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Introduction

Large-scale assessment studies based on simulations by crop models are frequently used to evaluate the impacts of agriculture. These studies usually focus on predictions of crop production in different contexts, such as climate change, its inter-annual variability, or trends over time [START_REF] Gaiser | Regional simulation of maize production in tropical savanna fallow systems as affected by fallow availability[END_REF][START_REF] Nendel | Simulating regional winter wheat yields using input data of different spatial resolution[END_REF]. Crop models are also used to study carbon sequestration or the greenhouse gas balance at regional or national scale [START_REF] Gaiser | Modeling carbon sequestration under zero-tillage at the regional scale. II. The influence of crop rotation and soil type[END_REF][START_REF] Gaiser | Modeling carbon sequestration under zero tillage at the regional scale. I. The effect of soil erosion[END_REF][START_REF] Tornquist | Spatially explicit simulations of soil C dynamics in Southern Brazil: Integrating century and GIS with i_Century[END_REF]. Other studies focus on the water balance and its dynamics at the watershed scale. For the latter, crop models are combined with other models (e.g., hydrological) and applied to quantitative water management and irrigation issues [START_REF] Noory | Distributed agrohydrological modeling with SWAP to improve water and salt management of the Voshmgir Irrigation and Drainage Network in Northern Iran[END_REF][START_REF] Robert | A dynamic model for water management at the farm level integrating strategic, tactical and operational decisions[END_REF][START_REF] Therond | Integrated modelling of social-ecological systems : The MAELIA high-resolution multi-agent platform to deal with water scarcity problems[END_REF].

Crop models are useful tools for large-scale assessment since exhaustive measurements are not feasible or available. However, they were developed to simulate homogeneous fields, each represented by a combination of one soil and one climate. Some of these models were designed to simulate only one season, e.g. one crop and its management, while others are capable of simulating different crops in sequence, mimicking a crop rotation over a longer time period [START_REF] Kollas | Crop rotation modelling-A European model intercomparison[END_REF]. When applied at a larger scale, these models are usually applied in a gridded approach, simulating each grid cell independently, while assuming homogeneity within each grid cell [START_REF] De Wit | Estimating regional winter wheat yield with WOFOST through the assimilation of green area index retrieved from MODIS observations[END_REF][START_REF] Huang | Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model[END_REF][START_REF] Mo | Prediction of crop yield, water consumption and water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain[END_REF][START_REF] Van Ittersum | Yield gap analysis with local to global relevance-A review[END_REF]. For such approach, it is necessary to provide input data for soil, climate, and management for each simulated unit. Depending on the study and the systems' heterogeneity, the number of homogeneous units can range from a few to millions. Such data, especially management data, are not easily available at large scales and at high spatial or temporal resolution. Several methods exist to scale-up the data over the whole study area, such as sampling, aggregation from fine to coarser resolution, extrapolation or interpolation of the available data [START_REF] Ewert | Scale changes and model linking methods for integrated assessment of agri-environmental systems[END_REF]. As an alternative, management information can also be simulated for large-scale studies [START_REF] Hutchings | A model for simulating the timelines of field operations at a European scale for use in complex dynamic models[END_REF].

Nowadays, it is possible to obtain soil and climate data at a relatively high resolution and at a large or even global scale from databases such as those in the Global Soil Map project (http://globalsoilmap.net/), the European soil portal for soil, the SoilGrids project (soilgrids.org) and the international CORDEX initiative for climate projection (https://www.euro-cordex.net/). On the other hand, the available databases on crop management data are at coarser resolutions such as those reported by [START_REF] Portmann | MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling[END_REF] and [START_REF] Sacks | Crop planting dates: An analysis of global patterns[END_REF] for crop growing periods or earthstat.org for fertilizer inputs. Usually, the few data available on crop management come from interviews with farmers, local experts, or observation networks. It provides an average date of sowing, harvest, and fertilization for instance or fertilizer input amounts for a given region for different crops and generally concern only one or a few years. Some initiatives such as the observation network of the German weather service DWD documenting key phenological stages as well as sowing and harvest could provide useful data for regional modelling [START_REF] Kersebaum | Site-specific impacts of climate change on wheat production across regions of Germany using different CO2response functions[END_REF] but do not cover the wide range of cultivation operations such as nitrogen fertilization for instance. As a result, large-scale studies usually consider management as uniform across the region and fixed over multiple years. However, it is well known that crop management, such as sowing, varies over space and time [START_REF] Leenhardt | Estimating the spatial and temporal distribution of sowing dates for regional water management[END_REF]. Additionally, the sowing date significantly impacts crop development and yield [START_REF] Bonelli | Maize grain yield components and source-sink relationship as affected by the delay in sowing date[END_REF], and influences subsequent management actions during season.

To address the scarcity of the data and to adapt the management to the local and annual conditions, some authors suggested using management rules. Such management rules aim at reproducing the behavior of farmers and their crop management strategies [START_REF] Maton | Assessing the irrigation strategies over a wide geographical area from structural data about farming systems[END_REF][START_REF] Nendel | Evaluation of Best Management Practices for N fertilisation in regional field vegetable production with a small-scale simulation model[END_REF][START_REF] Senthilkumar | Can farmers use maize earliness choice and sowing dates to cope with future water scarcity? A modelling approach applied to south-western France[END_REF]. In addition, these rules would help identify better management strategies. For example, suitable climate and soil conditions could be identified to perform cultivation operations (e.g., avoiding soil compaction by triggering an operation when the soil is not too wet or avoiding the risk of frost for spring crops). This adaptive management, based on management decision rules, could have a strong impact on model outputs but is rarely investigated at a large scale. Since the impact of input data aggregation and adaptive management can differ according to the output variables and crop models, these effects should be investigated with respect to a range of different crop models, output variables, and cultivation operations (i.e. sowing, soil tillage, irrigation…).

The objective of this study was to analyze the effect of adaptive management and spatial resolution on regional yields, evapotranspiration, and drainage predicted by a set of crop models. The main issues addressed were (1) whether adaptive management and/or input resolution influence the crop models' outputs at the regional scale, in which way and how much and (2) whether the scaling effect varies when management changes over time and space.

To meet this goal, we quantified the impact of adaptive management and input resolution on the regional mean of simulated yield, evapotranspiration, and drainage for each individual year as well as for the 30-year average. We further analyzed whether the impact of management or spatial resolution depended on the crop model, output of interest, crop, or cultivation operation. To do so, we introduced adaptive management for sowing dates, fertilization dates, and crop maturity classes based on decision rules and variable amounts of nitrogen fertilization.

Materials and Methods

Study area

The study area was the 34.083 km² federal state of North Rhine-Westphalia (NRW, 6.0-9.5° E, 50.0-52.5° N), located in the west of Germany. NRW has a temperate and humid climate with an oceanic influence. Like Hoffmann et al. (2016b) and Zhao et al. (2015), we assumed in the simulations that agricultural land covered the entire region and that winter wheat and silage maize were the two dominant monoculture crops. Over the period studied , mean annual temperature was 9.7 °C, mean annual precipitation was 899 mm, and mean annual global radiation was 3.758 MJ m -2 .

Crop models

We selected 11 crop models to run the simulations from 1982-2012: AgroC [START_REF] Herbst | Multiyear heterotrophic soil respiration: Evaluation of a coupled CO2transport and carbon turnover model[END_REF][START_REF] Klosterhalfen | Multi-site calibration and validation of a net ecosystem carbon exchange model for croplands[END_REF], APSIM-Nwheat [START_REF] Asseng | Performance and application of the APSIM Nwheat model in the Netherlands[END_REF], CoupModel [START_REF] Conrad | Modelling of nitrogen leaching under a complex winter wheat and red clover crop rotation in a drained agricultural field[END_REF][START_REF] Jansson | Coupmodel: Model use, calibration, and validation[END_REF], DailyDayCent (Del Grosso et al., 2006;[START_REF] Yeluripati | Bayesian calibration as a tool for initialising the carbon pools of dynamic soil models[END_REF], EPIC [START_REF] Williams | The EPIC model[END_REF][START_REF] Williams | EPIC: a new method for assessing erosion's effect on soil productivity[END_REF], Expert-N [START_REF] Priesack | The impact of crop growth sub-model choice on simulated water and nitrogen balances[END_REF], HERMES [START_REF] Kersebaum | Modelling nitrogen dynamics in soil-crop systems with HERMES[END_REF], LINTUL in the framework solution SIMPLACE<Lintul5, SLIM> [START_REF] Gaiser | Modeling biopore effects on root growth and biomass production on soils with pronounced sub-soil clay accumulation[END_REF]Zhao et al., 2015b), MCWLA [START_REF] Tao | Modelling the impacts of weather and climate variability on crop productivity over a large area: A new process-based model development, optimization, and uncertainties analysis[END_REF][START_REF] Tao | Climate change, wheat productivity and water use in the North China Plain: A new super-ensemble-based probabilistic projection[END_REF], MONICA [START_REF] Nendel | The MONICA model: Testing predictability for crop growth, soil moisture and nitrogen dynamics[END_REF] and STICS within the RECORD platform [START_REF] Bergez | Evolution of the STICS crop model to tackle new environmental issues: New formalisms and integration in the modelling and simulation platform RECORD[END_REF][START_REF] Brisson | An overview of the crop model STICS[END_REF]. These process-based models run at a daily time step, except for Expert-N, which runs at an hourly time step. The models represent soil and crop processes with differing degrees of simplification. All simulated winter wheat, but only seven simulated silage maize in this paper. All represent water and nitrogen stresses, except for AgroC and MCLWA, which represent only water stress.

Input data of the crop models

Climate and soil data aggregation

For climate, we used 30 years of daily weather for 34.168 grid cells of 1×1 km resolution and aggregated these data for the 10×10, 25×25, 50×50, and 100×100 km grid cells, as described by [START_REF] Hoffmann | Variability of effects of spatial climate data aggregation on regional yield simulation by crop models[END_REF]. For soil data, we used the dominant soil of the 1×1 km grid cells to set the soil type for the 10×10, 25×25, 50×50, and 100×100 km grid cells, respectively. For the soil and climatic data, see Hoffmann et al. (2016a) and for more details of data aggregation, see Hoffmann et al. (2016b). Figure 1 presents the maps of mean annual precipitation and available water capacity (soil water content at field capacity minus the soil water content at wilting point) of the soils for each resolution. 1×1, 10×10, 25×25, 50×50, and 100×100.

Crop choice and management sets

We simulated the two dominant crops of the region in monoculture in continuous model runs of 30 years on every grid cell. Both winter wheat and silage maize were grown under rainfed conditions and with mineral N fertilization (208 and 238 kg N ha -1 yr -1 , respectively). For both crops, we simulated export of crop residues at harvest and plowing of soil in autumn. We simulated six sets of management strategies to analyze the impact of adaptive management in interaction with the scaling effect:

1. Mfix is the reference, which is the same uniform management for a given crop regardless of the year or grid cell. We used the common cultivation operations in NRW as the reference management strategy.

Winter wheat and silage maize were sown on 1 st of October and 20 th of April, respectively. Crops were harvested at maturity or on 1 st of August for wheat and 20 th of September for maize, depending on the model.

2.

Ms uses variable sowing, fertilization, and harvest dates for each cell, at each resolution and year according to decision rules based on climate, as in [START_REF] Senthilkumar | Can farmers use maize earliness choice and sowing dates to cope with future water scarcity? A modelling approach applied to south-western France[END_REF] for maize [START_REF] Savin | Climatically Optimal Planting Dates[END_REF] for wheat. For each crop, we calculated the earliest sowing date for all 30 years per grid cell (Fig. 2). Then, beginning on this date each year for each grid cell, we checked whether daily temperature and soil trafficability exceeded thresholds necessary for sowing. If all conditions were met, the crop was sown on that day. If sowing was impossible before a latest "allowed" date, it occurred on this date. Fertilization date was set from the sowing date and depended on a minimum amount of thermal time and sufficient soil trafficability. Like for sowing, we defined a latest "allowed" date. We calculated the earliest harvest date as the number of days required to reach a certain cumulative thermal time from the sowing date. Beginning on this date, we checked soil trafficability each day to identify the first suitable harvest date. We calibrated the thresholds used in the decision rules to ensure that average dates were similar to those in Mfix. Estimated sowing dates among all grid cells and years ranged from 12 th of March to 11 th of May for maize and 21 st of September to 16 th of December for winter wheat. When averaged for all cells in the region, the mean sowing date each year ranged from 13 th of April to 30 th of April for maize and 22 nd of September to 25 th of October for wheat over the 30 years. Median sowing dates over the 30 years were 19 th of April and 4 th of October for maize and wheat, respectively, which were similar to those of Mfix (20 th of April and 1 st of October). Distributions of regional sowing dates for the five resolutions were similar, despite some differences for the coarser resolutions. Depending on the year, the mean regional sowing date was similar among resolutions.

3. Msvar is similar to the Ms approach, but with the maturity class of the cultivar adapted to the climate conditions in each grid cell on each resolution. We chose one of three maturity classes or varieties (early, middle, or late) with a development length better adapted to climate characteristics by calculating the mean cumulative thermal time between sowing dates and the mean harvest date (20 th of September for maize and 10 th of July for wheat) over the 30 years. The maturity class in a given cell remained the same for all 30 years. We calibrated the three varieties for each model using the sowing and harvest dates of ten contrasting cells.

4. The fourth to sixth sets are the same as the Ms approach, but with a decrease in mineral N fertilization by 25% (MsF75), 50% (MsF50), and 75% (MsF25) of the reference fertilization amount, respectively. Thus, mineral N fertilization decreased from 238 to 179, 119 and 60 kg N ha -1 yr -1 for maize and from 208 to 156, 104 and 52 kg N ha -1 yr -1 for wheat in MsF75, MsF50, and MsF25, respectively.

The objective of these six sets was to create spatial and temporal variability in the cultivation operations to analyze their impacts on the model results. The adaptive management based on climatic conditions was calculated for each grid cell for each of the five resolutions. The purpose was not to reproduce the actual management strategies, but to reproduce a credible range of cultivation operations over time and within the region to analyze their potential impacts on model outputs. Other cultivation operations such as tillage were assumed spatially and temporally uniform for all management sets.

Simulation overview and data selection

We analyzed three output variables: crop yield and two components of the water balance, evapotranspiration over the growing period and annual drainage under wheat to determine if some model outputs were more sensitive to scaling or management than others. Yield is often studied at large scale, while water fluxes are quite important when crop models are coupled with hydrological models to analyze water management at the watershed scale. We first selected and summarized simulated data (Table 1). We analyzed all three variables for five models only but yield and evapotranspiration were provided for six other models. Due to the complexity of the simulated experiments and model limitations, not all simulations were performed with all models (Table 1). 

AgroC e AGRC Y, E All All All - - - All All All - - - MCWLA MCLW Y, E All All All - - - - - - - - - a
Mfix is a fixed management strategy for each crop; Ms indicates that sowing and fertilization dates depend on the grid cell and the year;

Msvar, MsF50 and MsF25 are the same as Ms but with adaptation of cultivar precocity to the cell or with a 50% and 75%, decrease in fertilization, respectively.

b Y is yield; E is actual evapotranspiration over the growing season for both crops; D is annual water drainage under wheat.

c "All" indicates that all resolutions (1x1 km, 10x10 km, 25x25 km, 50x50 km and 100x100 km) were simulated d "Not 1x1" indicates that all resolutions except for 1x1 km were simulated.

e Data for E in AgroC are for maize only.

The simulations were done for the five resolutions (1x1, 10x10, 25x25, 50x50, and 100x100 km) with the same resolution for soil, climate, and management inputs. Among the six different management sets (Mfix, Ms, Msvar, MsF75, MsF50, and MsF25), the uniform one (Mfix) was the same over all resolutions, while the others based on decision rules were generated at the same resolution as soil and climatic inputs. This resulted in a maximum of 30 combinations for each crop (five resolutions for each of the six management sets).

Scaling and management effects were studied on outputs averaged at the regional scale. Scaling effect was defined as the difference on the output of interest when using coarser resolution inputs in a model. Management effect was defined as the difference on the output of interest when using different management inputs in a model.

Data analysis

We quantified management and scaling effects on the regional means for each year of the 30-year simulation and for all 30 years together by model, crop and output variable. To analyze the scaling effect, we calculated the difference between the output at each resolution (𝑋 ̅ 𝑆𝑥 ) and those simulated at the highest resolution available

(𝑋 ̅ 𝑆𝑟 ): ∆𝑋 ̅ 𝑆 = 𝑋 ̅ 𝑆𝑥 -𝑋 ̅ 𝑆𝑟 𝑋 ̅ 𝑆𝑟 × 100 [1]
where ∆𝑋 ̅ 𝑆 is the difference (%) in the output at a given resolution compared to that at the reference resolution, 𝑋 ̅ 𝑆𝑥 is the mean output for the region at a given resolution, and 𝑋 ̅ 𝑆𝑟 is the mean output of the region at the reference resolution, which was the 1×1 km resolution, except for APSIM-Nwheat in Mfix and DailyDayCent in MsF25 and MsF75

for which it was 10×10 km. We calculated this difference due to input resolution by crop, model, and management set for each resolution, except the reference set.

To analyze the management effect, we calculated the difference between the output for each management set (𝑋 ̅ 𝑀𝑥 ) and those simulated for the reference set (𝑋 ̅ 𝑀𝑟 ):

∆𝑋 ̅ 𝑀 = 𝑋 ̅ 𝑀𝑥 -𝑋 ̅ 𝑀𝑟 𝑋 ̅ 𝑀𝑟 × 100 [2]
where ∆𝑋 ̅ 𝑀 is the difference (%) in the output for a given management set compared to that for the reference set, 𝑋 ̅ 𝑀𝑥 is the mean output for the region for a given management set 𝑥, and 𝑋 ̅ 𝑀𝑟 is the mean regional output for the reference management set, which was Mfix, except for Expert-N, for which it was Ms. We calculated this difference resulting from adaptive management by crop, model, and resolution for each management set, except for the reference set.

For analyses at the annual scale, we calculated an annual scaling effect (ASE) and annual management effect (AME) for each of the 30 years, following the same logic as that for the 30-year mean (Eq. 1 and 2), but applied to the annual regional mean of each model. Again, we calculated these differences by model, crop, output, and resolution for AME or management set for ASE.

To determine if the effects of management or scaling were significant, we used a Student's t-test to compare each regional mean for a given output to the result of its reference (1x1km for scaling and Mfix for management in most cases). The comparison was done on both annual and 30-years means for each model, crop, and output.

Results

Simulated yield, evapotranspiration, and drainage for winter wheat and silage maize

Predictions of the regional annual yield, evapotranspiration, and drainage for the two crops differed among models for Mfix at 1×1 km resolution. This difference was particularly large for evapotranspiration for both crops, with regional annual medians by model ranging from 236-477 mm (235-484 mm for means) over the wheat growing season and 285-527 mm (284-523 mm for means) over the maize growing season, resulting in a maximum difference of 334 and 239 mm, respectively (Fig. 3). Regional annual median wheat yield varied less among models, from 5.8-8.0 t ha -1 (6.0-7.9 t ha -1 in mean), while median maize yield ranged from 11.3-16.2 t ha -1 (10.4-15.5 t ha -1 in mean). Median drainage varied from 356-500 mm yr -1 (355-497 mm yr -1 in mean) resulting in a maximum difference of 144 mm among the five models providing simulated drainage. the ensemble mean of all models for a given output. See Table 1 for model abbreviations.

Inter-annual variability also varied among the models (Fig. 3). For instance, LINTUL predicted highest inter-annual variability in maize yield, while EPIC predicted lowest variability. A similar difference was observed for wheat yield between DailyDayCent (highest) and MCWLA (lowest), and for annual drainage between MONICA (highest) and STICS (lowest).

Management effect on 30-year regional means at each resolution

We analyzed the management effect on 30-year regional means by comparing Ms, Msvar and MsF75 to Mfix at each resolution. Maximum management effects (in negative and positive) in yield, evapotranspiration, and drainage among models were -26% and +31%, -27% and +15%, and -12% and +1%, respectively (Table 2). For yield, these maximum management effects were similar for wheat and maize. For evapotranspiration, maximum positive differences (overestimation as compared to the reference) were slightly higher for wheat (+14%) than for maize (+4%). For maize evapotranspiration, the difference tended to be negative (underestimation as compared to the reference), whereby this trend was less consistent for wheat evapotranspiration. For drainage, the use of adaptive management sets tended to result in a negative difference (underestimation) that was the same within all resolutions, but one that was smaller than those for yield or evapotranspiration. However, the number of crop 271 models reporting simulated drainage was much smaller as those reporting yield or evapotranspiration. 272 
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The response of outputs to management adaptations was model-dependent (see Table S1). For wheat, certain 280 models had low sensitivity to management sets, such as CoupModel, Expert-N, and STICS for all outputs (|∆𝑋 ̅ 𝑆 | 281 ≤ 6%) and LINTUL for yield and evapotranspiration. Other models were much more sensitive to changes in 282 management, such as HERMES, AgroC, and DailyDayCent for crop yield, MCWLA and EPIC for 283 evapotranspiration, and LINTUL for drainage. Overall, most predictions were similar to those with Mfix (|∆𝑋 ̅ 𝑆 | = 0-284 5%), although, some models predicted a large difference in the model output for certain management sets. This 285 range of absolute difference below 5% was most common for most outputs, except for maize yield, for which the 286 most common range of absolute difference was 10 to 15%. The regional yield for maize appeared more sensitive 287 to differences in management than that for wheat, while the same range of differences was observed for 288 evapotranspiration between the two crops. This higher sensitivity for maize was not related to a particular 289 management set, since each one (Ms, Msvar, MsF75) could reach the same range of absolute difference, depending on the model.

The management effect on the 30-year regional mean was similar among resolutions for a given crop and output for most models (see Table S1). Therefore, resolution did not seem to influence the difference due to management, except for APSIM-Nwheat at 50×50 km resolution for both wheat yield and evapotranspiration, and for MCWLA at a resolution of 10×10 km and coarser for wheat evapotranspiration. "Yd" is yield, "ET" is evapotranspiration over the growing season and "Dr" is the annual drainage. "p" means that the 30-years mean is significantly different from the reference. "a" means that the annual mean is significantly different from the reference "-" means the outputs was not available for a given model.

No value means that the effect was not significant. "nb(p,a)" is the number of cases for which 30-yrs and annual means were significantly different from the reference.

Management effect were significant on yield and evapotranspiration for more than half of models irrespectively of the management set used (Table 3). The effect on drainage was significant only for one of the five models that provide all three output variables, the LINTUL model. Significant effects were not linked to one management set in particular, even if they were slightly more frequent in the low fertilization management set (MsF50, MsF25) for some models.

Scaling effect on the 30-year regional means for each management set

We analyzed the scaling effect on 30-year regional means by comparing the coarser resolutions to the finest one for each of the six management sets. 
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is evapotranspiration over the growing season 3 D is drainage over the growing season Overall, the scaling effect on yield was in a smaller range of differences than the management effect, ranging from -15% to +24% and from -26% to +31%, respectively (Table 2 and4). The scaling effect was weaker on evapotranspiration than on yield or drainage, with most models having an absolute difference below 5% only. Over all models, the scaling effect was both negative and positive on yield and evapotranspiration but always negative (underestimation) on drainage regardless of the model (Table 4). For the five models simulating the three output variables, evapotranspiration shows the smallest overall range with -5 to 2% while drainage and yield ranged from -16 to 0% and -10 to 3% respectively.

Certain models were more sensitive to scaling when simulating maize yield or evapotranspiration, such as STICS, and EPIC, whereas others were more sensitive when simulating wheat, such as LINTUL and DailyDayCent (see Table S2). For models predicting all three outputs, the scaling effect was higher on drainage than on yield and smallest on evapotranspiration. The scaling effect was similar across the management sets, meaning that there is no observable trend related to the management sets, regardless of the crop simulated or model used.

The significance was more frequent for management effect than for scaling on yield and evapotranspiration while it was the opposite for drainage (Table 3). The scaling effect on yield was significant only for the coarsest resolutions (100×100 km) and for one model (NWHEAT) while it was significant on three models and more resolutions (25×25 km, 50×50 km, and 100×100 km) for evapotranspiration. The scaling effect on drainage was significant for all resolutions and most models. As opposed to the management effect, the significance of scaling effect was dependent on resolution with more frequent significant effect for coarser resolutions.

Scaling and management effects at the annual scale

For the 30-year simulations, we calculated the ASE and AME on the regional means for each variable and each model. Compared to AME, ASE was much weaker on yield and evapotranspiration for both crops, particularly when excluding the 100×100 km resolution (Fig. 4). This effect was more obvious on yield than on evapotranspiration, for which the ASE and AME often remained weak, which was also the case for simulated drainage. The maximum difference due to a specific management set or resolution for a given year was also strongly model-dependent. MsF25) effects on yield, evapotranspiration and drainage over 30-year simulation period compared to their respective reference, for 11 crop models (without outlier). For a given model, crop and output, each boxplot represents the average over all grid cells for each year over the 30 years, and either all management sets for the scaling effect or all resolutions for the management effect. See Table 1 for model abbreviations.

Figure 4 shows that the maximum ASE was generally small but increased with coarser resolution. For simulated wheat yield, APSIM-Nwheat had highest maximum ASE (77%) compared to the other models (<38%) at the 50×50 km resolution due to higher yield using Ms, while it was in the same range as those of the other models at the other resolutions. This led to a higher evapotranspiration (28%) as well on this Ms set and 50×50 km resolution. Apart from this set, the maximum ASE for APSIM-Nwheat at 50×50 km resolution was 19% and 6% on yield and evapotranspiration, respectively. On maize evapotranspiration, maximum ASE was highest at 25×25 km resolution for HERMES (17%) but was in the same range as those of the other models at the other resolutions (9% or lower).

Generally, the models with the highest ASE were APSIM-Nwheat, DailyDayCent, HERMES, and in certain cases MCWLA, STICS, and LINTUL, depending on the output variable and the crop. In general, the ASE on yield of both crops and drainage was similar, and weakest on evapotranspiration (usually less than 10%).

The AME was generally higher on yield and evapotranspiration than ASE but had a similar range for drainage. Some models had an extremely large maximum AME, reaching 160% of the difference for a given year on the regional wheat yield for DailyDayCent and 120% on the regional maize yield for LINTUL (Fig. 4). For some models, such as CoupModel, maximum AME was around 10% only, indicating that regardless of the year, the difference due to management was low, except for MsF25, for which the maximum AME was at least 20%, regardless of the model. The AME was weaker on evapotranspiration than on yield and was even weaker on drainage. AME was similar for wheat and maize, but the difference among models was larger for wheat. This is partly because the models with the lowest AME (CoupModel and Expert-N) are available only for wheat and because maximum AME in LINTUL was higher on wheat than on maize evapotranspiration (68-71% vs. 20-25%, respectively). Drainage was less variable, with the weakest AME for the models only simulating all outputs, except for CoupModel, for which the AME was weaker on evapotranspiration. The maximum AME on drainage was 22% for LINTUL, 19% for STICS, 11% for Expert-N, 8% for CoupModel, and 4% for MONICA. No consistent trend occurred among the management sets as for evapotranspiration. Additionally, no effect of resolution on AME was observed, since the difference was the same at the five resolutions for a given crop, output variable, and model (data not shown). AME was generally low on evapotranspiration, and even lower on drainage in 90% of the situations, regardless of the model or the crop simulated, unlike regional yield, which was more sensitive to the management set.

As for the 30-years averages, significance was more frequent for management effect than for scaling (Table 3).

Management influenced significantly yield and evapotranspiration under growing season for some models but not annual drainage. This result was observed for some models simulating the three output variables such as MONICA and STICS that have significant management effect for evapotranspiration or yield but not for drainage. Scaling effects were generally not significant, with some exceptions for the two coarser resolutions while management effects were often significant, especially for the two low fertilization management sets (MsF50 and MsF25).

Management effects were more frequently significant for maize yield and evapotranspiration than for wheat at this annual scale for most models.

Discussion

Management and scaling effect on the 30-year regional mean

At the multi-year scale over 30 years, the scaling and management effects were weak for most models, crops and outputs, even if significant. The scaling effect results confirm the results of previous studies on the impact of soil and climate aggregation on yield and net primary productivity (NPP) for the same study site and simulation period (Hoffmann et al., 2016b;[START_REF] Kuhnert | Impact analysis of climate data aggregation at different spatial scales on simulated net primary productivity for croplands[END_REF]. Further, our results indicate that varying management options over space and time in the region did not change the overall findings made when assuming constant management.

Nevertheless, the scaling effect depended on the output variable, being larger for drainage than for yield or evapotranspiration when compared between the five models simulating the three output variables. The impact of the choice of the crop (winter or spring crop) on the other hand was negligible. The stronger scaling effect on drainage (observed for models providing the three outputs) and the direction of its difference was probably due to the choice of the dominant soil when moving from high to lower resolution. Lowering the resolution of soil input data resulted in an increase in the total soil water storage because deep soils were dominant in the region, which induced lower drainage. [START_REF] Grosz | The implication of input data aggregation on up-scaling soil organic carbon changes[END_REF] also observed the scaling effect on predictions of change in soil organic carbon over time, which depend greatly on soil input data. In the same way, [START_REF] Coucheney | Key functional soil types explain data aggregation effects on simulated yield, soil carbon, drainage and nitrogen leaching at a regional scale[END_REF] showed that the sensitivity to scaling was output-dependent with a greater effect of soil aggregation on soil C mineralization and N leaching than on yield and drainage for the CoupModel.

The maximum management effect tended to be higher than the maximum scaling effect, with 42 vs. 10 % of the cases in which differences compared to the reference were greater than 10 %, respectively. The management effect varied among models, with most 30-year regional mean outputs being slightly sensitive to management (absolute difference below 10%). This was particularly true for evapotranspiration of both crops, drainage and wheat yield, regardless of the input resolution. The stronger effect on yield could be partly due to the use of percentage to quantify the effect. Since average yields are much lower than evapotranspiration and drainage, a small variation lead to a higher percentage for this output. However, for the scaling effect the effect was strongest on drainage.

The management effect tended to be higher on maize than on winter wheat yield for most models, suggesting a greater impact of management on spring crops than on winter crops. This result seems consistent with the shorter growing season of spring crops, leaving less time to compensate a late sowing for instance. The hypothesis of a higher sensitivity of spring crops should be tested with other crops such as sunflower or soybean. For some models (2-4 models), different representation of management changed the 30-year regional mean substantially (by more than 15% for yield and for evapotranspiration depending on the resolution and crop), indicating the need to carefully choose how to represent management in these crop models to obtain relevant multi-year regional means. Contrary, management choices seemed less important for the 30-year regional drainage, (showing less than 13 % difference in all management sets).

Stronger effects at the annual scale

The same trend occurred at the annual scale as for the 30-year regional mean: the management effect was usually higher than the scaling effect, with large differences among models. The management effect as well as the scaling effect on the regional mean were stronger for certain years than for others. This indicates that the choices made to represent management are more important when studies focus on annual regional outputs than on multi-year average regional outputs. This importance varied among models and, depending on the model, the cultivation operation considered. Hereby, it is crucial to ensure that the chosen model is able to predict effects of a given management strategy, such as sowing date, to accurately predict variability in the outputs caused by the management changes. If the management strategy has a substantial effect on the output variable of interest, the uncertainty due to the choice of management option in the simulation should be estimated.

Since the years with large effects on management options or scaling differed among models, it is difficult to identify which characteristics of the years that interact with the models to generate the more or less strong effects. No effect of climate characteristics such as a dry or hot year effects was found in the analyses. The effect were strongly model-dependent, the same year predictions being sensitive to scaling or management effect for some models but not for others. No generic characteristics of the input data could be identified; the effect being probably due to a model-soil-climate interaction. This difference between crop model outputs behavior is probably partly due to model structures as well as their parametrization, their the relative contribution being unclear. Hereby, sensitivity analysis performed in individual studies of each model could be helpful to understand model behavior and to determine characteristic input-output relationships [START_REF] Specka | Analysing the parameter sensitivity of the agro-ecosystem model MONICA for different crops[END_REF][START_REF] Varella | Global sensitivity analysis for choosing the main soil parameters of a crop model to be determined[END_REF]. It could then clarify the major factors behind model differences with respect to the occurrence of strong effects of management strategies in specific years.

Representation of management strategies in large-scale studies

We used decision rules to generate management options based on climatic conditions. We then compared simulations based on these management options with those of uniform and fixed sowing, harvest, and fertilization dates over one region over multiple years. In general, uniform sowing, harvest, and fertilization dates as well the use of a single cultivar are an unrealistic representation of common management at the regional scale. [START_REF] Folberth | Uncertainties in global crop model frameworks : effects of cultivar distribution , crop management and soil handling on crop yield estimates 1[END_REF] showed that in model-based global scale assessments, absolute yield levels depend on the parameterization and distribution of crop cultivars. However, it is still commonly applied in large-scale modelling studies since real data are often scarce [START_REF] Faivre | Spatialising crop models[END_REF]. The advantage of using decision rules is that it provide a management, which is consistent with local climate and soil as compared to fixed assumptions. These can also be used to simulate changes in management over time due to climate change [START_REF] Senthilkumar | Can farmers use maize earliness choice and sowing dates to cope with future water scarcity? A modelling approach applied to south-western France[END_REF]. One limitation is that the same decision rules are used for all grid cells, while different farmers apply different rules for crop management [START_REF] Maton | Assessing the irrigation strategies over a wide geographical area from structural data about farming systems[END_REF] depending on their social, economic, and pedoclimatic conditions. Decisions rules based on an optimal strategy according to climatic conditions could lead to overestimated yields. Moreover, not taking into account soil characteristics could also lead to unrealistic management in some cases. Since the purpose of this study was to evaluate if management choices had an impact on regional output variables, these concerns were not of critical importance. To get more realistic data on management at large scale, remote sensing could add useful information on crop type [START_REF] Griffiths | Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping[END_REF], sowing and harvest dates, or irrigation schedules [START_REF] Battude | Modeling water needs and total irrigation depths of maize crop in the south west of France using high spatial and temporal resolution satellite imagery[END_REF]. Here, we analyzed the potential impact of choosing a variable management to predict the difference in crop model outputs compared to a reference based on a spatially uniform management fixed in time.

The access and use of observed management data for the entire region to validate the relevance and accuracy of the decision rules, would improve assessments of the role and effect of management input data and resolution for simulations at regional scale. It could be relevant to include other cultivation operations, such as soil tillage or irrigation, depending on the outputs of interest. For instance, irrigation is important when water balance is the focus of the simulation study, particularly in southern Europe.

Conclusion

In our regional-scale study, we showed that the management effect was generally stronger than the scaling effect.

The strength of the effects depended on the crop model and the output variable of interest, with some models and output variables being much more sensitive to management options than others. Scaling and management effects were also stronger when evaluated on individual years than on the 30-year mean, for which these effects were usually weak. The effects varied both between models and among years. Strong impacts occurred but not necessarily during the same years for all models, which indicates a need for further analysis with respect to each model to explain these effects in depth. Additionally, the findings of this study might be different in other conditions and therefore need to be confirmed with respect to a different region with contrasting soil and climate conditions.
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 1 Figure 1. Maps of (a) mean annual precipitation over 30 years (1982-2012) and (b) available water capacity in each of the five resolutions for North Rhine-Westphalia, Germany.All simulations were run using the same resolution of soil and climate data (km×km):

Figure 2 .

 2 Figure 2. Overview of decision rules for wheat and maize sowing and fertilization dates. DOY = day of year

Figure 3 .

 3 Figure 3. Distributions of the region's annual means of yield (dry matter (DM); tDM ha -1 yr -1 ) and evapotranspiration (growing season (gs); mm gs -1 ) for wheat and maize, and annual mean drainage (mm yr -1 ) under wheat over 30-year simulations by each model at its reference resolution (1 km × 1 km, except for NWHE (10 km × 10 km)) and management set (Mfix, except for EXPN (Ms)). The dotted line indicates
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 4 Figure 4. Distributions of annual scaling (ASE, 10x10, 25x25, 50x50 and 100x100) and management (AME, Ms, Msvar, MsF75, MsF50 and

Table 1 .

 1 Overview of the simulated resolutions and outputs analyzed by model, crop and management set.

				Resolution for Wheat				Resolution for Maize
	Model	Code	Outputs	Mfix a Ms Msvar MsF75 MsF50 MsF25	Mfix Ms Msvar MsF75 MsF50 MsF25
	MONICA	MONI	Y, E, D b							
				Not 1x1 All All	All	All	All	-	-	-	-	-	-

Table 2 .

 2 Maximum negative and positive management effect among models (𝑀𝑖𝑛(∆𝑋 ̅ 𝑀 ); 𝑀𝑎𝑥(∆𝑋 ̅ 𝑀 )) for the sets Ms, Msvar

						Wheat					Maize			All crops
				1x1 10x10 25x25 50x50 100x100	1x1 10x10 25x25 50x50 100x100	All Res
	Maximum negative and positive effect (%)	Y 1 𝑀𝑖𝑛(∆𝑋 ̅ 𝑀 ) 𝑀𝑎𝑥(∆𝑋 ̅ 𝑀 ) E 2 𝑀𝑖𝑛(∆𝑋 ̅ 𝑀 ) 𝑀𝑎𝑥(∆𝑋 ̅ 𝑀 )	-20 18 -22 14	-18 19 -23 14	-19 20 -23 14	-19 31 -24 15	-24 20 -24 15	-18 23 -21 4	-19 24 -22 4	-20 20 -23 7	-21 20 -24 3	-26 20 -27 3	-26 31 -27 15
		D 3 𝑀𝑖𝑛(∆𝑋 ̅ 𝑀 ) 𝑀𝑎𝑥(∆𝑋 ̅ 𝑀 )	-12 0	-12 0	-12 1	-12 1	-12 1			NA			-12 1
	Number of models by	Y	|∆𝑋 ̅ 𝑀 | ≤ 5%	4	5	5	5	6	0	0	0	0	0	25
	management													
	effect level													

Table 3 .

 3 Statistical analysis by model, crop and output of the management and scaling effect. Significant difference (** pvalue <0.05) were tested by Student's t-Test compared to the reference. The number of model with significant effect and the total number of model available are given at the bottom of the table.

  Yd ET Dr Yd ET Yd ET Dr Yd ET Dr Yd ET Dr Yd ET Yd ET Yd ET Yd ET Yd ET Dr ET Dr ET Dr Yd ET Dr Yd ET Yd ET MONI

	Management effect				Scaling effect			
	Wheat				Maize	Wheat			Maize	
	Ms	Msvar MsF75	MsF50	MsF25	Ms	Msvar MsF75 MsF50 MsF25 r10 r25	r50	r100	r50	r100

Table 4 .

 4 Maximum negative and positive scaling effect among models (𝑀𝑖𝑛(∆𝑋 ̅ 𝑆 ); 𝑀𝑎𝑥(∆𝑋 ̅ 𝑆 )) for each resolution (10 km × 10 km, 25 km × 25 km, 50 km × 50 km and 100 km × 100 km) compared to the finest resolution and number of models in each level of absolute effect (|∆𝑋 ̅ 𝑆 |) for a given output averaged over the region and all 30 years. The results are shown by crop and management set (Mfix to MsF25).

							Wheat					Maize				All crops
				Mfix Ms Msvar MsF75 MsF50 MsF25	Mfix	Ms Msvar MsF75 MsF50 MsF25	All Man
	Maximum negative and positive effect (%)	Y 1 𝑀𝑖𝑛(∆𝑋 ̅ 𝑆 ) 𝑀𝑎𝑥(∆𝑋 ̅ 𝑆 ) E 2 𝑀𝑖𝑛(∆𝑋 ̅ 𝑆 ) 𝑀𝑎𝑥(∆𝑋 ̅ 𝑠 )	-9 5 24 -8 -3 -4 6 15	-12 9 -5 7	-8 5 -3 8	-10 6 -3 8	-15 8 -4 6	-11 9 -5 9	-9 10 -3 14	-11 12 -7 7	-8 6 -2 6	-7 7 -2 7	-11 5 -3 5	-15 24 -7 15
		D 3 𝑀𝑖𝑛(∆𝑋 ̅ 𝑆 ) 𝑀𝑎𝑥(∆𝑋 ̅ 𝑆 )	-16 -15 0 0	-15 0	-15 0	-16 0	-16 0			NA			-16 0
	Number of models by scaling effect level	Y	|∆𝑋 ̅ 𝑆 | ≤ 5% 5%<|∆𝑋 ̅ 𝑆 | ≤ 10% 10%<|∆𝑋 ̅ 𝑆 | ≤ 15% 20%<|∆𝑋 ̅ 𝑆 | ≤ 25%	7 4 0 0	6 4 0 1	4 3 2 0	5 4 0 0	4 4 1 0	5 2 2 0	2 4 1 0	4 3 0 0	3 2 2 0	4 2 0 0	4 2 0 0	3 2 1 0	51 36 9 1
			Total	11 11	9	9	9	9	7	7	7	6	6	6	97
		E	|∆𝑋 ̅ 𝑆 | ≤ 5% 5%<|∆𝑋 ̅ 𝑆 | ≤ 10% 10%<|∆𝑋 ̅ 𝑆 | ≤ 15%	9 1 0	8 1 1	7 3 0	8 1 0	8 1 0	8 1 0	5 2 0	5 1 1	4 3 0	5 1 0	5 1 0	5 1 0	77 17 2
			Total	10 10	10	9	9	9	7	7	7	6	6	6	96

and MsF75 compared to Mfix and number of models in each level of absolute effect (|∆𝑋 ̅ 𝑀 |) for a given output averaged over

the region and all 30 years. The results are shown by crop and resolution (1 km x 1 km to 100 km x 100 km).
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