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Abstract 27 

Due to the more frequent use of crop models at regional and national scale, the effects of spatial data input 28 

resolution have gained increased attention. However, little is known about the influence of variability in crop 29 

management on model outputs. A constant and uniform crop management is often considered over the simulated 30 

area and period. This study determines the influence of crop management adapted to climatic conditions and input 31 

data resolution on regional-scale outputs of crop models. For this purpose, winter wheat and maize were simulated 32 

over 30 years with spatially and temporally uniform management or adaptive management for North Rhine-33 

Westphalia (~34 083 km²), Germany. Adaptive management to local climatic conditions was used for 1) sowing 34 

date, 2) N fertilization dates, 3) N amounts, and 4) crop cycle length. Therefore, the models were applied with four 35 

different management sets for each crop. Input data for climate, soil and management were selected at five 36 

resolutions, from 1×1 km to 100×100 km grid size. Overall, 11 crop models were used to predict regional mean 37 

crop yield, actual evapotranspiration, and drainage. Adaptive management had little effect (<10 % difference) on 38 

the 30-year mean of the three output variables for most models and did not depend on soil, climate, and 39 

management resolution. Nevertheless, the effect was substantial for certain models, up to 31 % on yield, 27 % on 40 

evapotranspiration, and 12 % on drainage compared to the uniform management reference. In general, effects 41 

were stronger on yield than on evapotranspiration and drainage, which had little sensitivity to changes in 42 

management. Scaling effects were generally lower than management effects on yield and evapotranspiration as 43 

opposed to drainage. Despite this trend, sensitivity to management and scaling varied greatly among the models. 44 

At the annual scale, effects were stronger in certain years, particularly the management effect on yield. These 45 

results imply that depending on the model, the representation of management should be carefully chosen, 46 

particularly when simulating yields and for predictions on annual scale. 47 

 48 

Keywords: drainage, evapotranspiration, aggregation, decision rules, scaling  49 
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1. Introduction 50 

Large-scale assessment studies based on simulations by crop models are frequently used to evaluate the impacts 51 

of agriculture. These studies usually focus on predictions of crop production in different contexts, such as climate 52 

change, its inter-annual variability, or trends over time (Gaiser et al., 2010; Nendel et al., 2013). Crop models are 53 

also used to study carbon sequestration or the greenhouse gas balance at regional or national scale (Gaiser et al., 54 

2009, 2008; Tornquist et al., 2009). Other studies focus on the water balance and its dynamics at the watershed 55 

scale. For the latter, crop models are combined with other models (e.g., hydrological) and applied to quantitative 56 

water management and irrigation issues (Noory et al., 2011; Robert et al., 2018; Therond et al., 2014). 57 

Crop models are useful tools for large-scale assessment since exhaustive measurements are not feasible or 58 

available. However, they were developed to simulate homogeneous fields, each represented by a combination of 59 

one soil and one climate. Some of these models were designed to simulate only one season, e.g. one crop and its 60 

management, while others are capable of simulating different crops in sequence, mimicking a crop rotation over a 61 

longer time period (Kollas et al., 2015). When applied at a larger scale, these models are usually applied in a 62 

gridded approach, simulating each grid cell independently, while assuming homogeneity within each grid cell (De 63 

Wit et al., 2012; Huang et al., 2015; Mo et al., 2005; van Ittersum et al., 2013). For such approach, it is necessary 64 

to provide input data for soil, climate, and management for each simulated unit. Depending on the study and the 65 

systems’ heterogeneity, the number of homogeneous units can range from a few to millions. Such data, especially 66 

management data, are not easily available at large scales and at high spatial or temporal resolution. Several 67 

methods exist to scale-up the data over the whole study area, such as sampling, aggregation from fine to coarser 68 

resolution, extrapolation or interpolation of the available data (Ewert et al., 2011). As an alternative, management 69 

information can also be simulated for large-scale studies (Hutchings et al., 2012).  70 

Nowadays, it is possible to obtain soil and climate data at a relatively high resolution and at a large or even global 71 

scale from databases such as those in the Global Soil Map project (http://globalsoilmap.net/), the European soil 72 

portal for soil, the SoilGrids project (soilgrids.org) and the international CORDEX initiative for climate projection 73 

(https://www.euro-cordex.net/). On the other hand, the available databases on crop management data are at 74 

coarser resolutions such as those reported by Portmann et al. (2010) and Sacks et al. (2010) for crop growing 75 

periods or earthstat.org for fertilizer inputs. Usually, the few data available on crop management come from 76 
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interviews with farmers, local experts, or observation networks. It provides an average date of sowing, harvest, and 77 

fertilization for instance or fertilizer input amounts for a given region for different crops and generally concern only 78 

one or a few years. Some initiatives such as the observation network of the German weather service DWD 79 

documenting key phenological stages as well as sowing and harvest could provide useful data for regional 80 

modelling (Kersebaum and Nendel, 2014) but do not cover the wide range of cultivation operations such as nitrogen 81 

fertilization for instance. As a result, large-scale studies usually consider management as uniform across the region 82 

and fixed over multiple years. However, it is well known that crop management, such as sowing, varies over space 83 

and time (Leenhardt and Lemaire, 2002). Additionally, the sowing date significantly impacts crop development and 84 

yield (Bonelli et al., 2016), and influences subsequent management actions during season.  85 

To address the scarcity of the data and to adapt the management to the local and annual conditions, some authors 86 

suggested using management rules. Such management rules aim at reproducing the behavior of farmers and their 87 

crop management strategies (Maton et al., 2005; Nendel, 2009; Senthilkumar et al., 2015). In addition, these rules 88 

would help identify better management strategies. For example, suitable climate and soil conditions could be 89 

identified to perform cultivation operations (e.g., avoiding soil compaction by triggering an operation when the soil 90 

is not too wet or avoiding the risk of frost for spring crops). This adaptive management, based on management 91 

decision rules, could have a strong impact on model outputs but is rarely investigated at a large scale. Since the 92 

impact of input data aggregation and adaptive management can differ according to the output variables and crop 93 

models, these effects should be investigated with respect to a range of different crop models, output variables, and 94 

cultivation operations (i.e. sowing, soil tillage, irrigation…). 95 

The objective of this study was to analyze the effect of adaptive management and spatial resolution on regional 96 

yields, evapotranspiration, and drainage predicted by a set of crop models. The main issues addressed were (1) 97 

whether adaptive management and/or input resolution influence the crop models’ outputs at the regional scale, in 98 

which way and how much and (2) whether the scaling effect varies when management changes over time and 99 

space.  100 

To meet this goal, we quantified the impact of adaptive management and input resolution on the regional mean of 101 

simulated yield, evapotranspiration, and drainage for each individual year as well as for the 30-year average. We 102 

further analyzed whether the impact of management or spatial resolution depended on the crop model, output of 103 
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interest, crop, or cultivation operation. To do so, we introduced adaptive management for sowing dates, fertilization 104 

dates, and crop maturity classes based on decision rules and variable amounts of nitrogen fertilization. 105 

2. Materials and Methods 106 

2.1. Study area 107 

The study area was the 34.083 km² federal state of North Rhine-Westphalia (NRW, 6.0-9.5° E, 50.0-52.5° N), 108 

located in the west of Germany. NRW has a temperate and humid climate with an oceanic influence. Like Hoffmann 109 

et al. (2016b) and Zhao et al. (2015), we assumed in the simulations that agricultural land covered the entire region 110 

and that winter wheat and silage maize were the two dominant monoculture crops. Over the period studied (1982-111 

2012), mean annual temperature was 9.7 °C, mean annual precipitation was 899 mm, and mean annual global 112 

radiation was 3.758 MJ m−2. 113 

2.2. Crop models 114 

We selected 11 crop models to run the simulations from 1982-2012: AgroC (Herbst et al., 2008; Klosterhalfen et 115 

al., 2017), APSIM-Nwheat (Asseng et al., 2000), CoupModel (Conrad, 2009; Jansson, 2012), DailyDayCent (Del 116 

Grosso et al., 2006; Yeluripati et al., 2009), EPIC (Williams, 1995; Williams et al., 1983), Expert-N (Priesack et al., 117 

2006), HERMES (Kersebaum, 2007), LINTUL in the framework solution SIMPLACE<Lintul5, SLIM> (Gaiser et al., 118 

2013; Zhao et al., 2015b), MCWLA (Tao et al., 2009; Tao and Zhang, 2013), MONICA (Nendel et al., 2011) and 119 

STICS within the RECORD platform (Bergez et al., 2014; Brisson et al., 2003). These process-based models run 120 

at a daily time step, except for Expert-N, which runs at an hourly time step. The models represent soil and crop 121 

processes with differing degrees of simplification. All simulated winter wheat, but only seven simulated silage maize 122 

in this paper. All represent water and nitrogen stresses, except for AgroC and MCLWA, which represent only water 123 

stress. 124 

 125 

2.3. Input data of the crop models 126 

2.3.1. Climate and soil data aggregation 127 

For climate, we used 30 years of daily weather for 34.168 grid cells of 1×1 km resolution and aggregated these 128 

data for the 10×10, 25×25, 50×50, and 100×100 km grid cells, as described by Hoffmann et al. (2015). For soil 129 
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data, we used the dominant soil of the 1×1 km grid cells to set the soil type for the 10×10, 25×25, 50×50, and 130 

100×100 km grid cells, respectively. For the soil and climatic data, see Hoffmann et al. (2016a) and for more details 131 

of data aggregation, see Hoffmann et al. (2016b). Figure 1 presents the maps of mean annual precipitation and 132 

available water capacity (soil water content at field capacity minus the soil water content at wilting point) of the soils 133 

for each resolution. 134 

 135 
Figure 1. Maps of (a) mean annual precipitation over 30 years (1982-2012) and (b) available water capacity in each of the five resolutions 136 

for North Rhine-Westphalia, Germany.All simulations were run using the same resolution of soil and climate data (km×km): 137 

1×1, 10×10, 25×25, 50×50, and 100×100. 138 

2.3.2. Crop choice and management sets  139 

We simulated the two dominant crops of the region in monoculture in continuous model runs of 30 years on every 140 

grid cell. Both winter wheat and silage maize were grown under rainfed conditions and with mineral N fertilization 141 

(208 and 238 kg N ha-1 yr-1, respectively). For both crops, we simulated export of crop residues at harvest and 142 

plowing of soil in autumn. We simulated six sets of management strategies to analyze the impact of adaptive 143 

management in interaction with the scaling effect: 144 

1. Mfix is the reference, which is the same uniform management for a given crop regardless of the year or 145 

grid cell. We used the common cultivation operations in NRW as the reference management strategy. 146 

Winter wheat and silage maize were sown on 1st of October and 20th of April, respectively. Crops were 147 
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harvested at maturity or on 1st of August for wheat and 20th of September for maize, depending on the 148 

model. 149 

2. Ms uses variable sowing, fertilization, and harvest dates for each cell, at each resolution and year 150 

according to decision rules based on climate, as in Senthilkumar et al. (2015) for maize and Savin et al. 151 

(2007) for wheat. For each crop, we calculated the earliest sowing date for all 30 years per grid cell (Fig. 152 

2). Then, beginning on this date each year for each grid cell, we checked whether daily temperature and 153 

soil trafficability exceeded thresholds necessary for sowing. If all conditions were met, the crop was sown 154 

on that day. If sowing was impossible before a latest “allowed” date, it occurred on this date. 155 

 156 

Figure 2. Overview of decision rules for wheat and maize sowing and fertilization dates. DOY = day of year 157 

 158 

Fertilization date was set from the sowing date and depended on a minimum amount of thermal time and 159 

sufficient soil trafficability. Like for sowing, we defined a latest “allowed” date. We calculated the earliest 160 

harvest date as the number of days required to reach a certain cumulative thermal time from the sowing 161 

date. Beginning on this date, we checked soil trafficability each day to identify the first suitable harvest 162 

date. We calibrated the thresholds used in the decision rules to ensure that average dates were similar to 163 

those in Mfix. Estimated sowing dates among all grid cells and years ranged from 12th of March to 11th of 164 

May for maize and 21st of September to 16th of December for winter wheat. When averaged for all cells in 165 

the region, the mean sowing date each year ranged from 13th of April to 30th of April for maize and 22nd of 166 

September to 25th of October for wheat over the 30 years. Median sowing dates over the 30 years were 167 

19th of April and 4th of October for maize and wheat, respectively, which were similar to those of Mfix (20th 168 

of April and 1st of October). Distributions of regional sowing dates for the five resolutions were similar, 169 
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despite some differences for the coarser resolutions. Depending on the year, the mean regional sowing 170 

date was similar among resolutions.  171 

3. Msvar is similar to the Ms approach, but with the maturity class of the cultivar adapted to the climate 172 

conditions in each grid cell on each resolution. We chose one of three maturity classes or varieties (early, 173 

middle, or late) with a development length better adapted to climate characteristics by calculating the mean 174 

cumulative thermal time between sowing dates and the mean harvest date (20th of September for maize 175 

and 10th of July for wheat) over the 30 years. The maturity class in a given cell remained the same for all 176 

30 years. We calibrated the three varieties for each model using the sowing and harvest dates of ten 177 

contrasting cells. 178 

4. The fourth to sixth sets are the same as the Ms approach, but with a decrease in mineral N fertilization by 179 

25% (MsF75), 50% (MsF50), and 75% (MsF25) of the reference fertilization amount, respectively. Thus, 180 

mineral N fertilization decreased from 238 to 179, 119 and 60 kg N ha-1 yr-1 for maize and from 208 to 156, 181 

104 and 52 kg N ha-1 yr-1 for wheat in MsF75, MsF50, and MsF25, respectively.  182 

The objective of these six sets was to create spatial and temporal variability in the cultivation operations to analyze 183 

their impacts on the model results. The adaptive management based on climatic conditions was calculated for each 184 

grid cell for each of the five resolutions. The purpose was not to reproduce the actual management strategies, but 185 

to reproduce a credible range of cultivation operations over time and within the region to analyze their potential 186 

impacts on model outputs. Other cultivation operations such as tillage were assumed spatially and temporally 187 

uniform for all management sets. 188 

2.3. Simulation overview and data selection 189 

We analyzed three output variables: crop yield and two components of the water balance, evapotranspiration over 190 

the growing period and annual drainage under wheat to determine if some model outputs were more sensitive to 191 

scaling or management than others. Yield is often studied at large scale, while water fluxes are quite important 192 

when crop models are coupled with hydrological models to analyze water management at the watershed scale. We 193 

first selected and summarized simulated data (Table 1). We analyzed all three variables for five models only but 194 

yield and evapotranspiration were provided for six other models. Due to the complexity of the simulated experiments 195 

and model limitations, not all simulations were performed with all models (Table 1). 196 

 197 
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Table 1. Overview of the simulated resolutions and outputs analyzed by model, crop and management set. 198 

  

Outputs 

Resolution for Wheat  Resolution for Maize 

Model Code Mfixa Ms Msvar MsF75 MsF50 MsF25  Mfix Ms Msvar MsF75 MsF50 MsF25 

MONICA MONI Y, E, Db Allc All All All All All  All All All All All All 

STICS STIC Y, E, D All All All All All All  All All All All All All 

LINTUL LINT Y, E, D All All - All All All  All All All All All All 

CoupModel COUP Y, E, D All All - All All All  - - - - - - 

Expert-N EXPN Y, E, D - All All All All All  - - - - - - 

EPIC EPIC Y, E All All All All All All  All All All All All All 

HERMES HERM Y, E All All All All All All  All All All All All All 

DailyDayCent DayC Y, E All All All All All Not 1x1d  All All All Not 1x1 All Not 1x1 

APSIM-Nwheat NWHE Y, E Not 1x1 All All All All All  - - - - - - 

AgroCe AGRC Y, E All All All - - -  All All All - - - 

MCWLA MCLW Y, E All All All - - -  - - - - - - 
a Mfix is a fixed management strategy for each crop; Ms indicates that sowing and fertilization dates depend on the grid cell and the year; 199 
Msvar, MsF50 and MsF25 are the same as Ms but with adaptation of cultivar precocity to the cell or with a 50% and 75%, decrease in fertilization, 200 
respectively. 201 
b Y is yield; E is actual evapotranspiration over the growing season for both crops; D is annual water drainage under wheat.  202 
c “All” indicates that all resolutions (1x1 km, 10x10 km, 25x25 km, 50x50 km and 100x100 km) were simulated 203 
d ”Not 1x1” indicates that all resolutions except for 1x1 km were simulated. 204 
e Data for E in AgroC are for maize only.  205 

 206 

The simulations were done for the five resolutions (1x1, 10x10, 25x25, 50x50, and 100x100 km) with the same 207 

resolution for soil, climate, and management inputs. Among the six different management sets (Mfix, Ms, Msvar, 208 

MsF75, MsF50, and MsF25), the uniform one (Mfix) was the same over all resolutions, while the others based on decision 209 

rules were generated at the same resolution as soil and climatic inputs. This resulted in a maximum of 30 210 

combinations for each crop (five resolutions for each of the six management sets). 211 

Scaling and management effects were studied on outputs averaged at the regional scale. Scaling effect was defined 212 

as the difference on the output of interest when using coarser resolution inputs in a model. Management effect was 213 

defined as the difference on the output of interest when using different management inputs in a model. 214 

 215 

2.4. Data analysis 216 

We quantified management and scaling effects on the regional means for each year of the 30-year simulation and 217 

for all 30 years together by model, crop and output variable. To analyze the scaling effect, we calculated the 218 

difference between the output at each resolution (𝑋̅𝑆𝑥) and those simulated at the highest resolution available 219 

(𝑋̅𝑆𝑟): 220 

∆𝑋̅𝑆 =  
𝑋̅𝑆𝑥−𝑋̅𝑆𝑟

𝑋̅𝑆𝑟
× 100           [1] 221 
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where ∆𝑋̅𝑆 is the difference (%) in the output at a given resolution compared to that at the reference resolution, 222 

𝑋̅𝑆𝑥 is the mean output for the region at a given resolution, and 𝑋̅𝑆𝑟  is the mean output of the region at the reference 223 

resolution, which was the 1×1 km resolution, except for APSIM-Nwheat in Mfix and DailyDayCent in MsF25 and MsF75 224 

for which it was 10×10 km. We calculated this difference due to input resolution by crop, model, and management 225 

set for each resolution, except the reference set. 226 

To analyze the management effect, we calculated the difference between the output for each management set 227 

(𝑋̅𝑀𝑥) and those simulated for the reference set (𝑋̅𝑀𝑟):  228 

∆𝑋̅𝑀 =  
𝑋̅𝑀𝑥−𝑋̅𝑀𝑟

𝑋̅𝑀𝑟
× 100         [2] 229 

where ∆𝑋̅𝑀 is the difference (%) in the output for a given management set compared to that for the reference set, 230 

𝑋̅𝑀𝑥 is the mean output for the region for a given management set 𝑥, and 𝑋̅𝑀𝑟 is the mean regional output for the 231 

reference management set, which was Mfix, except for Expert-N, for which it was Ms. We calculated this difference 232 

resulting from adaptive management by crop, model, and resolution for each management set, except for the 233 

reference set. 234 

For analyses at the annual scale, we calculated an annual scaling effect (ASE) and annual management effect 235 

(AME) for each of the 30 years, following the same logic as that for the 30-year mean (Eq. 1 and 2), but applied to 236 

the annual regional mean of each model. Again, we calculated these differences by model, crop, output, and 237 

resolution for AME or management set for ASE. 238 

To determine if the effects of management or scaling were significant, we used a Student’s t-test to compare each 239 

regional mean for a given output to the result of its reference (1x1km for scaling and Mfix for management in most 240 

cases). The comparison was done on both annual and 30-years means for each model, crop, and output.  241 

 242 

3. Results 243 

3.1 Simulated yield, evapotranspiration, and drainage for winter wheat and silage maize 244 

Predictions of the regional annual yield, evapotranspiration, and drainage for the two crops differed among models 245 

for Mfix at 1×1 km resolution. This difference was particularly large for evapotranspiration for both crops, with 246 

regional annual medians by model ranging from 236-477 mm (235-484 mm for means) over the wheat growing 247 
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season and 285-527 mm (284-523 mm for means) over the maize growing season, resulting in a maximum 248 

difference of 334 and 239 mm, respectively (Fig. 3). Regional annual median wheat yield varied less among models, 249 

from 5.8-8.0 t ha-1 (6.0-7.9 t ha-1 in mean), while median maize yield ranged from 11.3-16.2 t ha-1 (10.4-15.5 t ha-1 250 

in mean). Median drainage varied from 356-500 mm yr-1 (355-497 mm yr-1 in mean) resulting in a maximum 251 

difference of 144 mm among the five models providing simulated drainage.  252 

 253 

Figure 3. Distributions of the region’s annual means of yield (dry matter (DM); tDM ha-1 yr-1) and evapotranspiration (growing season (gs); 254 

mm gs-1) for wheat and maize, and annual mean drainage (mm yr-1) under wheat over 30-year simulations by each model at its reference 255 

resolution (1 km × 1 km, except for NWHE (10 km × 10 km)) and management set (Mfix, except for EXPN (Ms)). The dotted line indicates 256 

the ensemble mean of all models for a given output. See Table 1 for model abbreviations. 257 

Inter-annual variability also varied among the models (Fig. 3). For instance, LINTUL predicted highest inter-annual 258 

variability in maize yield, while EPIC predicted lowest variability. A similar difference was observed for wheat yield 259 

between DailyDayCent (highest) and MCWLA (lowest), and for annual drainage between MONICA (highest) and 260 

STICS (lowest).  261 

3.2 Management effect on 30-year regional means at each resolution 262 

We analyzed the management effect on 30-year regional means by comparing Ms, Msvar and MsF75 to Mfix at each 263 

resolution. Maximum management effects (in negative and positive) in yield, evapotranspiration, and drainage 264 

among models were -26% and +31%, -27% and +15%, and -12% and +1%, respectively (Table 2). For yield, these 265 

maximum management effects were similar for wheat and maize. For evapotranspiration, maximum positive 266 

differences (overestimation as compared to the reference) were slightly higher for wheat (+14%) than for maize 267 

(+4%). For maize evapotranspiration, the difference tended to be negative (underestimation as compared to the 268 

reference), whereby this trend was less consistent for wheat evapotranspiration. For drainage, the use of adaptive 269 

management sets tended to result in a negative difference (underestimation) that was the same within all 270 
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resolutions, but one that was smaller than those for yield or evapotranspiration. However, the number of crop 271 

models reporting simulated drainage was much smaller as those reporting yield or evapotranspiration.  272 

Table 2. Maximum negative and positive management effect among models (𝑀𝑖𝑛(∆𝑋̅𝑀); 𝑀𝑎𝑥(∆𝑋̅𝑀)) for the sets Ms, Msvar 273 

and MsF75 compared to Mfix and number of models in each level of absolute effect (|∆𝑋̅𝑀|) for a given output averaged over 274 

the region and all 30 years. The results are shown by crop and resolution (1 km x 1 km to 100 km x 100 km).  275 

     Wheat  Maize All crops 
All Res      1x1 10x10 25x25 50x50 100x100  1x1 10x10 25x25 50x50 100x100 

Maximum 
negative and 
positive 
effect (%) 

Y1 𝑀𝑖𝑛(∆𝑋̅𝑀) -20 -18 -19 -19 -24  -18 -19 -20 -21 -26 -26 
 𝑀𝑎𝑥(∆𝑋̅𝑀) 18 19 20 31 20  23 24 20 20 20 31 

E2 𝑀𝑖𝑛(∆𝑋̅𝑀) -22 -23 -23 -24 -24  -21 -22 -23 -24 -27 -27 
  𝑀𝑎𝑥(∆𝑋̅𝑀) 14 14 14 15 15  4 4 7 3 3 15 

D3 𝑀𝑖𝑛(∆𝑋̅𝑀) -12 -12 -12 -12 -12  
NA 

-12 
  𝑀𝑎𝑥(∆𝑋̅𝑀) 0 0 1 1 1  1 

Number of 
models by 
management 
effect level 

Y |∆𝑋̅𝑀| ≤ 5% 4 5 5 5 6   0 0 0 0 0 25 
 5% < |∆𝑋̅𝑀| ≤ 10% 2 3 3 2 2  1 0 0 1 2 16 
 10% < |∆𝑋̅𝑀| ≤ 15% 1 1 1 0 0  2 4 4 3 2 18 
 15% < |∆𝑋̅𝑀| ≤ 20% 3 2 2 3 2  3 2 1 2 1 21 
 20% < |∆𝑋̅𝑀| ≤ 30% 0 0 0 0 1  1 1 2 1 2 8 
 30% < |∆𝑋̅𝑀| ≤ 40% 0 0 0 1 0   0 0 0 0 0 1 

 Total 10 11 11 11 11  7 7 7 7 7 89 

E |∆𝑋̅𝑀| ≤ 5% 5 5 6 6 6   2 2 3 3 3 41 
 5%<|∆𝑋̅𝑀| ≤ 10% 2 2 1 0 1  2 2 1 1 1 13 
 10%|∆𝑋̅𝑀| ≤ 15% 1 2 1 1 0  1 1 1 1 1 10 
 15%<|∆𝑋̅𝑀| ≤ 20% 0 0 0 1 2  1 1 1 1 1 8 
 20%<|∆𝑋̅𝑀| ≤ 30% 1 1 2 2 1  1 1 1 1 1 12 

 Total 9 10 10 10 10  7 7 7 7 7 84 

D |∆𝑋̅𝑀| ≤ 5% 4 4 4 4 4   

NA 

20 
 10%<|∆𝑋̅𝑀| ≤ 15% 1 1 1 1 1   5 

 Total 5 5 5 5 5  25 
1 Y is crop yield 276 
2 E is evapotranspiration over the growing season 277 
3 D is drainage over the growing season 278 

 279 

The response of outputs to management adaptations was model-dependent (see Table S1). For wheat, certain 280 

models had low sensitivity to management sets, such as CoupModel, Expert-N, and STICS for all outputs (|∆𝑋̅𝑆| 281 

≤ 6%) and LINTUL for yield and evapotranspiration. Other models were much more sensitive to changes in 282 

management, such as HERMES, AgroC, and DailyDayCent for crop yield, MCWLA and EPIC for 283 

evapotranspiration, and LINTUL for drainage. Overall, most predictions were similar to those with Mfix (|∆𝑋̅𝑆| = 0-284 

5%), although, some models predicted a large difference in the model output for certain management sets. This 285 

range of absolute difference below 5% was most common for most outputs, except for maize yield, for which the 286 

most common range of absolute difference was 10 to 15%. The regional yield for maize appeared more sensitive 287 

to differences in management than that for wheat, while the same range of differences was observed for 288 

evapotranspiration between the two crops. This higher sensitivity for maize was not related to a particular 289 
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management set, since each one (Ms, Msvar, MsF75) could reach the same range of absolute difference, depending 290 

on the model. 291 

The management effect on the 30-year regional mean was similar among resolutions for a given crop and output 292 

for most models (see Table S1). Therefore, resolution did not seem to influence the difference due to management, 293 

except for APSIM-Nwheat at 50×50 km resolution for both wheat yield and evapotranspiration, and for MCWLA at 294 

a resolution of 10×10 km and coarser for wheat evapotranspiration. 295 

 Table 3. Statistical analysis by model, crop and output of the management and scaling effect. Significant difference (** p-296 

value <0.05) were tested by Student's t-Test compared to the reference. The number of model with significant effect and the 297 

total number of model available are given at the bottom of the table. 298 

“Yd” is yield, “ET” is evapotranspiration over the growing season and “Dr” is the annual drainage. “p” means that the 30-years mean is significantly different 299 
from the reference. “a” means that the annual mean is significantly different from the reference “-” means the outputs was not available for a given model. 300 

No value means that the effect was not significant. “nb(p,a)” is the number of cases for which 30-yrs and annual means were significantly different from the 301 
reference. 302 
 303 

Management effect were significant on yield and evapotranspiration for more than half of models irrespectively of 304 

the management set used (Table 3). The effect on drainage was significant only for one of the five models that 305 

provide all three output variables, the LINTUL model. Significant effects were not linked to one management set in 306 

particular, even if they were slightly more frequent in the low fertilization management set (MsF50, MsF25) for some 307 

models. 308 

3.3 Scaling effect on the 30-year regional means for each management set 309 

We analyzed the scaling effect on 30-year regional means by comparing the coarser resolutions to the finest one 310 

for each of the six management sets. 311 

Management effect Scaling effect

Wheat Maize Wheat Maize

Ms Msvar MsF75 MsF50 MsF25 Ms Msvar MsF75 MsF50 MsF25 r10 r25 r50 r100 r50 r100

Yd ET Dr Yd ET Yd ET Dr Yd ET Dr Yd ET Dr Yd ET Yd ET Yd ET Yd ET Yd ET Dr ET Dr ET Dr Yd ET Dr Yd ET Yd ET

MONI (p,a) (p) (p,a) (p) (p,a) (p,a) (p) (p,a) (p,a) (p,a) (p,a) (p,a) (p) (p,a) (p,a) (p,a) (p,a) (p,a) (p,a) (p) (p) (p)

STIC (p) (p) (p) (p,a) (p) (p) (p,a) (p) (p,a) (p) (p) (p,a) (p,a) (p,a) (p,a) (p,a) (p,a) (p,a) (p,a) (p,a) (p) (p) (p) (p,a)

COUP (p) - - (p) (p,a) - (p) (p) (p) (p) (p,a)

LINT (p) (p) - - (p) (p) (p) (p) (p,a) (p,a) (p) (p) (p) (p,a) (p) (p,a) (p) (p,a) (p) (a)

EPIC (p) (p,a) - (p) (p,a) (p) (p,a) - (p,a) (p,a) - (p,a) (p,a) - (p,a) (p,a) (p,a) (p,a) (p,a) (p,a) (p,a) (p,a) (p,a) (p,a) - - - - (a) (a)

EXPN - - - (p) (p) (p) (p) (p) (p) (p) (p)

HERM (p,a) (p,a) - (p,a) (p,a) (p,a) (p,a) - (p) (p,a) - (p,a) (p,a) - (p) (p,a) (p,a) (p,a) (p,a) (p,a) - - - -

DayC - (p,a) - (p,a) - (p,a) - (p,a) (p,a) (p,a) - (p) - (p,a) - (p,a) - (a) (p,a) (p)

NWHE (p,a) - (p,a) (p,a) - (p,a) - (p,a) - - - - (p) (p,a) -

AGRC (p,a) - - (p,a) - (p,a) (p,a) (p,a) (p,a) - - - - - - - - - - - -

MCWL (p) (p,a) - (p) (p,a) - - - -

nb(p,a) 7-2 7-5 1-0 6-2 7-6 7-2 5-4 1-0 8-4 5-3 1-0 8-7 8-5 1-0 6-3 4-4 6-6 6-4 5-5 4-3 6-6 4-3 6-6 4-3 2-0 1-0 4-0 2-1 4-0 1-1 3-2 4-2 0-2 1-1 0-2 1-0

Total 10 9 4 9 8 9 9 5 9 9 5 9 8 5 7 7 7 7 6 6 6 6 6 6 5 11 5 10 5 11 10 5 7 7 7 7

-

- - -

- -

- -

- -
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  Table 4. Maximum negative and positive scaling effect among models (𝑀𝑖𝑛(∆𝑋̅𝑆); 𝑀𝑎𝑥(∆𝑋̅𝑆)) for each 312 

resolution (10 km × 10 km, 25 km × 25 km, 50 km × 50 km and 100 km × 100 km) compared to the finest resolution and 313 

number of models in each level of absolute effect (|∆𝑋̅𝑆|) for a given output averaged over the region and all 30 years. The 314 

results are shown by crop and management set (Mfix to MsF25).  315 

     Wheat   Maize All crops 

     Mfix Ms Msvar MsF75 MsF50 MsF25   Mfix Ms Msvar MsF75 MsF50 MsF25 All Man 

Maximum 
negative 
and positive 
effect (%) 

Y1 𝑀𝑖𝑛(∆𝑋̅𝑆) -9 -8 -12 -8 -10 -15  -11 -9 -11 -8 -7 -11 -15 
 𝑀𝑎𝑥(∆𝑋̅𝑆) 5 24 9 5 6 8  9 10 12 6 7 5 24 

 E2 𝑀𝑖𝑛(∆𝑋̅𝑆) -3 -4 -5 -3 -3 -4   -5 -3 -7 -2 -2 -3 -7 
  𝑀𝑎𝑥(∆𝑋̅𝑠) 6 15 7 8 8 6   9 14 7 6 7 5 15 

 D3 𝑀𝑖𝑛(∆𝑋̅𝑆) -16 -15 -15 -15 -16 -16        
NA 

    -16 
  𝑀𝑎𝑥(∆𝑋̅𝑆) 0 0 0 0 0 0             0 

Number of 
models by 
scaling 
effect level 

Y |∆𝑋̅𝑆| ≤ 5% 7 6 4 5 4 5   2 4 3 4 4 3 51 
 5%<|∆𝑋̅𝑆| ≤ 10% 4 4 3 4 4 2  4 3 2 2 2 2 36 
 10%<|∆𝑋̅𝑆| ≤ 15% 0 0 2 0 1 2  1 0 2 0 0 1 9 
 20%<|∆𝑋̅𝑆| ≤ 25% 0 1 0 0 0 0   0 0 0 0 0 0 1 

 Total 11 11 9 9 9 9  7 7 7 6 6 6 97 

E |∆𝑋̅𝑆| ≤ 5% 9 8 7 8 8 8   5 5 4 5 5 5 77 
 5%<|∆𝑋̅𝑆| ≤ 10% 1 1 3 1 1 1  2 1 3 1 1 1 17 
 10%<|∆𝑋̅𝑆| ≤ 15% 0 1 0 0 0 0   0 1 0 0 0 0 2 

 Total 10 10 10 9 9 9  7 7 7 6 6 6 96 

D 5%<|∆𝑋̅𝑆| ≤ 10% 2 3 4 3 3 3   

NA 

18 
 10%<|∆𝑋̅𝑆| ≤ 15% 1 1 1 1 1 1  6 
 15%<|∆𝑋̅𝑆| ≤ 20% 1 1 0 1 1 1   5 

 Total 4 5 5 5 5 5  29 
1 Y is crop yield 316 
2 E is evapotranspiration over the growing season 317 
3 D is drainage over the growing season 318 

 319 

Overall, the scaling effect on yield was in a smaller range of differences than the management effect, ranging from 320 

-15% to +24% and from -26% to +31%, respectively (Table 2 and 4). The scaling effect was weaker on 321 

evapotranspiration than on yield or drainage, with most models having an absolute difference below 5% only. Over 322 

all models, the scaling effect was both negative and positive on yield and evapotranspiration but always negative 323 

(underestimation) on drainage regardless of the model (Table 4). For the five models simulating the three output 324 

variables, evapotranspiration shows the smallest overall range with -5 to 2% while drainage and yield ranged from 325 

-16 to 0% and -10 to 3% respectively.  326 

Certain models were more sensitive to scaling when simulating maize yield or evapotranspiration, such as STICS, 327 

and EPIC, whereas others were more sensitive when simulating wheat, such as LINTUL and DailyDayCent (see 328 

Table S2). For models predicting all three outputs, the scaling effect was higher on drainage than on yield and 329 

smallest on evapotranspiration. The scaling effect was similar across the management sets, meaning that there is 330 

no observable trend related to the management sets, regardless of the crop simulated or model used. 331 
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The significance was more frequent for management effect than for scaling on yield and evapotranspiration while 332 

it was the opposite for drainage (Table 3). The scaling effect on yield was significant only for the coarsest resolutions 333 

(100×100 km) and for one model (NWHEAT) while it was significant on three models and more resolutions (25×25 334 

km, 50×50 km, and 100×100 km) for evapotranspiration. The scaling effect on drainage was significant for all 335 

resolutions and most models. As opposed to the management effect, the significance of scaling effect was 336 

dependent on resolution with more frequent significant effect for coarser resolutions. 337 

3.4 Scaling and management effects at the annual scale  338 

For the 30-year simulations, we calculated the ASE and AME on the regional means for each variable and each 339 

model. Compared to AME, ASE was much weaker on yield and evapotranspiration for both crops, particularly when 340 

excluding the 100×100 km resolution (Fig. 4). This effect was more obvious on yield than on evapotranspiration, 341 

for which the ASE and AME often remained weak, which was also the case for simulated drainage. The maximum 342 

difference due to a specific management set or resolution for a given year was also strongly model-dependent. 343 

Figure 4.  Distributions of annual scaling (ASE, 10x10, 25x25, 50x50 and 100x100) and management (AME, Ms, Msvar, MsF75, MsF50 and 344 

MsF25) effects on yield, evapotranspiration and drainage over 30-year simulation period compared to their respective reference, for 11 crop 345 

models (without outlier). For a given model, crop and output, each boxplot represents the average over all grid cells for each year over the 346 
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30 years, and either all management sets for the scaling effect or all resolutions for the management effect. See Table 1 for model 347 

abbreviations.  348 

 349 

Figure 4 shows that the maximum ASE was generally small but increased with coarser resolution. For simulated 350 

wheat yield, APSIM-Nwheat had highest maximum ASE (77%) compared to the other models (<38%) at the 50×50 351 

km resolution due to higher yield using Ms, while it was in the same range as those of the other models at the other 352 

resolutions. This led to a higher evapotranspiration (28%) as well on this Ms set and 50×50 km resolution. Apart 353 

from this set, the maximum ASE for APSIM-Nwheat at 50×50 km resolution was 19% and 6% on yield and 354 

evapotranspiration, respectively. On maize evapotranspiration, maximum ASE was highest at 25×25 km resolution 355 

for HERMES (17%) but was in the same range as those of the other models at the other resolutions (9% or lower). 356 

Generally, the models with the highest ASE were APSIM-Nwheat, DailyDayCent, HERMES, and in certain cases 357 

MCWLA, STICS, and LINTUL, depending on the output variable and the crop. In general, the ASE on yield of both 358 

crops and drainage was similar, and weakest on evapotranspiration (usually less than 10%). 359 

The AME was generally higher on yield and evapotranspiration than ASE but had a similar range for drainage. 360 

Some models had an extremely large maximum AME, reaching 160% of the difference for a given year on the 361 

regional wheat yield for DailyDayCent and 120% on the regional maize yield for LINTUL (Fig. 4). For some models, 362 

such as CoupModel, maximum AME was around 10% only, indicating that regardless of the year, the difference 363 

due to management was low, except for MsF25, for which the maximum AME was at least 20%, regardless of the 364 

model. The AME was weaker on evapotranspiration than on yield and was even weaker on drainage. AME was 365 

similar for wheat and maize, but the difference among models was larger for wheat. This is partly because the 366 

models with the lowest AME (CoupModel and Expert-N) are available only for wheat and because maximum AME 367 

in LINTUL was higher on wheat than on maize evapotranspiration (68-71% vs. 20-25%, respectively). Drainage 368 

was less variable, with the weakest AME for the models only simulating all outputs, except for CoupModel, for which 369 

the AME was weaker on evapotranspiration. The maximum AME on drainage was 22% for LINTUL, 19% for STICS, 370 

11% for Expert-N, 8% for CoupModel, and 4% for MONICA. No consistent trend occurred among the management 371 

sets as for evapotranspiration. Additionally, no effect of resolution on AME was observed, since the difference was 372 

the same at the five resolutions for a given crop, output variable, and model (data not shown). AME was generally 373 
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low on evapotranspiration, and even lower on drainage in 90% of the situations, regardless of the model or the crop 374 

simulated, unlike regional yield, which was more sensitive to the management set.  375 

As for the 30-years averages, significance was more frequent for management effect than for scaling (Table 3). 376 

Management influenced significantly yield and evapotranspiration under growing season for some models but not 377 

annual drainage. This result was observed for some models simulating the three output variables such as MONICA 378 

and STICS that have significant management effect for evapotranspiration or yield but not for drainage. Scaling 379 

effects were generally not significant, with some exceptions for the two coarser resolutions while management 380 

effects were often significant, especially for the two low fertilization management sets (MsF50 and MsF25). 381 

Management effects were more frequently significant for maize yield and evapotranspiration than for wheat at this 382 

annual scale for most models.  383 

4. Discussion 384 

4.1. Management and scaling effect on the 30-year regional mean 385 

At the multi-year scale over 30 years, the scaling and management effects were weak for most models, crops and 386 

outputs, even if significant. The scaling effect results confirm the results of previous studies on the impact of soil 387 

and climate aggregation on yield and net primary productivity (NPP) for the same study site and simulation period 388 

(Hoffmann et al., 2016b; Kuhnert et al., 2016). Further, our results indicate that varying management options over 389 

space and time in the region did not change the overall findings made when assuming constant management. 390 

Nevertheless, the scaling effect depended on the output variable, being larger for drainage than for yield or 391 

evapotranspiration when compared between the five models simulating the three output variables. The impact of 392 

the choice of the crop (winter or spring crop) on the other hand was negligible. The stronger scaling effect on 393 

drainage (observed for models providing the three outputs) and the direction of its difference was probably due to 394 

the choice of the dominant soil when moving from high to lower resolution. Lowering the resolution of soil input data 395 

resulted in an increase in the total soil water storage because deep soils were dominant in the region, which induced 396 

lower drainage. Grosz et al. (2017) also observed the scaling effect on predictions of change in soil organic carbon 397 

over time, which depend greatly on soil input data. In the same way, Coucheney et al. (2018) showed that the 398 
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sensitivity to scaling was output-dependent with a greater effect of soil aggregation on soil C mineralization and N 399 

leaching than on yield and drainage for the CoupModel. 400 

The maximum management effect tended to be higher than the maximum scaling effect, with 42 vs. 10 % of the 401 

cases in which differences compared to the reference were greater than 10 %, respectively. The management 402 

effect varied among models, with most 30-year regional mean outputs being slightly sensitive to management 403 

(absolute difference below 10%). This was particularly true for evapotranspiration of both crops, drainage and wheat 404 

yield, regardless of the input resolution. The stronger effect on yield could be partly due to the use of percentage 405 

to quantify the effect. Since average yields are much lower than evapotranspiration and drainage, a small variation 406 

lead to a higher percentage for this output. However, for the scaling effect the effect was strongest on drainage. 407 

The management effect tended to be higher on maize than on winter wheat yield for most models, suggesting a 408 

greater impact of management on spring crops than on winter crops. This result seems consistent with the shorter 409 

growing season of spring crops, leaving less time to compensate a late sowing for instance. The hypothesis of a 410 

higher sensitivity of spring crops should be tested with other crops such as sunflower or soybean. For some models 411 

(2-4 models), different representation of management changed the 30-year regional mean substantially (by more 412 

than 15% for yield and for evapotranspiration depending on the resolution and crop), indicating the need to carefully 413 

choose how to represent management in these crop models to obtain relevant multi-year regional means. Contrary, 414 

management choices seemed less important for the 30-year regional drainage, (showing less than 13 % difference 415 

in all management sets). 416 

4.2. Stronger effects at the annual scale 417 

The same trend occurred at the annual scale as for the 30-year regional mean: the management effect was usually 418 

higher than the scaling effect, with large differences among models. The management effect as well as the scaling 419 

effect on the regional mean were stronger for certain years than for others. This indicates that the choices made to 420 

represent management are more important when studies focus on annual regional outputs than on multi-year 421 

average regional outputs. This importance varied among models and, depending on the model, the cultivation 422 

operation considered. Hereby, it is crucial to ensure that the chosen model is able to predict effects of a given 423 

management strategy, such as sowing date, to accurately predict variability in the outputs caused by the 424 
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management changes. If the management strategy has a substantial effect on the output variable of interest, the 425 

uncertainty due to the choice of management option in the simulation should be estimated. 426 

Since the years with large effects on management options or scaling differed among models, it is difficult to identify 427 

which characteristics of the years that interact with the models to generate the more or less strong effects. No effect 428 

of climate characteristics such as a dry or hot year effects was found in the analyses. The effect were strongly 429 

model-dependent, the same year predictions being sensitive to scaling or management effect for some models but 430 

not for others. No generic characteristics of the input data could be identified; the effect being probably due to a 431 

model-soil-climate interaction. This difference between crop model outputs behavior is probably partly due to model 432 

structures as well as their parametrization, their the relative contribution being unclear. Hereby, sensitivity analysis 433 

performed in individual studies of each model could be helpful to understand model behavior and to determine 434 

characteristic input-output relationships (Specka et al., 2015; Varella et al., 2012). It could then clarify the major 435 

factors behind model differences with respect to the occurrence of strong effects of management strategies in 436 

specific years. 437 

4.3. Representation of management strategies in large-scale studies 438 

We used decision rules to generate management options based on climatic conditions. We then compared 439 

simulations based on these management options with those of uniform and fixed sowing, harvest, and fertilization 440 

dates over one region over multiple years. In general, uniform sowing, harvest, and fertilization dates as well the 441 

use of a single cultivar are an unrealistic representation of common management at the regional scale. Folberth et 442 

al. (2016) showed that in model-based global scale assessments, absolute yield levels depend on the 443 

parameterization and distribution of crop cultivars. However, it is still commonly applied in large-scale modelling 444 

studies since real data are often scarce (Faivre et al., 2004). The advantage of using decision rules is that it provide 445 

a management, which is consistent with local climate and soil as compared to fixed assumptions. These can also 446 

be used to simulate changes in management over time due to climate change (Senthilkumar et al., 2015). One 447 

limitation is that the same decision rules are used for all grid cells, while different farmers apply different rules for 448 

crop management (Maton et al., 2005) depending on their social, economic, and pedoclimatic conditions. Decisions 449 

rules based on an optimal strategy according to climatic conditions could lead to overestimated yields. Moreover, 450 
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not taking into account soil characteristics could also lead to unrealistic management in some cases. Since the 451 

purpose of this study was to evaluate if management choices had an impact on regional output variables, these 452 

concerns were not of critical importance. To get more realistic data on management at large scale, remote sensing 453 

could add useful information on crop type (Griffiths et al., 2019), sowing and harvest dates, or irrigation schedules 454 

(Battude et al., 2017). Here, we analyzed the potential impact of choosing a variable management to predict the 455 

difference in crop model outputs compared to a reference based on a spatially uniform management fixed in time. 456 

The access and use of observed management data for the entire region to validate the relevance and accuracy of 457 

the decision rules, would improve assessments of the role and effect of management input data and resolution for 458 

simulations at regional scale. It could be relevant to include other cultivation operations, such as soil tillage or 459 

irrigation, depending on the outputs of interest. For instance, irrigation is important when water balance is the focus 460 

of the simulation study, particularly in southern Europe. 461 

5. Conclusion 462 

In our regional-scale study, we showed that the management effect was generally stronger than the scaling effect. 463 

The strength of the effects depended on the crop model and the output variable of interest, with some models and 464 

output variables being much more sensitive to management options than others. Scaling and management effects 465 

were also stronger when evaluated on individual years than on the 30-year mean, for which these effects were 466 

usually weak. The effects varied both between models and among years. Strong impacts occurred but not 467 

necessarily during the same years for all models, which indicates a need for further analysis with respect to each 468 

model to explain these effects in depth. Additionally, the findings of this study might be different in other conditions 469 

and therefore need to be confirmed with respect to a different region with contrasting soil and climate conditions.  470 

 471 

Acknowledgments 472 

This work was supported by the FACCE MACSUR knowledge hub (http://macsur.eu). JC, HR, EC and JEB thank 473 

the INRA ACCAF metaprogramme for funding. FT and RPR were supported by FACCE MACSUR (3200009600) 474 

through the Finnish Ministry of Agriculture and Forestry (MMM). HE, EL and AV were supported by The Swedish 475 

Research Council for Environment, Agricultural Sciences and Spatial Planning (220-2007-1218) and by the 476 



21 
 

strategic funding ‘Soil-Water-Landscape’ from the faculty of Natural Resources and Agricultural Sciences (Swedish 477 

University of Agricultural Sciences) and thank professor P-E Jansson (Royal Institute of Technology, Stockholm) 478 

for support. ET was funded by the Royal Society of New Zealand and the Climate Change Impacts and Implications 479 

for New Zealand project (CCII) financed by the Ministry of Business, Innovation and Employment (MBIE). FE, TG 480 

and HH acknowledge support by the German Federal Ministry of Food and Agriculture 481 

(BMEL) through the Federal Office for Agriculture and Food (BLE), (2851ERA01J). KCK, CN and XS acknowledge 482 

FACCE MACSUR (2812ERA147). MK and JY thank for the funding by the UK BBSRC (BB/N004922/1) and the 483 

MAXWELL HPC team of the University of Aberdeen for providing equipment and support through the German 484 

Federal Ministry of Food and Agriculture for the DailyDayCent simulations. The funders had no role in study design, 485 

data collection and analysis, decision to publish, or preparation of the manuscript.   486 



22 
 

References 487 

Asseng, S., van Keulen, H., Stol, W., 2000. Performance and application of the APSIM Nwheat model in the 488 
Netherlands. Eur. J. Agron. 12, 37–54. https://doi.org/10.1016/S1161-0301(99)00044-1 489 

Battude, M., Al Bitar, A., Brut, A., Tallec, T., Huc, M., Cros, J., Weber, J.J., Lhuissier, L., Simonneaux, V., 490 
Demarez, V., 2017. Modeling water needs and total irrigation depths of maize crop in the south west of 491 
France using high spatial and temporal resolution satellite imagery. Agric. Water Manag. 189, 123–136. 492 
https://doi.org/10.1016/j.agwat.2017.04.018 493 

Bergez, J.-E., Raynal, H., Launay, M., Beaudoin, N., Casellas, E., Caubel, J., Chabrier, P., Coucheney, E., Dury, 494 
J., García de Cortázar-Atauri, I., Justes, É., Mary, B., Ripoche, D., Ruget, F., 2014. Evolution of the STICS 495 
crop model to tackle new environmental issues: New formalisms and integration in the modelling and 496 
simulation platform RECORD. Environ. Model. Softw. 62, 370–384. 497 
https://doi.org/10.1016/j.envsoft.2014.07.010 498 

Bonelli, L.E., Monzon, J.P., Cerrudo, A., Rizzalli, R.H., Andrade, F.H., 2016. Maize grain yield components and 499 
source-sink relationship as affected by the delay in sowing date. F. Crop. Res. 198, 215–225. 500 
https://doi.org/10.1016/j.fcr.2016.09.003 501 

Brisson, N., Gary, C., Justes, É., Roche, R., Mary, B., Ripoche, D., Zimmer, D., Sierra, J., Bertuzzi, P., Burger, P., 502 
Bussiere, F., Cabidoche, Y.M., Cellier, P., Debaeke, P., Gaudillère, J.P., Hénault, C., Maraux, F., Seguin, 503 
B., Sinoquet, H., 2003. An overview of the crop model STICS. Eur. J. Agron. 18, 309–332. 504 
https://doi.org/10.1016/S1161-0301(02)00110-7 505 

Conrad, Y., 2009. Modelling of nitrogen leaching under a complex winter wheat and red clover crop rotation in a 506 
drained agricultural field. Phys. Chem. Earth, Parts A/B/C 34, 530–540. 507 
https://doi.org/10.1016/J.PCE.2008.08.003 508 

Coucheney, E., Eckersten, H., Hoffmann, H., Jansson, P.E., Gaiser, T., Ewert, F., Lewan, E., 2018. Key 509 
functional soil types explain data aggregation effects on simulated yield, soil carbon, drainage and nitrogen 510 
leaching at a regional scale. Geoderma 318, 167–181. https://doi.org/10.1016/j.geoderma.2017.11.025 511 

De Wit, A., Duveiller, G., Defourny, P., 2012. Estimating regional winter wheat yield with WOFOST through the 512 
assimilation of green area index retrieved from MODIS observations. Agric. For. Meteorol. 164, 39–52. 513 
https://doi.org/10.1016/j.agrformet.2012.04.011 514 

Del Grosso, S.J., Parton, W.J., Mosier, A.R., Walsh, M.K., Ojima, D.S., Thornton, P.E., 2006. DAYCENT 515 
National-Scale Simulations of Nitrous Oxide Emissions from Cropped Soils in the United States. J. Environ. 516 
Qual. 35, 1451. https://doi.org/10.2134/jeq2005.0160 517 

Ewert, F., van Ittersum, M.K., Heckelei, T., Therond, O., Bezlepkina, I., Andersen, E., 2011. Scale changes and 518 
model linking methods for integrated assessment of agri-environmental systems. Agric. Ecosyst. Environ. 519 
142, 6–17. https://doi.org/10.1016/j.agee.2011.05.016 520 

Faivre, R., Leenhardt, D., Voltz, M., Benoît, M., Papy, F., Dedieu, G., Wallach, D., 2004. Spatialising crop models. 521 
Agronomie 24, 205–217. https://doi.org/10.1051/agro 522 

Folberth, C., Elliott, J., Müller, C., Balkovič, J., Izaurralde, R.C., Jones, C.D., Khabarov, N., Liu, W., Reddy, A., 523 
Schmid, E., Skalský, R., Yang, H., 2016. Uncertainties in global crop model frameworks : effects of cultivar 524 
distribution , crop management and soil handling on crop yield estimates 1–30. https://doi.org/10.5194/bg-525 
2016-527 526 

Gaiser, T., Abdel-Razek, M., Bakara, H., 2009. Modeling carbon sequestration under zero-tillage at the regional 527 
scale. II. The influence of crop rotation and soil type. Ecol. Modell. 220, 3372–3379. 528 
https://doi.org/10.1016/j.ecolmodel.2009.08.001 529 

Gaiser, T., Judex, M., Hiepe, C., Kuhn, A., 2010. Regional simulation of maize production in tropical savanna 530 



23 
 

fallow systems as affected by fallow availability. Agric. Syst. 103, 656–665. 531 
https://doi.org/10.1016/j.agsy.2010.08.004 532 

Gaiser, T., Perkons, U., Küpper, P.M., Kautz, T., Uteau-Puschmann, D., Ewert, F., Enders, A., Krauss, G., 2013. 533 
Modeling biopore effects on root growth and biomass production on soils with pronounced sub-soil clay 534 
accumulation. Ecol. Modell. 256, 6–15. https://doi.org/10.1016/J.ECOLMODEL.2013.02.016 535 

Gaiser, T., Stahr, K., Billen, N., Mohammad, M.A.R., 2008. Modeling carbon sequestration under zero tillage at 536 
the regional scale. I. The effect of soil erosion. Ecol. Modell. 218, 110–120. 537 
https://doi.org/10.1016/j.ecolmodel.2008.06.025 538 

Griffiths, P., Nendel, C., Hostert, P., 2019. Intra-annual reflectance composites from Sentinel-2 and Landsat for 539 
national-scale crop and land cover mapping. Remote Sens. Environ. 220, 135–151. 540 
https://doi.org/10.1016/j.rse.2018.10.031 541 

Grosz, B., Dechow, R., Gebbert, S., Hoffmann, H., Zhao, G., Constantin, J., Raynal, H., Wallach, D., Coucheney, 542 
E., Lewan, E., Eckersten, H., Specka, X., Kersebaum, K.C., Nendel, C., Kuhnert, M., Yeluripati, J.B., Haas, 543 
E., Teixeira, E.I., Bindi, M., Trombi, G., Moriondo, M., Doro, L., Roggero, P.P., Zhao, Z., Wang, E., Tao, F., 544 
Rötter, R.P., Kassie, B., Cammarano, D., Asseng, S., Weihermüller, L., Siebert, S., Gaiser, T., Ewert, F., 545 
2017. The implication of input data aggregation on up-scaling soil organic carbon changes. Environ. Model. 546 
Softw. 96, 361–377. https://doi.org/10.1016/j.envsoft.2017.06.046 547 

Herbst, M., Hellebrand, H.J., Bauer, J., Huisman, J.A., Šimůnek, J., Weihermüller, L., Graf, A., Vanderborght, J., 548 
Vereecken, H., 2008. Multiyear heterotrophic soil respiration: Evaluation of a coupled CO2transport and 549 
carbon turnover model. Ecol. Modell. 214, 271–283. https://doi.org/10.1016/j.ecolmodel.2008.02.007 550 

Hoffmann, H., Enders, A., Siebert, S., Gaiser, T., Ewert, F., 2016a. Climate and soil input data aggregation 551 
effects in crop models. Havard Database V3. https://doi.org/https://doi.org/10.7910/DVN/C0J5BB 552 

Hoffmann, H., Zhao, G., Asseng, S., Bindi, M., Biernath, C., Constantin, J., Coucheney, E., Dechow, R., Doro, L., 553 
Eckersten, H., Gaiser, T., Grosz, B., Heinlein, F., Kassie, B.T., Kersebaum, K.C., Klein, C., Kuhnert, M., 554 
Lewan, E., Moriondo, M., Nendel, C., Priesack, E., Raynal, H., Roggero, P.P., Rötter, R.P., Siebert, S., 555 
Specka, X., Tao, F., Teixeira, E.I., Trombi, G., Wallach, D., Weihermüller, L., Yeluripati, J.B., Ewert, F., 556 
2016b. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations. PLoS 557 
One 11, e0151782. https://doi.org/10.1371/journal.pone.0151782 558 

Hoffmann, H., Zhao, G., Van Bussel, L.G.J., Enders, A., Specka, X., Sosa, C., Yeluripati, J.B., Tao, F., 559 
Constantin, J., Raynal, H., Teixeira, E.I., Grosz, B., Doro, L., Zhao, Z., Wang, E., Nendel, C., Kersebaum, 560 
K.C., Haas, E., Kiese, R., Klatt, S., Eckersten, H., Vanuytrecht, E., Kuhnert, M., Lewan, E., Rötter, R.P., 561 
Roggero, P.P., Wallach, D., Cammarano, D., Asseng, S., Krauss, G., Siebert, S., Gaiser, T., Ewert, F., 562 
2015. Variability of effects of spatial climate data aggregation on regional yield simulation by crop models. 563 
Clim. Res. 69, 53–69. https://doi.org/10.3354/cr01326 564 

Huang, J., Tian, L., Liang, S., Ma, H., Becker-Reshef, I., Huang, Y., Su, W., Zhang, X., Zhu, D., Wu, W., 2015. 565 
Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS 566 
data into the WOFOST model. Agric. For. Meteorol. 204, 106–121. 567 
https://doi.org/10.1016/j.agrformet.2015.02.001 568 

Hutchings, N.J., Reinds, G.J., Leip, A., Wattenbach, M., Bienkowski, J.F., Dalgaard, T., Dragosits, U., Drouet, 569 
J.L., Durand, P., Maury, O., De Vries, W., 2012. A model for simulating the timelines of field operations at a 570 
European scale for use in complex dynamic models. Biogeosciences 9, 4487–4496. 571 
https://doi.org/10.5194/bg-9-4487-2012 572 

Jansson, P.-E., 2012. Coupmodel: Model use, calibration, and validation. Trans. ASABE 55, 1335–1344. 573 

Kersebaum, K.C., 2007. Modelling nitrogen dynamics in soil–crop systems with HERMES, in: Modelling Water 574 
and Nutrient Dynamics in Soil–crop Systems. Springer Netherlands, Dordrecht, pp. 147–160. 575 



24 
 

https://doi.org/10.1007/978-1-4020-4479-3_11 576 

Kersebaum, K.C., Nendel, C., 2014. Site-specific impacts of climate change on wheat production across regions 577 
of Germany using different CO2response functions. Eur. J. Agron. 52, 22–32. 578 
https://doi.org/10.1016/j.eja.2013.04.005 579 

Klosterhalfen, A., Herbst, M., Weihermüller, L., Graf, A., Schmidt, M., Stadler, A., Schneider, K., Subke, J.A., 580 
Huisman, J.A., Vereecken, H., 2017. Multi-site calibration and validation of a net ecosystem carbon 581 
exchange model for croplands. Ecol. Modell. 363, 137–156. 582 
https://doi.org/10.1016/j.ecolmodel.2017.07.028 583 

Kollas, C., Kersebaum, K.C., Nendel, C., Manevski, K., Müller, C., Palosuo, T., Armas-Herrera, C.M., Beaudoin, 584 
N., Bindi, M., Charfeddine, M., Conradt, T., Constantin, J., Eitzinger, J., Ewert, F., Ferrise, R., Gaiser, T., 585 
García de Cortázar-Atauri, I., Giglio, L., Hlavinka, P., Hoffmann, H., Hoffmann, M.P., Launay, M., 586 
Manderscheid, R., Mary, B., Mirschel, W., Moriondo, M., Olesen, J.E., Öztürk, I., Pacholski, A., Ripoche-587 
Wachter, D., Roggero, P.P., Roncossek, S., Rötter, R.P., Ruget, F., Sharif, B., Trnka, M., Ventrella, D., 588 
Waha, K., Wegehenkel, M., Weigel, H.-J., Wu, L., 2015. Crop rotation modelling—A European model 589 
intercomparison. Eur. J. Agron. 70, 98–111. https://doi.org/10.1016/j.eja.2015.06.007 590 

Kuhnert, M., Yeluripati, J.B., Smith, P., Hoffmann, H., van Oijen, M., Constantin, J., Coucheney, E., Dechow, R., 591 
Eckersten, H., Gaiser, T., Grosz, B., Haas, E., Kersebaum, K.C., Kiese, R., Klatt, S., Lewan, E., Nendel, C., 592 
Raynal, H., Sosa, C., Specka, X., Teixeira, E.I., Wang, E., Weihermüller, L., Zhao, G., Zhao, Z., Ogle, S., 593 
Ewert, F., 2016. Impact analysis of climate data aggregation at different spatial scales on simulated net 594 
primary productivity for croplands. Eur. J. Agron. 88, 41–52. https://doi.org/10.1016/j.eja.2016.06.005 595 

Leenhardt, D., Lemaire, P., 2002. Estimating the spatial and temporal distribution of sowing dates for regional 596 
water management. Agric. Water Manag. 55, 37–52. https://doi.org/10.1016/S0378-3774(01)00183-4 597 

Maton, L., Leenhardt, D., Goulard, M., Bergez, J.-E., 2005. Assessing the irrigation strategies over a wide 598 
geographical area from structural data about farming systems. Agric. Syst. 86, 293–311. 599 
https://doi.org/10.1016/j.agsy.2004.09.010 600 

Mo, X., Liu, S., Lin, Z., Xu, Y., Xiang, Y., McVicar, T.R., 2005. Prediction of crop yield, water consumption and 601 
water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain. 602 
Ecol. Modell. 183, 301–322. https://doi.org/10.1016/j.ecolmodel.2004.07.032 603 

Nendel, C., 2009. Evaluation of Best Management Practices for N fertilisation in regional field vegetable 604 
production with a small-scale simulation model. Eur. J. Agron. 30, 110–118. 605 
https://doi.org/10.1016/j.eja.2008.08.003 606 

Nendel, C., Berg, M., Kersebaum, K.C., Mirschel, W., Specka, X., Wegehenkel, M., Wenkel, K.O., Wieland, R., 607 
2011. The MONICA model: Testing predictability for crop growth, soil moisture and nitrogen dynamics. 608 
Ecol. Modell. 222, 1614–1625. https://doi.org/10.1016/J.ECOLMODEL.2011.02.018 609 

Nendel, C., Wieland, R., Mirschel, W., Specka, X., Guddat, C., Kersebaum, K.C., 2013. Simulating regional winter 610 
wheat yields using input data of different spatial resolution. F. Crop. Res. 145, 67–77. 611 
https://doi.org/10.1016/j.fcr.2013.02.014 612 

Noory, H., van der Zee, S.E.A.T.M., Liaghat, A.-M., Parsinejad, M., van Dam, J.C., 2011. Distributed agro-613 
hydrological modeling with SWAP to improve water and salt management of the Voshmgir Irrigation and 614 
Drainage Network in Northern Iran. Agric. Water Manag. 98, 1062–1070. 615 
https://doi.org/10.1016/j.agwat.2011.01.013 616 

Portmann, F.T., Siebert, S., Döll, P., 2010. MIRCA2000—Global monthly irrigated and rainfed crop areas around 617 
the year 2000: A new high‐resolution data set for agricultural and hydrological modeling. Global 618 
Biogeochem. Cycles 24, 1–24. https://doi.org/10.1029/2008GB003435 619 

Priesack, E., Gayler, S., Hartmann, H.P., 2006. The impact of crop growth sub-model choice on simulated water 620 



25 
 

and nitrogen balances. Nutr. Cycl. Agroecosystems 75, 1–13. https://doi.org/10.1007/s10705-006-9006-1 621 

Robert, M., Thomas, A., Sekhar, M., Raynal, H., Casellas, E., Casel, P., Chabrier, P., Joannon, A., Bergez, J.-E., 622 
2018. A dynamic model for water management at the farm level integrating strategic, tactical and 623 
operational decisions. Environ. Model. Softw. 100, 123–135. https://doi.org/10.1016/j.envsoft.2017.11.013 624 

Sacks, W.J., Deryng, D., Foley, J.A., Ramankutty, N., 2010. Crop planting dates: An analysis of global patterns. 625 
Glob. Ecol. Biogeogr. 19, 607–620. https://doi.org/10.1111/j.1466-8238.2010.00551.x 626 

Savin, I., Boogaard, H., Diepen, C. Van, Ham, H. Van Der, 2007. Climatically Optimal Planting Dates. JRC Sci. 627 
Tech. Reports 58. 628 

Senthilkumar, K., Bergez, J.-E., Leenhardt, D., 2015. Can farmers use maize earliness choice and sowing dates 629 
to cope with future water scarcity? A modelling approach applied to south-western France. Agric. Water 630 
Manag. 152, 125–134. https://doi.org/10.1016/j.agwat.2015.01.004 631 

Specka, X., Nendel, C., Wieland, R., 2015. Analysing the parameter sensitivity of the agro-ecosystem model 632 
MONICA for different crops. Eur. J. Agron. 71, 73–87. https://doi.org/10.1016/j.eja.2015.08.004 633 

Tao, F., Yokozawa, M., Zhang, Z., 2009. Modelling the impacts of weather and climate variability on crop 634 
productivity over a large area: A new process-based model development, optimization, and uncertainties 635 
analysis. Agric. For. Meteorol. 149, 831–850. https://doi.org/10.1016/j.agrformet.2008.11.004 636 

Tao, F., Zhang, Z., 2013. Climate change, wheat productivity and water use in the North China Plain: A new 637 
super-ensemble-based probabilistic projection. Agric. For. Meteorol. 170, 146–165. 638 
https://doi.org/10.1016/J.AGRFORMET.2011.10.003 639 

Therond, O., Sibertin-blanc, C., Lardy, R., Gaudou, B., Sauvage, S., Taillandier, P., Vavasseur, M., Mazzega, P., 640 
Balestrat, M., Ong, Y., Louail, T., Mayor, E., Bai, V., 2014. Integrated modelling of social-ecological 641 
systems : The MAELIA high-resolution multi-agent platform to deal with water scarcity problems, in: 7th Intl. 642 
Congress on Env. Modelling and Software, San Diego, CA, USA. June, p. 8. 643 

Tornquist, C.G., Gassman, P.W., Mielniczuk, J., Giasson, E., Campbell, T., 2009. Spatially explicit simulations of 644 
soil C dynamics in Southern Brazil: Integrating century and GIS with i_Century. Geoderma 150, 404–414. 645 
https://doi.org/10.1016/j.geoderma.2009.03.001 646 

van Ittersum, M.K., Cassman, K.G., Grassini, P., Wolf, J., Tittonell, P., Hochman, Z., 2013. Yield gap analysis 647 
with local to global relevance-A review. F. Crop. Res. 143, 4–17. https://doi.org/10.1016/j.fcr.2012.09.009 648 

Varella, H., Buis, S., Launay, M., Guérif, M., 2012. Global sensitivity analysis for choosing the main soil 649 
parameters of a crop model to be determined. Agric. Sci. 3, 949–961. 650 

Williams, J.R., 1995. The EPIC model. Computer models of watershed hydrology. Water resources publications, 651 
Highland Ranch CO. 652 

Williams, J.R., Renard, K.G., Dyke, P.T., 1983. EPIC: a new method for assessing erosion’s effect on soil 653 
productivity. J. Soil Water Conserv. 38, 381–383. 654 

Yeluripati, J.B., van Oijen, M., Wattenbach, M., Neftel, A., Ammann, A., Parton, W.J., Smith, P., 2009. Bayesian 655 
calibration as a tool for initialising the carbon pools of dynamic soil models. Soil Biol. Biochem. 41, 2579–656 
2583. https://doi.org/10.1016/J.SOILBIO.2009.08.021 657 

Zhao, G., Hoffmann, H., Van Bussel, L.G.J., Enders, A., Specka, X., Sosa, C., Yeluripati, J.B., Tao, F., 658 
Constantin, J., Raynal, H., Teixeira, E.I., Grosz, B., Doro, L., Zhao, Z., Nendel, C., Kiese, R., Eckersten, H., 659 
Haas, E., Vanuytrecht, E., Wang, E., Kuhnert, M., Trombi, G., Moriondo, M., Bindi, M., Lewan, E., Bach, M., 660 
Kersebaum, K.C., Rötter, R.P., Roggero, P.P., Wallach, D., Cammarano, D., Asseng, S., Krauss, G., 661 
Siebert, S., Gaiser, T., Ewert, F., 2015a. Effect of weather data aggregation on regional crop simulation for 662 
different crops, production conditions, and response variables. Clim. Res. 65, 141–157. 663 



26 
 

https://doi.org/10.3354/cr01301 664 

Zhao, G., Siebert, S., Enders, A., Rezaei, E.E., Yan, C., Ewert, F., 2015b. Demand for multi-scale weather data 665 
for regional crop modeling. Agric. For. Meteorol. 200, 156–171. 666 
https://doi.org/10.1016/j.agrformet.2014.09.026 667 

 668 

  669 



27 
 

. Supplementary Material 670 

S1. Minimum and maximum values for management effect for the sets Ms, Msvar and MsF75 compared to Mfix for a given output, model, 671 
crop and resolution (% difference compared to the reference management set). Brackets contain minimum and maximum differences; a 672 
single value indicates that the minimum equals the maximum. Y is crop yield, E is evapotranspiration over the growing season and D is 673 
drainage over the growing season. See Table 1 for model abbreviations. 674 

    Wheat  Maize All crops 
All Res     1x1 10x10 25x25 50x50 100x100  1x1 10x10 25x25 50x50 100x100 

Y MONI [-6;0] [-5;0] [-6;0] [-6;-1] [-6;0]  [-11;-6] [-11;-6] [-11;-6] [-10;-6] [-9;-6] [-11;0] 
 STIC [-5;6] [-5;5] [-5;5] [-4;6] [-6;4]  [-12;-7] [-12;-7] [-12;-7] [-12;-6] [-11;-4] [-12;6] 
 LINT [4;5] 4 4 4 4  [-3;8] [-3;10] [-2;11] [-2;12] [-2;14] [-3;14] 
 COUP [1;2] [1;2] [1;2] [1;2] 2  NA NA NA NA NA [1;2] 
 EXPN -3 [-5;-2] [-5;-2] [-5;-3] [-5;-4]  NA NA NA NA NA [-5;-2] 
 EPIC [-5;4] [-4;4] [-4;5] [-4;5] [-4;3]  [18;23] [18;24] [15;20] [14;20] [11;20] [-5;24] 
 HERM [16;18] [16;19] [15;20] [14;19] [18;20]  [-18;-5] [-19;-6] [-20;1] [-21;-6] [-23;-6] [-23;20] 
 DayC [-16;-2] [-15;-1] [-14;0] [-15;-1] [-15;1]  [-15;-4] [-11;-3] [-11;-2] [-13;-4] [-9;0] [-16;1] 
 NWHE NA [4;5] [4;5] [2;31] [-1;3]  NA NA NA NA NA [-1;31] 
 AGRC [-20;-19] -18 [-19;-18] [-19;-17] [-24;-20]  [-17;12] [-18;9] [-19;11] [-20;12] [-26;11] [-26;12] 
 MCWL -12 [-7;0] [-5;4] [-2;3] [2;3]  NA NA NA  NA NA [-12;4] 

E MONI [6;14] [6;14] [6;14] [6;15] [6;15]  [-6;2] [-5;2] [-5;3] [-4;3] [-4;3] [-6;15] 
 STIC [2;4] [3;4] [3;4] 3 [2;2]  [-7;-6] [-7;-5] [-7;-5] [-7;-4] [-7;-4] [-7;4] 
 LINT 0 0 0 0 0  [-2;1] [-2;1] [-2;2] [-2;2] [-2;2] [-2;2] 
 COUP -1 0 -1 -1 [-1;0]  NA NA NA NA NA [-1;0] 
 EXPN 0 [-1;0] [-1;0] [-2;0] [-3;0]  NA NA NA NA NA [-3;0] 
 EPIC -22 [-23;-22] [-23;-21] [-24;-21] [-24;-22]  [-21;-16] [-22;-16] [-23;-17] [-24;-18] [-27;-20] [-27;-16] 
 HERM [-6;-4] [-5;-4] [-5;-4] -4 -3  [-11;-4] [-10;-3] [-10;7] [-11;-2] [-12;-2] [-12;7] 
 DayC [-1;3] [0;3] [1;3] [2;3] [3;4]  [1;4] [2;4] [2;4] [0;2] [-1;3] [-1;4] 
 NWHE NA 9 10 [9;26] [8;10]  NA NA NA NA NA [0;26] 
 AGRC NA NA NA NA NA  [-17;-11] [-16;-12] [-16;-9] [-16;-9] [-19;-9] [-19;-9] 
 MCWL [-6;-6] [0;14] [15;21] [15;20] [16;18]  NA NA NA NA NA [-6;21] 

D MONI [-2;-1] [-2;-1] [-2;-1] [-2;-1] -2  

NA 

[-2;-1] 
 STIC [-5;-4] [-5;-4] [-5;-4] [-5;-4] -4  [-5;-4] 
 LINT [-12;-11] -12 -12 -12 -12  [-12;-11] 
 COUP -1 -1 -1 -1 -1  -1 
 EXPN 0 [-2;0] [0;1] [0;1] [0;1]  [-2;1] 
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S2. Minimum and maximum values for scaling effect between all resolutions compared to the reference resolution (1 km × 1 km in most 676 
cases) for a given output, model, management set and crop (% difference compared to the reference resolution). Brackets contain 677 
minimum and maximum values; a single value indicates that the minimum equals the maximum. Y is crop yield, E is evapotranspiration 678 
over the growing season and D is drainage over the growing season. See Table 1 for model abbreviations. 679 

    Wheat        Maize           All crops 

    Mfix Ms Msvar MsF75 MsF50 MsF25   Mfix Ms Msvar MsF75 MsF50 MsF25 All Mx 

Y MONI [0;1] [0;1] [0;2] [0;1] [0;2] [0;2]  [-1;0] [0;1] 0 [0;1] [0;2] [0;2] [-1;2] 
 STIC [-4;1] [-5;1] [-6;-1] [-5;1] [-4;2] [-3;2]  [-11;-2] [-9;-1] [-11;-2] [-8;-1] [-7;-1] [-7;-1] [-11;2] 
 LINT [-5;-2] [-6;-2] NA [-5;-2] [-5;-2] [-5;-2]  [-6;-3] [-1;0] [-5;-2] [-1;0] [-1;0] [-1;0] [-6;0] 
 COUP [-1;2] [-1;3] NA [-1;3] [-1;3] [-1;3]  NA NA NA NA NA NA [-1;3] 
 EXPN NA [-8;-1] [-10;-2] [-8;-1] [-8;-1] [-8;0]  NA NA NA NA NA NA [-10;0] 
 EPIC [-1;4] [0;5] [-1;4] [-1;5] [-2;4] [-3;5]  [-1;6] [-1;3] [-1;3] [-1;3] [-1;3] [-1;3] [-3;6] 
 HERM [-1;3] [-1;4] [-3;0] [0;4] [0;6] [0;8]  [-3;3] [-4;4] [-9;0] [-4;2] [-5;3] [-5;5] [-9;8] 
 DayC [-9;0] [-5;3] [-6;2] [-8;2] [-10;3] [-15;0]  [-5;9] [-1;10] [1;12] [-4;6] [-2;7] [-11;2] [-15;12] 
 NWHE [-7;-1] [-8;24] [-12;1] [-8;0] [-9;-1] [-12;-5]  NA NA NA NA NA NA [-12;24] 
 AGRC [1;5] [3;7] [-2;3] NA NA NA  [2;6] [0;6] [-10;2] NA NA NA [-10;7] 
 MCWL [-3;0] [-4;0] [2;9] NA NA NA   NA NA NA NA NA NA [-4;9] 

E MONI 0 [0;1] [0;1] [0;1] [0;1] [0;1]   [-1;0] [0;1] 0 1 1 [1;2] [-1;2] 
 STIC [0;1] [0;1] [-2;0] [0;1] [0;2] [0;2]  [-4;-1] [-2;1] [-4;0] [-2;1] [-1;1] [-1;1] [-4;2] 
 LINT [-2;0] [-2;1] NA [-2;0] [-2;0] [-1;0]  [-2;0] [-1;0] [-2;0] [-1;0] [-1;0] [0;1] [-2;1] 
 COUP [-1;1] [0;1] NA [0;1] [0;1] [0;1]  NA NA NA NA NA NA [-1;1] 
 EXPN NA [-3;0] [-5;-1] [-3;0] [-3;0] [-2;1]  NA NA NA NA NA NA [-5;1] 
 EPIC [-1;2] [-1;3] [-3;0] [-1;3] [-1;3] [-1;3]  [0;6] [0;4] [-2;1] [0;4] [0;4] [0;4] [-3;6] 
 HERM [-1;1] [1;2] [0;1] [1;2] [1;2] [0;2]  [-4;1] [-2;14] [-6;2] [-2;3] [-2;3] [-3;3] [-6;14] 
 DayC [1;6] [2;8] [1;7] [2;8] [2;8] [0;6]  [1;9] [2;7] [2;7] [0;6] [2;7] [0;5] [0;9] 
 NWHE [-2;-1] [-2;15] [-4;0] [-2;0] [-3;-1] [-4;-2]  NA NA NA NA NA NA [-4;15] 
 AGRC NA NA NA NA NA NA  [-5;-2] [-3;0] [-7;-1] NA NA NA [-7;0] 
 MCWL [-1;1] [-4;0] [0;2] NA NA NA   NA NA NA NA NA NA [-4;2] 

D MONI [-6;0] [-7;0] [-7;0] [-7;0] [-7;0] [-7;0]   

NA 

[-7;0] 
 STIC [-16;-3] [-15;-3] [-15;-3] [-15;-3] [-16;-3] [-16;-3]  [-16;-3] 
 LINT [-6;-4] [-6;-4] NA [-7;-5] [-7;-5] [-7;-5]  [-7;-4] 
 COUP [-11;-2] [-12;-2] NA [-12;-2] [-12;-2] [-12;-2]  [-12;-2] 
 EXPN NA [-8;-2] [-7;-2] [-8;-2] [-8;-2] [-9;-2]   [-9;-2] 

 680 

 681 


