
ity of the protein for its ligand. Rupp et al. (2015) [19]
showed that this mutation, with a Minor Allele Fre-
quency (MAF) of 21.7% in the population (468 rams
from testing stations), was strongly associated (deterio-
rated health) with the Somatic Cell Count (SCC) trait,
considered as a proxy for mastitis (i.e. it explained 12%
of the genetic variance of this trait), but was also
favourably associated with size, weight and, to a lesser
extent, with milk yield traits. This pleiotropic gene
therefore seemed a good candidate for testing several ap-
proaches to exploit information about QTL or causal
mutations in evaluation models.
Thus the objectives of this study were: (i) to test evalu-

ation methods that allowed inclusion of information
about a causal mutation, using the example of the dairy
sheep SOCS2 gene point mutation, and (ii) to analyze
the effect of applying different methods to utilize this
additional information on prediction accuracies and on
EBV trends over time.

Results
Imputation of SOCS2 genotypes
We obtained a Concordance Rate (CR) of 0.988 for
imputation of the SOCS2 genotypes, i.e. 33 imput-
ation errors among the 1432 individuals in the im-
putation validation population. The result of this
imputation provided us with the SOCS2 genotypes
for the entire genotyped population, with a MAF of
0.14 for the mutated T allele associated with higher
susceptibility to mastitis. The MAF trend in the
population of 4699 AI rams is shown in Fig. 1. The
MAF decreased from 0.21 in 2005 to 0.09 in 2017.
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Linkage Disequilibrium (LD)
The map coverage of the chip attained 2444Mb and the
mean SNP interval was 0.064Mb. The mean r2 were 0.25,
0.16, 0.12, 0.09, and 0.08 for a distance between pairs of
SNPs of < 0.02Mb, [0.02–0.04Mb], [0.04–0.06Mb], [0.06–
0.08Mb], and [0.08–0.10Mb], respectively, and < 0.08 for all
the other distance categories. A visualization of r2 according
to distance between SNP is provided in Additional file 1:
Figure S1.
The r2 measure of LD between the 40 markers closest

to SOCS2 is represented in Additional file 1: Figure S2.
The LD of SOCS2 with the other SNP markers ranged
from zero to 0.47 with OAR3_138135461.1, which was
0.229Mb pairs away from SOCS2. The average LD be-
tween the SOCS2 SNP and the 10 previous SNPs on the
chip was 0.17. The category containing the distance be-
tween the SOCS2 SNP and the SNP most linked to the
SOCS2 SNP (0.229Mb) was the interval [0.22, 0.24], for
which we obtained a mean r2 of 0.049 on the whole chip.
The SOCS2 SNP mutation was therefore in strong LD
with some of the other SNPs in the region.

Genetic parameters
The (co)variance parameters estimated and used in this
study are presented in Additional file 1: Figure S3. The
variance estimates for the single-trait models were very
similar, whether estimated from pedigree or genomic re-
lationships. Heritabilities were 0.50 and 0.61–0.62 for FC
and PC, respectively. For Milk Yield (MY), Fat Yield
(FY) and Protein Yield (P)Y, they were 0.37, 0.37, and
0.39, respectively. For Teat Angle (TA), Udder Cleft
(UC) and Udder Depth (UD), they were 0.39, 0.34, 0.27–
0.28 respectively, and for Lactation Somatic Cell Score
(LSCS) 0.17–0.18. Similar results were obtained using
the two-trait models (Additional file 1: Figure S3).
Genetic correlations between the SOCS2 gene content

trait and the other traits, and the genetic variances explained

by the SOCS2 gene using the pedigree-based Gene Content
method are presented in Table 1. The absolute values of the
genetic correlations ranged from 0.02 (TA) to 0.34 (LSCS).
The six traits most correlated with the SOCS2 gene content
trait were: LSCS (rg = 0.34), PY (rg = 0.29), MY (rg = 0.25),
UD (rg =− 0.19), FY (rg= 0.18) and FC (rg=− 0.14). This
was confirmed by the genetic variances explained by the
SOCS2 gene that ranged from 0.05% (TA) to 11.24%
(LSCS).

GBLUP and WssGBLUP methods improve prediction
accuracies
The prediction accuracies and gains obtained with the dif-
ferent evaluation methods and traits are shown in Table 2.
Prediction accuracies ranged from 0.498 to 0.561 for MY,
from 0.330 to 0.486 for FY and PY, and from 0.684 to
0.762 for FC and PC. They ranged from 0.421 to 0.471 for
LSCS, and from 0.336 to 0.538 for udder type traits.

Fig. 1 Evolution of the frequency of the SOCS2 T allele, associated with increased susceptibility to mastitis in 4699 rams used for
artificial insemination

Table 1 Genetic correlations between the SOCS2 gene content
trait and the traits of interest (rg) and genetic variances (σg2)
explained by the SOCS2 gene obtained using the pedigree-
based Gene Content method

Trait rg with SOCS2 σg2 explained by SOCS2

MY 0.25 6.18%

FY 0.18 3.22%

PY 0.29 8.55%

FC –0.14 1.88%

PC –0.06 0.41%

LSCS 0.34 11.24%

TA –0.02 0.05%

UC –0.07 0.56%

UD –0.19 3.71%

Abbreviations: MY Milk Yield, FY Fat Yield, PY Protein Yield, FC Fat Content, PC
Protein Content, LSCS Somatic Cell Score, TA Teat Angle, UC Udder Cleft, UD
Udder Depth
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In our study, the highest accuracies were obtained by
using alternative WssGBLUP approaches. Figure 2 indicates
the prediction accuracies for the LSCS trait (as example)
with the various WssGBLUP methods. The average gain in
accuracy between WssGBLUP methods with and without
the SOCS2 genotype was + 1.06% and the best accuracy
(0.471) was obtained with the WssGBLUP(Mean, 200) method.

The gain in prediction accuracy from pedigree-based
BLUP to ssGBLUP, the currently used genomic
method, was on average + 14.03% (Table 2). An average
gain in prediction accuracy of + 3.99% was obtained
from ssGBLUP to the best WssGBLUP method (for
each trait independently). The average gain in predic-
tion accuracy between all the WssGBLUP methods and

Table 2 Prediction accuracies of different genetic evaluation methods for each trait using information about the SOCS2 gene or not

Trait

MY FY PY FC PC LSCS TA UC UD

Prediction
accuracy
using

Pedigree-based BLUP 0.507 0.389 0.330 0.693 0.684 0.421 0.451 0.477 0.336

ssGBLUP 0.549 0.450 0.463 0.724 0.745 0.454 0.523 0.473 0.423

ssGBLUPSOCS2 0.550 0.450 0.465 0.724 0.745 0.456 0.523 0.473 0.424

WssGBLUP(classical, 1) 0.498 0.422 0.437 0.723 0.730 0.421 0.538 0.473 0.452

The best WssGBLUP(m, n) method 0.561 0.461 0.486 0.739 0.762 0.471 0.538 0.504 0.460

Pedigree-based Gene Content 0.557 0.430 0.405 0.698 0.688 0.438 0.448 0.512 0.366

Gain in
prediction
accuracy
between

Pedigree-based BLUP & ssGBLUP 8.25% 15.54% 40.34% 4.41% 8.95% 7.80% 15.84% -0.96% 26.07%

ssGBLUP & the best WssGBLUP
method

2.16% 2.46% 5.04% 2.06% 2.32% 3.77% 2.80% 6.59% 8.75%

Without & with the SOCS2 SNP
among the markers (average
within the WssGBLUP(m, n) methods)

0.22% 0.13% 0.51% 0.02% 0.10% 1.06% -0.02% 0.02% 0.26%

Pedigree-based BLUP & pedigree-
based Gene Content

8.88% 9.54% 18.64% 0.68% 0.57% 3.80% -0.89% 6.72% 8.33%

Parameters of the best WssGBLUP(m, n) method Maximum
100

Maximum
200

Maximum
200

Maximum
40

Maximum
45

Mean
200

Classical Sum
30

Maximum
5

Abbreviations: MY Milk Yield, FY Fat Yield, PY Protein Yield, FC Fat Content, PC Protein Content, LSCS Somatic Cell Score, TA Teat Angle, UC Udder Cleft, UD
Udder Depth

Fig. 2 Prediction accuracies of genomic selection from the second iterations of the different WssGBLUP methods for the LSCS trait with (orange
curve: WssGBLUPSOCS2 (m, n)) and without (blue curve: WssGBLUP(m, n)) the SOCS2 genotype. Four approaches to the WssGBLUP were computed
(m = classical, mean, maximum or sum). The classical WssGBLUP approach (m = classical) gives a different weight for each marker of the chip. In
alternative approaches, the chip is decomposed into non-overlapping windows of n markers (we tested n = 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50,
100, and 200) and within these windows, all markers are assigned the same weight: the mean weight of the n SNPs (m =mean), the maximum
weight of the n SNPs (m =maximum), and the sum of the n SNPs weights (m = sum)
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WssGBLUPSOCS2 was + 0.26%. The highest gain (+
1.06%) was obtained for LSCS.

Genetic trends of EBVs relative to SOCS2 and polygenic
components using the Gene Content method
The average gain in prediction accuracy between pedi-
gree-based BLUP and pedigree-based Gene Content was
+ 6.25%. This gain represents the improvement in
prediction accuracy for a trait when genome-wide data
(54 K herein) are not available and information about a
point mutation is known and is included in a multi-trait
genetic evaluation model.
The Gene Content method was used to obtain EBVs for

the polygenic component (EBVspolygen), excluding the effect
of the SOCS2 gene, EBVs associated with the SOCS2 gene
(EBVsSOCS2), as well as estimated breeding values for the
trait of interest (EBVstrait), for each trait.The EBVspolygen
and EBVstrait values were very similar for all the traits
(Spearman correlation of 0.99), except for LSCS (Spearman
correlation of 0.87), the trait most associated with SOCS2.
The genetic trends of both the polygenic (EBVpolygen) and
gene (EBVSOCS2) components of the LSCS trait over the
years are provided in Fig. 3. This graph shows a strong de-
crease in the EBVs for LSCS since 2004. This decrease has
been due partly to the reduced effect of the SOCS2 gene
mutation on the trait (decreased frequency of the deleteri-
ous allele), but also to the reduction (improvement) of the
polygenic component determining the trait.

SNP effects estimated by using WssGBLUP methods
The estimated SNPs effects and percentages of the
explained variance were determined by applying
WssGBLUP methods, with and without the SOCS2
genotype among the markers. The QTL regions (posi-
tions on ovine genome assembly v4.0) found by
applying the best alternative WssGBLUP method for
each trait (SOCS2 SNP included in the markers),
based on a threshold of 1% of genetic variance
explained, are presented in Table 3. According to the
SNPs effects (Additional file 1: Figure S4) and the
explained variances (Additional file 1: Figure S5), the
QTL in the SOCS2 gene region (Table 3) was con-
firmed for LSCS, with 20 adjacent SNPs (including
the SOCS2 SNP) explaining as much as 12.00% of the
genetic variance. Moreover, this region also influenced
PY (4.91% of the variance explained), UD (4.02%),
MY (3.94%), FC (2.57%), and UC (1.84%). In addition,
among the surrounding SNPs, the SOCS2 SNP exhib-
ited the strongest (or second strongest) effect (Add-
itional file 1: Figure S4).
Several other QTLs were also detected in this study

(Table 3). Some of them were trait-specific, such as
QTLs on OAR 3 (140.1–141.5Mb) and 6 (84.7–85.8
Mb), associated with PC, on OAR 19 (44.5–45.6Mb)
and 23 (32.4–33.9Mb), associated with UC, and on
OAR 13 (63.4–64.5Mb) and 20 (48.8–49.8Mb), associ-
ated with FC and LSCS, respectively. The other three
QTLs seemed to be associated with several traits, such

Fig. 3 Genetic trends over the years in the reference population (5343 rams with reference performances, i.e., daughter yield deviations, born
between 1996 and 2015), of the EBVs for LSCS using the Gene Content method which enables the polygenic component (EBVpolygen), excluding
the effect of the SOCS2 gene, and the breeding value due to the gene effect (EBVSOCS2), to be distinguished
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as QTLs on OAR 3 (136.3–137.6Mb), associated with
PC and FC, on OAR 11 (33.1–34.9Mb), associated with
MY, PY, LSCS and FC, and on OAR 17 (8.5–10.5Mb),
associated with MY, FC and PC.

Discussion
Genetic parameters estimation
The genetic parameters estimation with pedigree or gen-
omic relationships gave similar results for the one-trait
methods. In this study the obtained heritabilities were
higher for all the traits than previously found in the
Lacaune breed. The heritability for LSCS (h2 = 0.17 −
0.18 in our study) was previously estimated at between
0.12 and 0.15 by Barillet et al. (2001), Rupp et al. (2003)
and Barillet et al. (2007) [20–22]. These authors also re-
ported lower heritabilities for MY, FC and PC (0.28–
0.34, 0.41–0.50 and 0.51–0.63, respectively). Similar

lower results were found for FY and PY (0.26 and 0.28,
respectively) [22], and also for the three udder-type traits
(0.33–0.35, 0.26–0.32 and 0.19–0.26, for TA, UC and
UD, respectively) [22, 23]. These discrepancies could be
due, at least in part, to the model as previous studies
were based on sire models whereas we used animal
models. Other explanations include increased genetic
variance within the population (good management of
matings in farms, for example) and/or decreased envir-
onmental variance (possibly due to the homogenization
of breeding practices, for example).

Detection of QTLs and quantification of their effect using
genomic evaluation methods
Our study shows that genomic evaluation methods, which
involve weighted approaches and thus an initial step to esti-
mate the effects of SNPs on different traits, can be applied
to detect and confirm QTLs [13, 14]. This approach is pref-
erable to a single SNP GWAS (Genome-Wide Association
Study) approach because the phenotypes of ungenotyped
animals can be directly incorporated, without computing
pseudodata, as suggested by Wang et al. (2012) [13].
We initially validated, as expected, the QTL for LSCS

on chromosome 3 associated with the SOCS2 gene point
mutation first discovered in Lacaune sheep by Rupp et al.
(2015) [19]. When we applied WssGBLUP approaches,
this region was found to explain 12% of the genetic vari-
ance, as already reported by Rupp et al. (2015) [19]. We
also confirmed the pleiotropic effect of this region and its
association with milk production traits and UD and were
able to quantify its effects on these traits, by applying
WssGBLUP approaches. Indeed, this region was found to
explain 6.2% of the genetic variance for MY, compared to
the 4.4% estimated by Rupp et al. (2015) [19]. The associ-
ation of this locus with UD found in our study might be
explained by an indirect effect of individual body size.
We then discovered another pleiotropic QTL on

chromosome 11 (33.1–34.9Mb). This QTL was associated
with milk production traits and LSCS, with 1.31, 2.25, 6.65
and 1.98% of the genetic variance explained for MY, PY, FC
and LSCS, respectively. This region had previously been as-
sociated with LSCS in Lacaune sheep [19] (35.8–41.3Mb,
ovine genome assembly v3.1). A similar pleiotropic QTL
was found very near to the orthologous region on caprine
chromosome 19 in Saanen goats. Indeed, Martin et al.
(2018) [24] reported a pleiotropic QTL (chromosome 19:
24.5–26.9Mb, caprine genome assembly CHIR_1.0) for
milk production and udder traits including MY, FY, PY,
udder floor position, and rear udder attachment. This QTL
was validated by Teissier et al. (2019) [17] (top 10 SNPs
with the highest SNP weights on chromosome 19 located
between 26 and 28Mb, caprine genome assembly CHIR_
1.0). It was then confirmed by Oget et al. (2018) [25]
(chromosome 19: 22.8–28.9Mb, caprine genome assembly

Table 3 QTL (Quantitative Trait Loci) regions (positions on ovine
genome assembly v4.0) found using the best alternative
WssGBLUP method for each trait (SOCS2 SNP included among
the markers), and based on a threshold of 1% of genetic
variance explained

OAR QTL region
(Mb)

Trait associated
with the QTL

Genetic variance
explained in the
trait-specific QTL
regiona (%)

Trait-specific
QTL regiona

(Mb)

3 128.3 - 130.5 LSCS 12.00 129.1 - 130.5

PY 4.91 129.0–130.3

UD 4.02 129.1–130.5

MY 3.94 128.3–129.6

FC 2.57 129.1–130.5

UC 1.84 129.1–130.5

136.3 - 137.6 PC 4.61 136.3–137.3

FC 1.20 136.4–137.6

140.1 - 141.5 PC 1.24 140.1–141.5

6 84.7 - 85.8 PC 5.95 84.7–85.8

11 33.1 - 34.9 FC 6.65 33.4–34.9

PY 2.25 33.3–34.5

LSCS 1.98 33.3–34.5

MY 1.31 33.1–34.3

13 63.4 - 64.5 FC 1.17 63.4–64.5

17 8.5 - 10.5 MY 1.14 8.5–9.7

FC 1.09 8.6–9.9

PC 1.02 9.0–10.5

19 44.5 - 45.6 UC 2.33 44.5–45.6

20 48.8 - 49.8 LSCS 3.09 48.8–49.8

23 32.4 - 33.9 UC 2.01 32.4–33.9

Abbreviations: OAR Ovis ARies, QTL Quantitative Trait Loci, Mb Megabase, MY
Milk Yield, FY Fat Yield, PY Protein Yield, FC Fat Content, PC Protein Content,
LSCS Somatic Cell Score, TA Teat Angle, UC Udder Cleft, UD Udder Depth
aTrait-specific QTL regions are regions where 20 adjacents SNPs explain the
highest value of genetic variance of the trait
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ARS1) who found that this QTL was also associated with
the lifespan of livestock and semen production. However,
due to the large number of genes present in the region (47
protein-coding genes, NCBI ovine genome assembly v4.0),
proposing suitable candidate genes remains difficult.
In addition to the QTLs associated with LSCS on chromo-

somes 3 and 11, we also found a QTL on chromosome 20
(48.8–49.8Mb) that explained 3.1% of the genetic variance.
This QTL had previously been detected in sheep [19] (48.6–
48.8Mb, ovine genome assembly v3.1). Sixteen protein-cod-
ing candidate genes in this region, two of them related to
immune defense (SERPINB1, RIPK1), were annotated. These
three QTLs, associated with LSCS in our study, accounted
for as much as 17% of the genetic variance.
Regarding PC, a QTL explaining 5.95% of the genetic

variance of this trait was detected on chromosome 6 in a
narrow region (84.7–85.8Mb) known as the casein gene
cluster. This region encodes for the caseins (CSN1S1,
CSN2, CSN1S2, CSN3: 85.0–85.2Mb), which are the main
proteins in milk. Caseins are responsible for milk coagula-
tion, a fundamental step in the preparation of cheese from
raw milk. Previous association studies based on microsat-
ellite markers had already highlighted an association of
the ovine chromosome 6 with PC, suggesting the role of
casein genes, but the confidence intervals obtained with
those low-density marker panels were very large [26].

Weighting SNPs improves genomic evaluation by
capturing QTL regions
In 2015, genomic selection was implemented in Lacaune
dairy sheep following two comparative studies of evaluation
accuracy involving different approaches. Duchemin et al.
(2012) [10] compared BLUP, Bayes Cπ, Partial Least
Squares (PLS), and sparse PLS methods and reported that
including markers in the models increased EBV accuracies
by 18 to 25%, depending on the trait (MY, FC et SCS), with
minor differences between the genomic approaches. Based
on these results, Baloche et al. (2014) [11] adopted BLUP-
like methods to implement a single-step model in the
evaluation. These authors compared three strategies:
pseudo-BLUP (using all rams and DYDs), pseudo-ssGBLUP
(using all rams and DYDs), and regular ssGBLUP (using all
phenotypes and pedigree in an animal model) and obtained
the best results with regular ssGBLUP. Based on these re-
sults, the ssGBLUP method is now used for the routine
evaluation of Lacaune dairy sheep [11], and hence was the
reference method adopted in our study. Using the same
ssGBLUP method, we obtained better evaluation accuracies
than those of the two previous studies for production traits:
+ 14.4%, + 1.9% and + 6.1% for MY, FC and PC, respect-
ively. One explanation for this result could be the larger size
of the population of genotyped individuals. Indeed, 2892 in-
dividuals were genotyped in Baloche et al. (2014) compared
to 9844 genotyped animals in our study. However, we

obtained lower accuracies for LSCS and the three udder-
type traits than Baloche et al. (2014) [11]. No straightfor-
ward explanation has been found for this surprising result.
Weighting alternative strategies in the evaluation

models was found to provide more accurate results than
ssGBLUP for all the traits in our study, with an average
gain of + 3.99%, even when no QTL was detected for the
trait (teat angle, for example). These results are in slight
disagreement with those obtained in goat [17] where the
addition of a weighting strategy increased accuracies only
for traits that exhibited QTLs. Indeed, the large pleio-
tropic QTL on chromosome 19 in the Saanen breed [17]
allowed an increase in accuracy while in the Alpine breed,
with no QTL segregating for most of the traits,
WssGBLUP did not provide any significant gain. This dis-
agreement might be explained by the fact that we retained
the best alternative method for each trait and did not use
the same strategy for all traits, as was done in goats. In-
deed, Teissier et al. (2019) [17] used a window size of 40
SNPs for all traits. In our study, depending on the trait,
the best accuracies were obtained by using an alternative
WssGBLUP strategy with a large window size (100–200
SNPs) for MY, FY and PY, and for LSCS, a medium win-
dow size (40–45 SNPs), for FC and PC and a small win-
dow size (1–30 SNPs), for the udder-type traits (TA, UC,
and UD). Due to the differences in genetic determinism of
each trait, (confirmed by the estimated effects of the SNPs
in this study, Additional file 1: Figure S4), and possible
variation in QTL size, it seemed more appropriate to con-
sider an optimal evaluation strategies for each trait indi-
vidually. With fine-tuning for each trait, WssGBLUP
always proved better than non-weighted ssGBLUP. This
highlights a means of increasing genetic progress by taking
QTLs into account during genomic evaluation. A further
advantage of this method is that no identification of the
QTLs, in a dedicated preliminary study, is required.

Accounting for causal mutations in genomic evaluations
As a case study, we tested different strategies to include the
effect of a known causal mutation (SOCS2 gene) in gen-
omic evaluations. The gain between methods, with and
without the mutation in the chip, was limited: an average
gain of + 0.26% and up to + 1.06% for LSCS, the trait most
influenced by the mutation. This result suggests that the
strong LD between the mutation and the surrounding
SNPs (0.17) was sufficient to allow accurate estimation of
the genomic breeding values without the genotype at the
causal mutation, as stated in Goddard (2009) [27]. Includ-
ing causal SNPs might be of greater interest in the case of
lower SNP density and LD around the QTLs or in the case
of a stronger effect of the causal mutation.
By applying the Gene Content method, the genetic value

(EBV) for a trait can be separated into a genetic value
resulting from the effect of a given gene, and a polygenic
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component resulting from all the other QTLs. In this study,
the frequency of the SOCS2 SNP allele was found to de-
crease for AI rams (from 0.21 in 2005 to 0.09 in 2017),
which might be explained by the introduction of the SCS
trait, considered as a proxy for mastitis, into the breeding
objectives in Lacaune dairy sheep in 2005 [28, 29]. Indeed,
the current relative weight for SCS is 25% in the total merit
index. In addition, breeding companies are advised not to
retain individuals that are homozygous for the mutation,
due to its very negative effect on health. In our study, the
slope (Fig. 3) of the decrease over time in the breeding
value due to the SOCS2 gene effect is less pronounced than
that due to the polygenic effect. It can therefore be deduced
that decreasing the allele frequency of the SOCS2 mutation
over time in the population (unfavourable for the SCS trait)
(Fig. 1) does not prevent a favourable trend in other mas-
titis resistance genes. Thus, in Lacaune sheep, applying a
weighting strategy to markers that are strongly associated
with the trait of interest (SCS), as with the WssGBLUP ap-
proaches, will improve accuracy and therefore response to
selection, and may be sufficient to increase mastitis resist-
ance in the whole population.
Two other alternatives to the methods tested in this study

would be (i) to include the causal mutation (or major gene)
in the evaluation model as a fixed effect [30] and (ii) to use
a mixed inheritance model [31]. These alternatives would
require knowledge of the gene of interest for a large major-
ity of individuals with a given phenotype, which was not
the case in our study. Indeed, the single-step approach
makes it possible to start from raw phenotypes and there-
fore from a very large number of observations (3,575,614
lactations for MY for example). Considering that SOCS2 in-
formation was available for only 9844 individuals (including
1517 females with phenotypes at best), the number of miss-
ing data was too large to apply this method to our study.
The presence of a major gene raises two questions: (1)

is the polygenic breeding value overestimated when the
major gene is ignored [32], (2) what is the risk of redu-
cing total genetic variance over generations of selection
[33]. The Gene Content method offers a solution to both
questions because it allows the genetic component due
to the major gene to be separated from the remaining
polygenic component. It might then be possible to man-
age these two values separately according to the selec-
tion objectives i.e., eradicate or fix a major gene allele
while maintaining or increasing the polygenic compo-
nent associated with the trait. The Gene Content
method is promising because it allows the genetic vari-
ability, i.e. other QTLs or regions with low effects on the
same trait, to be preserved in the population, whether
the major gene has a stronger effect than the polygenic
component for trait prediction or not. This method is
also of interest if the gene has a pleiotropic effect on
both selected and non-selected traits e.g., a mutation

with a favourable effect on a production trait but associ-
ated with defects or disease not included in the breeding
scheme.

Conclusions
This study highlights the interest of weighted alternative
methods (WssGBLUP) for capturing QTL and major
genes in genetic evaluation models. These alternatives in-
crease the accuracy of the predicted genetic values and
therefore the expected genetic gains in the population. On
the other hand, another approach (Gene Content) tested
in this study showed promise for the genetic management
of particular traits since it allows the genetic component
due to a major gene, to be dissociated from the remaining
polygenic component. This latter method is also interest-
ing for populations that have not been genotyped with
SNP chips but for which information about a major gene
is available. The results of this study pave the way for an
improved management of trait genetics, directly applicable
to the selection schemes in different livestock sectors.

Methods
Animals and phenotypes
The performances of Lacaune sheep registered in the
French official milk recording scheme since 1960 and
available from the national database (Centre de Traite-
ment de l’Information Génétique, CTIG, Jouy-en-Josas,
France) were used for this investigation. The corre-
sponding pedigree information was obtained from the
official livestock data system (Ministerial Order NOR:
AGRT1431011A, 24th March 2015, Ministry of Agricul-
ture, France).
Nine traits, included in routine genetic evaluations

[28, 29, 34], were considered: milk, fat and protein
yields, fat and protein contents, somatic cell score (SCS) and
three udder-type traits: teat angle, udder cleft, and depth.
The first three lactations were retained for traits related

to milk production and SCS. Briefly, milk yield was mea-
sured monthly. Milk yield per lactation (MY) was estimated
using the Fleischmann method and adjusted for milking
length over a reference period of 220 days [35]. SCC, fat
and protein contents were measured three times per lacta-
tion on average. Lactation traits for fat (FC) and pro-
tein (PC) contents were defined as the weighted mean of
test days adjusted for milk. Weights were defined according
to lactation length and parity. Lactation traits for fat (FY)
and protein (PY) yields were the product of MY and corre-
sponding FC and PC. Test-day SCC were log-transformed
to somatic cell score (SCS = log2(SCC/100) + 3) [36] to
normalize the data distribution and were averaged per lac-
tation to compute the analyzed trait LSCS, as described in
Rupp et al. (2003) [21].
During the first lactation, three udder-type traits in-

cluding teat angle (TA), udder cleft (UC) and udder
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depth (UD) were scored over a linear range of 1 to 9, as
described in Marie-Etancelin et al. [23].
Performances were available for ewes since birth years

1978 (MY), 1987 (milk composition traits), 1999 (LSCS)
and 2000 (udder-type traits). Data were included up to the
birth year 2015. Descriptive statistics for the performance
and pedigree files of each trait are given in Table 4.

Genome-wide genotyping data
Genotyping data used in genomic evaluations in this study
were available for 9844 individuals that had been geno-
typed with the medium-density Illumina Ovine 54K SNPs
chip [37] for the current genomic selection program [12],
or as part of former research projects: “SheepSNPQTL”,
“Sustainable Solutions for Small Ruminants”, “Roquefor-
t’in”, and “PhénoFinLait”. This genotyping data was de-
rived from Artificial Insemination (AI) rams (N = 8327),
born between 1996 and 2015, and progeny-tested by the
two Lacaune breeding companies (OVI-TEST -La Glène,
Saint-Léons, France- and Confédération Générale de
Roquefort -Le Bourguet, Vabres l’Abbaye, France-), and
from ewes (N = 1517), born between 2004 and 2013, and
used for QTL detection programs.
DNA extraction from blood samples and genotyping

were performed at the Laboratoire d’Analyses Génétiques
pour les Espèces Animales (LABOGENA -Jouy en Josas,
France-; www.labogena.fr). SNPs were remapped on ver-
sion 4.0 of the ovine genetic map (https://www.ncbi.nlm.
nih.gov/assembly/GCF_000298735.2/). Quality control
was performed as part of the routine pipeline for Lacaune
genotyped animals, as described in Baloche et al. [11] with
slight modifications. In brief, SNPs with a MAF lower than
1%, Hardy Weinberg disequilibrium (P < 10− 5) and a call
rate lower than 97% were removed. After edits, 37,941 out
of 54,241 SNPs remained for the analyses.

SOCS2 genotypes and imputation of missing data
Genotypes for the point mutation of interest in the
SOCS2 gene (hereafter called SOCS2 SNP,
rs868996547, Ovis aries -OAR- chromosome 3, position
129,557,942 on ovine genome assembly v4.0) were
available for 4297 animals. The data were derived from
two datasets. First, KASPar™ tests (described in Rupp et
al. [19]) were obtained as part of the “Sustainable Solu-
tions for Small Ruminants” and “REIDSOCS” (ANR-16-
CE20-0010 funded by the ANR -Paris, France) projects
for 1413 AI rams and 248 ewes from one INRA (Insti-
tut National de la Recherche Agronomique) experimen-
tal farm (La Fage -Roquefort-Sur-Soulzon, France-)
born during 2002–2003. These 1661 individuals are in-
cluded in the 9844 individuals genotyped with the 54K
SNPs chip presented in the previous section. Second,
young rams (N = 2636) which entered breeding centers
in 2017 were low-density genotyped with the Inter-
national Sheep Genomics Consortium (ISGC) panel
which includes 1500 SNPs [38]. This chip also contains
the SOCS2 mutation as a SNP and suitable genotypes
were subsequently extracted. In addition, these rams
were imputed from low to 54K density as part of the
routine genomic evaluation [39]. All 4297 animals were
then genotyped both for SOCS2 and for the 54K SNPs
panel.
The SOCS2 genotype was then imputed using the

FImpute v2.2 software [40] for the 9844 individuals ge-
notyped with the 54K SNPs chip. For this imputation
step, individuals from AI centers born in 2016 and ge-
notyped with the 54K SNPs chip were also added to the
data set to fill the missing year that connected young
males born in 2017 to the rest of the genotyped popula-
tion. Thus 10,432 out of the total of 14,729 individuals
genotyped with the 54K SNPs chip had missing SOCS2
locus information and required imputation. A cross-

Table 4 Description of the Lacaune dairy sheep dataset used for genetic evaluation

Trait Mean ± SD Number of

Ewes Lactationsa Individuals in the pedigree file Rams in the validation populationb

MY (L) 292.91 ± 85.46 1,503,148 3,575,614 1,651,901 264

FY (g) 213.14 ± 51.56 1,124,636 1,841,351 1,336,060 263

PY (g) 169.72 ± 39.33

FC (g/L) 66.54 ± 8.51

PC (g/L) 52.89 ± 4.63

LSCS 3.12 ± 1.56 769,929 1,321,411 1,031,375 263

TA 7.15 ± 1.06 349,134 349,134 349,134 250

UC 5.04 ± 1.26 349,132 349,132 653,908 249

UD 6.42 ± 0.70 349,132 349,132 653,907 253

Abbreviations MY Milk Yield, FY Fat Yield, PY Protein Yield, FC Fat Content, PC Protein Content, LSCS Somatic Cell Score, TA Teat Angle, UC Udder Cleft, UD
Udder Depth
aMY, FY, PY, FC, PC and LSCS were measured during the first three lactations (lactation average); TA, UC, and UD were measured once during the first lactation
bRams born in 2015 with Estimated Breeding Values (EBVs) and reference performances, i.e. Daughter Yield Deviation (DYD)
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validation test was performed to assess the accuracy of
imputation by designing an appropriate validation
population for which the SOCS2 genotypes were as-
cribed to missing values. The validation population rep-
resented one-third of the total number of SOCS2
genotypes, i.e. 1432 individuals selected at random. The
accuracy of imputation was calculated by counting the
errors between the true and imputed genotypes in the
validation population. The accuracy of the imputation cor-
responded to the concordance rate (CR), with CR = 1 −
error _ rate, where error rate ¼ number of errors

2�number of imputed individuals.

Linkage disequilibrium (LD)
After imputing the SOCS2 genotypes, we then computed
the linkage disequilibrium (LD) in the surrounding
chromosomal region. Using the Haploview v4.2 software
[41], the square correlation coefficient r2 measure of LD
[42] was calculated between each pair of SNPs for SOCS2
and the 40 closest markers (Additional file 1: Figure S2).
The LD of the SOCS2 region was then compared with

the mean LD of the chip by computing the r2 between
all SNP pairs in 10-Megabase (Mb) windows within the
chromosomes. The r2 were grouped into categories
based on the distance between SNP (every 0.02Mb)
(Additional file 1: Figure S1).

Genomic prediction methods
EBVs were computed for all animals in the pedigree files
(Table 4) using the following evaluation approaches. With
the first set of methods, a single-trait approach was used
for all nine traits of interest. With the second set of
methods, a multi-trait approach called Gene Content, de-
veloped by Legarra and Vitezica [15], was used in which
the SOCS2 genotype was considered as a trait in bivariate
evaluations with MY, FC, PC, FY, PY, LSCS, TA, UC and
UD. All methods were based on a single-step process [5],

e.g. use of all data from females together with the pedi-
gree, and genomic information if available. These different
approaches are summarized in Table 5.

Single-trait approaches
For single-trait approaches, we applied the following
model (1) to the five milk production traits (MY, FC,
PC, FY, and FC) and LSCS:

y ¼ Xβþ Zg þWpþ ε ð1Þ
where y is the observation vector for the trait (female

lactation performances) and β is a vector of fixed effects.
The fixed effects for each trait are listed in Table 6. g is
a vector of random additive genetic effects assumed to
be normally distributed Nð0;H σ̂2gÞ , with H the relation-

ship matrix. p is a vector of random permanent environ-
mental effects assumed to be normally distributed
Nð0; I σ̂2pÞ and ε is a vector of random residuals that is nor-

mally distributed Nð0; I σ̂2εÞ . X is the incidence matrix re-
lating phenotypes to the fixed effects (β), Z is the design
matrix allocating phenotypes to breeding values (g) and W
is the incidence matrix relating phenotypes to permanent
environmental effects (p).
Since the three udder-type traits had only one record

per female, we removed the random permanent environ-
mental term from the eq. (1) and applied the following
model with the same parameters as in (1):

y ¼ Xβþ Zg þ ε ð2Þ
In the pedigree files, we added 24 unknown parent

groups defined as follows: animals born before 1960, co-
horts born within 10-year windows up to 2000, cohorts
born within 5-year windows up to 2010, cohorts born
within 2-year windows up to 2014, and finally animals born
in 2015.

Table 5 Description of the different genetic evaluation models based on a single-step approach and using information about the
SOCS2 gene or not

Approach Model Use of SOCS2
data

Information used in the relationship matrix

Pedigree 54K SNPs SOCS2 SNP

Single-trait Pedigree-based BLUP No Yes No No

ssGBLUP No Yes Yes No

ssGBLUPSOCS2
a Yes Yes Yes Yes

WssGBLUP(m, n)
b No Yes Yes No

WssGBLUPSOCS2 (m, n)
b Yes Yes Yes Yes

Multiple-trait Pedigree-based Gene Content Yes (as a trait) Yes No No

Abbreviations: GBLUP Genomic Best Linear Unbiaised Prediction, ss single-step, W Weighted
aThe term SOCS2 here means that the SOCS2 SNP has been added to the 54K SNPs of the chip
bFour approaches to the WssGBLUP were computed (m = classical, mean, maximum or sum). The classical WssGBLUP approach (m = classical) gives a different
weight for each marker of the chip. In alternative approaches, the chip is decomposed into non-overlapping windows of n markers (we tested n = 2, 5, 10, 15,
20, 25, 30, 35, 40, 45, 50, 100, and 200) and within these windows, all markers are assigned the same weight: the mean weight of the n SNPs (m =mean), the
maximum weight of the n SNPs (m =maximum), and the sum of the n SNPs weights (m = sum)
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We modeled the relationship matrix H using the dif-
ferent approaches summarized in Table 5. Briefly, only
pedigree information was used for the pedigree-based
BLUP and a combination of pedigree and genomic infor-
mation for the ssGBLUP method, as described in
Legarra et al. [5].
Next, four WssGBLUP methods were applied. These

differed from the ssGBLUP method in that the genetic
relationship matrix was altered by weighting the chip
markers, the weights being iteratively derived from
the decomposition of EBVs into marker effects. In-
deed, SNP effects can be deduced from EBVs in the
genomic-based single-trait approaches (eqs. (1) and

(2)), as modeled in Wang et al. (2012) [13]: â ¼ DM0

½MDM�−1ĝgen . In this equation, â is a vector of esti-

mated SNP effects, D is a diagonal matrix of weights
(set at 1 in the ssGBLUP method), M is the centered
matrix of SNP genotypes, and ĝgen is the vector of EBVs

from genotyped animals only.
Wang et al. [13] showed that WssGBLUP was sufficient,

with only very few iterations, to attain a maximum accuracy
of EBV. Similarly to Wang et al. (2012), and validated in
Teissier et al. [16, 17], the highest prediction accuracies in
our study were obtained after two iterations (results not
shown) and therefore only the results after two iterations are
provided. The decrease in prediction accuracy after the sec-
ond iteration in the WssGBLUP approaches could be due to
excessive weighting of SNPs associated with a few high effect
QTLs, and reduced weighting of numerous low-effect QTLs.

Alternative weighting methods, that assign the same weight
to several adjacent chip markers, have been proposed by
Zhang et al. [14]. In our study, we computed three alterna-
tive methods using WssGBLUP: (1) the mean weight of n
SNPs (with n the number of adjacent SNPs with non-over-
lapping windows), (2) the maximum weight of n SNPs, and
(3) the sum of n SNPs weights. Weights were calculated as
described in Teissier et al. [16]. Briefly, calculations of the
weights used in the diagonal matrix D in these alternative
methods were based on the variances of SNPs effects esti-
mated with the first step ssGBLUP. After assigning the same
value (mean, sum or maximum) to the n markers of a win-
dow, the vector of marker weights was then normalized so
that the sum of all weights remained constant and equal to
the total number of SNPs. Several window sizes with varying
number of SNPs were used (n = 2, 5, 10, 15, 20, 25, 30, 35,
40, 45, 50, 100, and 200). Hereafter, these methods are desig-
nated WssGBLUP(m, n), where m is the method used to cal-
culate the weights and n the number of adjacent SNPs with
non-overlapping windows.
Estimates of SNP effects can also be used to esti-

mate the genetic variance of the trait explained by
each SNP i effect: σ̂2a;i ¼ â2i 2p̂ið1−p̂iÞ , where pi is the
allele frequency of SNP i. The explained variances
will be described for 20 adjacent SNPs in the result
and discussion sections.

Multiple-trait gene content approaches
In the Gene Content method [15] EBVs are estimated
for a given trait by simultaneously considering informa-
tion about a given genotype as a second trait (hereafter
called the SOCS2 gene content trait) in a two-trait ap-
proach. Accordingly, the following model (3) was applied
to the five milk production traits and LSCS:

y ¼ Xβþ Zg þWpþ ε
yT ¼ μT þ ZTgT þ εT

�
ð3Þ

where y is the observation vector for the trait (female
lactation performance) and parameters of the model β, g,
p, ε, X and W are the same as in eq. (1). yT is a vector of
the SOCS2 gene content trait, i.e. the number of copies
of the mutant T allele carried by each animal (0, 1 or 2).
Missing values were set for ungenotyped individuals. μT
is the mean fixed effect of the SOCS2 T allele, ZT is the
incidence matrix relating observations to the random
genetic effect (gT) of the SOCS2 gene content trait, which
was assumed to be normally distributed such that σ2gT
¼ H σ̂2gT and σ̂2gT ¼ 2 f̂ T ð1− f̂ T Þ , with fT the T allele fre-

quency, and εT the random residual error.
As before, the model (4) was simplified for the three

non-repeated udder-type traits:

Table 6 Description of fixed effects for the evaluation models
of each phenotype

Trait Fixed effects Number
of levels

MY • herd within year and within parity
• age at delivery within year and within parity
• month at delivery within year and within parity
• time between delivery and first OMR within year
and within parity

42259
514
702
585

FY • herd within year and within parity
• age at delivery within year and within parity
• quality control within year and within parity

20783
269
348PY

FC

PC

LSCS • herd within year and within parity
• age at delivery within year and within parity
• month at delivery within year and within parity

14306
206
312

TA • herd within year
• interaction between examiner and the time
difference between milking and scoring, within herd

• interaction between age at delivery and lactation
stage, within year

• number of lambs within year

3672
2346
160
30

UC

UD

Abbreviations: MY Milk Yield, FY Fat Yield, PY Protein Yield, FC Fat Content, PC
Protein Content, LSCS Somatic Cell Score, TA Teat Angle, UC Udder Cleft, UD
Udder Depth
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y ¼ Xβþ Zg þ ε
yT ¼ μT þ ZTgT þ εT

�
ð4Þ

For Eqs. (3) and (4) only the pedigree-based approach
was tested, in order to avoid redundant information be-
tween the chip and the SOCS2 gene content trait (copy
number of the mutated allele), which meant that the
kinship matrix H was modeled using only pedigree infor-
mation (Table 5).
The evaluations were done using BLUP90IOD2 v3.102

software [43].
By applying the Gene Content method, we were

able to obtain not only EBVs for the trait of interest
( ĝ ), but also estimates of a breeding value for the
polygenic component (EBVpolygen) that excluded the
effect of the SOCS2 gene, as well as estimates of
breeding values associated with the SOCS2 gene
(EBVSOCS2). We calculated these three EBVs as
proposed by Legarra and Vitezica (2015) [15]:
EBVpolygen ¼ EBVtrait o f interest−EBVSOCS2 ¼ ĝ−ĝT α̂ , with

α̂ ¼ côvðg; gT Þ
σ̂2gT

, which can be interpreted as the allele

substitution effect of the SOCS2 gene mutation on
the trait.

Variance component estimation
Variance and (co)variance (for the Gene Content
method) components for models (1), (2), (3) and (4) for
each approach and each trait were estimated using a
block implementation of Gibbs sampling computed in
the GIBBS1F90 v1.44 software [43].
Based on these variance component estimations, the

genetic variance explained by the SOCS2 gene for each
trait was calculated by applying the following equation

[15]: explained variance ¼ α̂2�σ̂ 2

gT

σ̂2

g

, with α the allele sub-

stitution effect of the SOCS2 gene mutation on the trait
described previously.
We also used the estimated variance components to

derive the genetic correlation (rg) between the SOCS2
gene content trait and the trait of interest with the fol-
lowing equation:

r̂g ¼ côvðg; gT Þ
σ̂g � σ̂gT

:

Prediction accuracy
To validate the EBVs, we added progeny performances
from 264 males born in 2015, which had not been used
to predict these EBVs, to a validation set (Table 4). We
computed the accuracies of the genomic predictions for
each model and for each trait using the Pearson correl-
ation between EBVs for the males in the validation

population and DYDs. The numbers of rams in the val-
idation population for each trait with EBVs and DYD are
shown in Table 4.

Additional file

Additional file 1: Figure S1 Visualization of linkage disequilibrium (r2 ×
100) between the 40 markers closest to the SOCS2 point mutation
(rs868996547, in the middle). Figure S2 Visualization of linkage
disequilibrium measured as squared correlation coefficient (r2) according
to distance between markers on the 50 K ovine SNP chip. Figure S3
Components estimations according to the different models. One-trait
methods correspond to eqs. (1) and (2) and two-traits methods to eqs.
(3) and (4). Figure S4 Manhattan plots of estimated SNP effects using the
best WssGBLUP approach for each phenotype (second iteration). On the
left are presented analysis without the SOCS2 genotype among the
markers and on the right, with the SOCS2 genotype (green point). Figure
S5 Manhattan plots of estimated variance explained by 20 adjacent SNPs
using the best WssGBLUP approach for each phenotype (second
iteration). The horizontal red line represents the threshold of 1% adopted
in this study. On the left are presented the analyses without the SOCS2
genotype among the markers and on the right, with the SOCS2
genotype. (DOCX 2190 kb)
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