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Abstract 

The classification of the fungicide captan (CAS Number: 133-06-2) as a carcinogen agent is presently 

under discussion. Despite the mutagenic effect detected by the Ames test and carcinogenic properties 

observed in mice, the genotoxicity of this pesticide in humans is still unclear. New information is 

needed about its mechanism of action in mammalian cells. Here we show that Chinese Hamster Ovary 

(CHO) cells exposed to captan accumulate Fpg-sensitive DNA base alterations. In CHO and HeLa 

cells, such DNA lesions require the XRCC1-dependent pathway to be repaired and induce a replicative 

stress that activated the ATR signalling response and resulted in double-strand breaks and micronuclei. 

The replicative stress is characterized by a dramatic decrease in DNA synthesis due to a reduced 

replication fork progression. However, impairment of the XRCC1-related repair process did not 

amplify the replicative stress, suggesting that the fork progression defect is independent from the 

presence of base modifications. These results support the involvement of at least two independent 

pathways in the genotoxic effect of captan that might play a key role in carcinogenesis.  
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1 Introduction  

Captan is an agricultural fungicide that belongs to the phthalimide family. It was first registered in 

1951 for tree fruit use and has been used commercially for over 60 years. Despite extensive studies its 

toxicity is still not consensual and it has been classified in several ways. It was classified in 1982 by 

the International Agency for Research on Cancer (IARC) as group 3 “Not classifiable as to its 

carcinogenicity to human” (IARC (International Agency for Research on Cancer) 1982). In the United 

States, the Environmental Protection Agency (EPA) reclassified it in 2004 it from “probable human 

carcinogen” to “not likely carcinogenic to human” (Gordon 2007). In contrast, it is classified in 

category 2 H351 (“suspected of causing cancer”) according to the European regulations (European 

Commission, EC Reg N°1272/2008). Captan is authorised in many countries. It is used mainly on 

fruits such as apples and is detected as pesticide residues in food in European countries (Crepet et al. 

2013; Lozowicka 2015).  

Concerning occupational exposure, a recent analysis from the North American Pooled Project showed 

that captan is associated with an increased risk of multiple myeloma in farmers (odds ratio 3.14 with a 

confidence interval 95 % of 1.30-7.58) (Presutti et al. 2016). However, this risk is reduced for duration 

of exposure greater than 7 years (Presutti et al. 2016). Moreover, this non-monotonic exposure 

response pattern and the previous absence of association between the highest level of captan exposure 

and risk of cancer revealed by the Agricultural Heath Study (AHS) (Greenburg et al. 2008) contributed 

to the US EPA revision in 2004. A risk assessment study was conducted by the European Food Safety 

Authority (EFSA) in 2009 which concluded in its non-genotoxic potential (European Food Safety 

Authority 2009). However, the mutagenic potency of captan has long been reported in Ames strains 

TA1535 and TA104 and also in the Escherichia coli WP2uvrA strain (Bridges 1975; Barrueco and de 

la Pena 1988; Ohta et al. 2002), revealing base-change substitution on AT or GC base pairs, as well as 

in mammalian cellular mutation assays (O'Neill et al. 1981; Edgar et al. 1985). In addition to its 

mutagenic activity, the genotoxic potential of captan is supported by the induction of DNA breaks 

leading to chromosomal aberrations in mammalian cells (Swenberg et al. 1976; Tezuka et al. 1980; 

Snyder 1992). Finally, a direct interaction of captan with DNA and/or proteins linked to chromatin 
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such as histones, polymerases or topoisomerase II, has been suggested (Anderson and Rosenkranz 

1974; Couch and Siegel 1977; Couch et al. 1977; Selsky and Matheson 1981; Dillwith and Lewis 

1982; Pritchard and Lappin 1991; Snyder 1992; Grilli et al. 1995; Provan et al. 1995; Provan and 

Eyton-Jones 1996; Rahden-Staron 2002).  

In contrast to cellular analyses, carcinogenesis assays were negative in rats and slightly positive in 

mice, which developed duodenal glandular tumors and squamous cell lesions of the forestomach [see 

for review (Cohen et al. 2010)]. The difference observed in genotoxicity and mutagenesis between in 

vitro and in vivo situations might depend on the metabolism of captan and sequestration of reactive 

derivatives [for review see (Arce et al. 2010)]. Under in vivo conditions, the presence of thiol-rich 

environment such as cysteine or glutathione found in blood or liver, could explain the absence of 

genotoxicity by the quickly elimination of the reactive and volatile breakdown product of captan, the 

thiophosgene (Swenberg et al. 1976; Moriya et al. 1978; Gordon 2010). Thus, the increased tumour 

risk observed in mice might be due to chronic mucosal wounding and regenerative hyperplasia (Arce 

et al. 2010; Thompson et al. 2017), leading to non-genotoxic effects inducing duodenal 

carcinogenesis. Nevertheless, Mac Cauley and colleagues have described a significant positive 

association between DNA damage in oral human leukocytes using alkaline comet assay and urinary 

concentration of the captan metabolite tetrahydrophthalimide (McCauley et al. 2008). 

In this context, it is of great interest to throw new light on captan mechanisms of toxicity. To this end, 

we investigated captan potential genotoxicity in mammalian in vitro cell lines. Here, we show that 

captan induces DNA damage that requires a XRCC1-dependent repair process and an independent 

replicative stress characterized by a slowing down of fork velocity, resulting in the formation of 

double-strand breaks (DSBs) and genomic instability. 

2 Material and methods 

2.1 Cell lines and treatments 

HeLa human cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM, Gibco, Life 

technologies). AA8 (XRCC1+/+) and EM9 (XRCC1-/-) rodent cell lines were maintained in a mixture of 
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50% DMEM media and 50% F-12 media. All media were supplemented with 10% heat-inactivated calf 

serum and 0.5 mg/ml penicillin/streptomycin (P/S). Cells lines were grown in a humidified incubator at 

37 °C with 5% CO2. All cell lines were checked and were mycoplasma-free. Peripheral Blood 

Mononuclear cells (PBMC) collected from one volunteer [Établissement Français du Sang, (EFS), 

written consent for the use of blood samples for the research protocol obtained according to the 

regulation for blood transfusion of the French blood organization EFS, Toulouse (France)] were Ficoll-

separated from whole blood and aliquoted (1*106 cells/aliquot) prior to cryopreservation in liquid 

nitrogen as described previously (Lebailly et al. 2015). For each experiment, aliquots of PBMC were 

defrosted, washed with phosphate-buffered saline (PBS) with 10% serum, centrifuged (200g, 10 min) 

and resuspended in PBS. When needed, cells were treated with captan (Dr. Ehrenstorfer GmbH, 

Germany/CIL-Cluzeau; purity of 98.5 %, with impurities as inorganic salts, besides 0.02% ethanol and 

0.01% dichloromethane). Captan was added to culture medium, supplemented with serum for all 

experiments, except for comet assays experiments, which were carried out without serum. 

To induce DNA damage as products of purine oxidation detectable by formamidopyrimidine-DNA 

glycosylase (Fpg), cells were placed on ice and treated with the compound Ro 19-8022 (gift from 

Hoffman Laroche Ltd) (at 1 µM in PBS) for 2 min 30 sec under visible light (1000 W-halogen). Ro 

19-8022 plus light is an appropriate positive control for the Fpg-modified comet assay (Azqueta et al. 

2013).  

2.2 RNA interference 

Gene silencing was performed by transfection of siRNA (Sigma-Aldrich) in HeLa cells with 

INTERFERin® according to the manufacturer’s instructions (Polyplus). Briefly, siRNA were mixed 

with interferin in Opti-MEM and incubated for 10 minutes at room temperature. Then, HeLa cells 

were transfected with the negative control siRNA (CAUGUCAUGUGUCACAUCU-dTdT), or with 

siRNA directed against XRCC1 (GGAAGAUAUAGACAUUGAG-dTdT), or ATR 

(CCUCCGUGAUGUUGCUUGA-dTdT). After 24 hours of incubation, cells were counted and plated 

for further analysis. 
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2.3 Clonogenic assay 

Cells were plated in triplicate at a density of 200 to 500 cells per well in 6-well plates. One day after 

seeding, cells were treated with captan at the indicated concentrations in complete medium and grown 

for 6–12 days. AA8 and EM9 cells were exposed to captan until fixed. For HeLa cells treated with 

siRNA, cells were exposed to captan 66 hours to 90 hours post-transfection during the most efficient 

time of siRNA-mediated protein depletion. Formed colonies were fixed and stained with a 0.25% 

methylene blue (Sigma) and 50% methanol solution. Colonies containing more than 50 cells were 

counted and the survival rate calculated. Survival rates are normalized to 100% for undamaged cells 

for each cell population. 

2.4 Proliferation assay 

Cells were plated in duplicate in 24-well plates at a density of 40,000 and 50,000 cells per well for 

AA8 and EM9 cells, respectively. One day after seeding, cells were treated in duplicate with captan at 

the indicated concentrations in complete medium and grown for 48 hours. Final cell number in each 

well was estimated by Malassez cell counting. 

2.5 Micronucleus assay 

HeLa cells were grown in 12-well plates (2 × 104 cells/well) for 24 hours before to be treated or not 

with captan for 24 hours. AA8 and EM9 cells were grown in 24-well plates (2 × 104 cells/well) for 24 

hours before to be treated with captan for 24 hours. Cells were fixed with 4% paraformaldehyde for 20 

min after a PBS wash. They were then permeabilized with 0.5% Triton X-100 in PBS for 15 min, and 

nuclei were stained with 4.6-diamino-2-phenyl indole (DAPI) (100 nM). 

2.6 Comet assay 

The alkaline comet assay was used to detect strand breaks and alkali-labile sites as previously 

described with minor modifications (Lebailly et al. 2015). Cells were embedded in 0.7% low melting 

point agarose and a parallel digestion with Fpg enzyme (gift from Serge Boiteux, CNRS, France) 

allowing the detection of Fpg-sensitive sites was performed, as already described (Azqueta et al. 

2013). Fifty cells per slide and 2 slides per sample were analysed. The extent of DNA damage was 
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evaluated for each cell by measuring the intensity of all tail pixels divided by the total intensity of all 

pixels in the head and tail of the comet. The median of these 100 values was calculated and named % 

tail DNA. For comet cellular repair assay, the Net level of Fpg-sensitive sites (% Tail DNA) was 

obtained for each condition by subtracting the damage (% Tail DNA) obtained in the absence of Fpg 

from Fpg-exposed comets ("+Fpg" − "-Fpg" = Net Fpg). To specifically calculate the effect of captan 

(% Tail DNA), Net Fpg-sensitive sites of non-treated (control) cells was subtracted from Net Fpg-

sensitive sites of captan treated cells, corresponding to Net Fpg-sensitive sites above the control cells 

(Net Fpg of captan − Net Fpg of control cells = Net Fpg of captan above control) . 

2.7 Immunofluorescence analysis 

Cells were grown on glass coverslips. After at least 24 hours of culture, cells were fixed with 4% 

paraformaldehyde, permeabilized with 0.5% Triton X-100 for 15 minutes, blocked in 3% BSA and 

stained with primary antibodies (dilution 1:3000) overnight at 4 °C in blocking solution. For FANCD2 

detection, a pre-extraction step (0.5% Triton X-100 for 5 minutes) was performed before fixation. 

53BP1 (NB100-304) and FANCD2 (NB100-182) antibodies were purchased from Novus Biologicals 

and γH2AX antibody from Merck/Millipore (05–636). Cells were washed three times with PBS 

Tween 0.1% and incubated with the secondary antibodies (dilution 1:800) for 1 hour (Rhodamine Red 

X (R6394) and AlexaFluor 488 Goat anti-mouse (A11017) or anti-rabbit (A11070), purchased from 

Invitrogen). DNA was stained with DAPI. Cells were counted positive for γH2AX and 53BP1 foci 

formation when > 10 foci/nuclei were detected and counted positive for FANCD2 when > 3 

foci/nuclei were detected. 

2.8 Flow cytometry analyses  

2.8.1 ɣH2AX staining 

Two hours after treatment with 10 µM captan, AA8 and EM9 cell lines were fixed in PBS containing 

4% paraformaldehyde for 15min at room temperature, washed, then permeabilized with PBS 

containing 0.2% triton X-100 and 1% BSA for 20 min at room temperature. Antibody against ɣH2AX 

(1:300, clone JBW301, Millipore) was incubated for 3 hours in PBS containing 1% BSA at room 

temperature. After three washes, cells were incubated with the secondary antibody anti-mouse Alexa 
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Fluor 488 (1:1000, A11017, Thermofisher) for 30 min at room temperature. Then, cells were washed 

three times and incubated in PBS containing DAPI (1 µg/ml) for 15 min before samples were 

processed using flow cytometry (MACSQuant, Miltenyi Biotec). At least 10,000 events were analysed 

per sample using FlowJo software. 

2.8.2 Cell cycle analysis 

Two hours after captan treatment (10 µM), CHO cell lines were incubated with EdU (5 µM) for 15 

min. Cells were collected by trypsinization and incorporated EdU was detected using the baseclick 

EdU flow cytometry kit (Sigma, BCK-FC488) according to the manufacturer’s instructions. Cells 

were incubated in PBS containing DAPI (1 µg/ml) for 15 min before samples were processed using 

flow cytometry (MACSQuant, Miltenyi Biotec). At least 10,000 events were analysed per sample 

using FlowJo software. 

2.9 DNA fibre assay 

CHO cell lines were plated for 24 hours before sequential pulse labelling with 50 µM CldU (5-

chlorodeoxyuridine, Sigma-Aldrich), then 100 µM IdU (5- iododeoxyuridine, Sigma-Aldrich) for 20 

min each, followed by a chase with 200 µM thymidine (Sigma-Aldrich) for 1 hour. Then, cells were 

collected for DNA fibre assays and re-suspended in cold PBS. Two µl of cells resuspended in PBS 

(5x105cells/ml) were spotted onto clean glass slides, mixed with 7.5 µl of lysis buffer (200 mM Tris-

HCl pH 7.4, 50 mM EDTA, 0.5% SDS) and incubated horizontally for 5 min at room temperature. 

DNA was spread by tilting the slide manually at a 30-45° angle. The air-dried DNA was fixed in cold 

methanol/acetic acid (3:1) for 20 min. Slides were rehydrated in PBS twice and the DNA was 

denatured in 2.5 M HCl for 45 min at room temperature. The slides were washed twice in PBS, 

followed by incubation in blocking solution (1% BSA, 0.1% Tween 20, PBS) for 30 min at room 

temperature followed by primary antibodies (rat anti-CldU (1:75, OBT0030G, Biorad) and mouse 

anti-IdU (1:50, BD347583, Becton Dickinson)) for 1.5 hours at room temperature. After three washes 

in PBS, the slides were fixed in 4% paraformaldehyde for 10 min, washed and then incubated in 

blocking solution for 10 min. Next, the slides were incubated with the secondary antibodies (anti-rat 

Alexa Fluor 546 (A11081) and anti-mouse Alexa Fluor 488 (A11017), Thermofisher, 1:200) for 1 
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hour at room temperature. Subsequently, they were washed as before, incubated in blocking solution 

for 10 min, then with the single-strand DNA antibody overnight at 4°C (mouse-anti ssDNA, 1:50, 

MAB3034, Millipore). After three washes in PBS, the slides were incubated in blocking solution for 

10 min and finally with the secondary antibody (anti-mouse Alexa Fluor 350, 1:200, A21130, 

Thermofisher) for 2 hours. Images were analysed using NIS Elements-AR Nikon software. The 

specific DNA staining allowed the exclusion of any signal due to broken or overlapping DNA fibres. 

IdU track length was determined if flanked by a CldU track. At least 400 fibres per condition were 

measured. 

2.10 Western blot analysis 

Cells were incubated on ice for 30 min in lysis buffer (50 mM Tris-HCl pH7.5, 250 mM NaCl and 

0.5% NP40) containing the HaltTM Protease & Phosphatase inhibitor cocktail (Thermo Scientific) and 

sonicated. Cell lysates were centrifuged and the supernatant containing total soluble proteins was kept. 

Proteins were separated by SDS-PAGE and transferred to a nitrocellulose membrane (Amersham). 

Membranes were incubated with the primary antibody for a period of 1–16 hours. Chk1 (2G1D5) and 

pChk1 (133D3) antibodies (dilution 1:1000) were purchased from Cell Signalling, ATR 

(SAB4200348, dilution 1:500) and Lamin A/C (SAB4200236, dilution 1:1000) antibodies from Santa 

Cruz, XRCC1 antibody (X0629, dilution 1:1000) from SIGMA, FANCD2 antibody (NB100-182, 

dilution 1:5000) from Novus Biologicals, and GAPDH (GTX100118, dilution 1:50000) antibody from 

GeneTex. The secondary anti-mouse or anti-rabbit HRP-conjugated antibodies (Jackson 

Immunoresearch laboratories) were incubated for 1 hour at room temperature. Proteins were visualised 

with the enhanced chemiluminescence substrate ECL (Biorad) and imaged using the ChemiDoc XRS 

Biorad Imager and Image Lab Software. Lamin, Chk1 and GAPDH were used as internal control. 

2.11 Statistical analysis 

The results are expressed as the mean  ±  SEM. Statistical analysis was assessed using Prism 6 

software (GraphPad). Student’s t-test, Mann-Whitney or two-ways ANOVA tests, followed by post 

hoc tests were used when appropriate. A P value <0.05 was considered significant. For clonogenic 

survival assay, micronucleus assay, γH2AX and 53BP1 immunofluorescence analyses on siRNA-
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transfected HeLa and CHO (AA8 and EM9) cells, two-way ANOVA followed by Sidak’s multiple 

comparison test were used in order to study treatment effects and cell line effect. This statistical 

approach was also used for γH2AX staining analysed by flow cytometry and cell cycle analysis. For 

the analysis of “Fpg sensitive sites” by comet assay, two-tailed Student’s t-test was used. For the other 

comet assays, two-way ANOVA followed by Sidak’s multiple comparison tests were performed. For 

DNA fibre assay, statistical analysis was performed using two-tailed Mann-Whitney test. 

 

3 Results 

3.1 XRCC1 deficiency induces hypersensitivity to captan 

Since captan was reported to induce base substitution reversion in Ames test strains (TA102 and 

TA104) and WP2uvrA6 Escherichia coli strains used to detect base substitution mutagenesis, we first 

tested the effect of XRCC1 defect, a scaffold protein involved in base excision repair (BER) (Kubota 

et al. 1996). HeLa cells were depleted for XRCC1 protein by transfection with siRNA (Fig. 1A, left 

panel). Compared to control cells transfected with a scramble siRNA, XRCC1-deficient cells showed 

a significant higher sensitivity to 1 µM of captan (Fig. 1A, right panel). Similarly, EM9 CHO cells 

mutated in XRCC1 were more sensitive than the wild type AA8 cells to captan treatment (Fig. 1B). 

These results suggest that captan sensitivity is associated with the induction of DNA damage that is 

repaired by XRCC1. HeLa cells exposed to 10 µM of captan for 24 hours exhibited a higher 

percentage of micronucleus-containing cells compared to untreated cells (Fig. S1), suggesting that 

captan induces DNA damage that can generate genetic instability. Moreover, AA8 and EM9 CHO 

cells exposed to captan for 24 hours exhibit a dose-dependent increase of micronucleus formation, 

with a significant greater impact on EM9 cells (Fig. 1C). This data demonstrate that XRCC1 is 

involved in the prevention of genetic instability induced by captan. 

In order to confirm that captan induces DNA damage in mammalian cells, an alkaline comet assay was 

performed on human peripheral lymphocytes. When exposed to 1 µM of captan for 2 hours, these 

lymphocytes present more DNA damage than the non-treated cells (Fig. S2), confirming the genotoxic 
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activity of the fungicide. Then, the involvement of XRCC1 in the repair of DNA damage induced by 

captan was analysed through alkaline and Fpg-modified comet assays. In CHO cells exposed to 1 µM 

of captan for 2 hours, no damage was observed through alkaline comet assay (Fig. 1D), probably due 

to the high basal DNA damage already detected in this cellular background. In the same way, no DNA 

damage through alkaline comet assay can be observed in these cells treated with Ro 19-8022, a 

chemical agent known to generate 8-oxoguanine (Fig. S3A). Next, the Fpg-modified comet assay was 

performed to reveal Fpg-sensitive sites which mainly represent oxidative base modifications 

[Reviewed in (Collins 2014)], usually repaired by the BER pathway. Similar to the control treatment 

with Ro 19-8022 (Fig. S3A), captan exposure for 2 hours induced Fpg-sensitive DNA lesions, as 

shown in AA8 and EM9 CHO cells (Fig. 1D). To determine whether XRCC1 is involved in the repair 

of such lesions, Fpg-modified comet assay was also performed on AA8 and EM9 CHO cells released 

for 1 hour in fresh media after captan or Ro 19-8022 exposure. In control cells, repair of DNA lesions 

induced by captan or Ro 19-8022 was almost complete within 60 minutes (Fig. 1E for captan and Fig. 

S3B for Ro 19-8022). In contrast, repair of Fpg-sensitive lesions was severely impaired in XRCC1-

deficient cells after captan or Ro 19-8022 exposure (Fig. 1E for captan and Fig. S3B for Ro 19-8022). 

These results indicate the involvement of XRCC1 in the repair of DNA damage induced by captan.  

3.2 The replicative stress response is crucial for survival from captan-related genotoxicity 

To further characterize the genotoxic stress induced by captan, we performed immunofluorescence in 

HeLa cells to analyse histone H2AX phosphorylation (ɣH2AX), which is a general DNA damage 

marker mainly associated with DSBs and replication stress (RS), and 53BP1 recruitment, which is 

more specific to DSBs (de Feraudy et al. 2010; Vignard et al. 2013) (Fig. 2A). After 2 hours of captan 

exposure, a dose-dependent increase in both ɣH2AX- and 53BP1-positive cells was observed (Fig. 

2B). Except for the non-treated condition where the ɣH2AX signalling may be too low in some cells to 

be properly detected, all the 53BP1 positive cells were also ɣH2AX positive after captan treatment. 

However, a subclass of captan-treated cells accumulating a ɣH2AX signal was devoid of 53BP1 foci 

(Fig. 2A-B). This suggests that captan-related DNA damage generates a RS that subsequently results 

in DSB formation. To test this hypothesis, HeLa cells exposed to captan for 2 hours were co-labelled 
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with ɣH2AX and FANCD2, a protein that spontaneously form foci in S-phase cells (Liu et al. 2000; 

Taniguchi et al. 2002). As in non-treated HeLa cells where a weak ɣH2AX staining related to a low 

RS signalling is only visible in FANCD2 positive cells, the increased subclass of cells accumulating 

ɣH2AX after captan exposure is limited to the FANCD2 positive population (Fig. S4). Taken together, 

these data suggest that captan-mediated DNA damage induces a RS and subsequently DSB signalling 

specifically during S-phase. 

To investigate whether captan exposure induces RS, we assessed the induction of CHK1 

phosphorylation at S345 (pCHK1) and of FANCD2 monoubiquitylation, two well-established markers 

of RS (Liu et al. 2000; Taniguchi et al. 2002). HeLa cells exposed to 20 µM of captan for 2 hours 

exhibited higher pCHK1 and FANCD2 monoubiquitylation compared to non-treated cells, 

demonstrating that captan-exposed cells undergo RS (Fig. 2C). We next confirmed that the RS 

response is crucial after captan treatment by addressing the sensitivity of cells deficient in ATR, an 

essential kinase for surviving RS (Saldivar et al. 2017). As expected, siRNA-mediated ATR 

downregulation resulted in loss of viability in HeLa cells exposed to captan (Fig. 2D). Moreover, 

ATR-deficient cells treated with 10 µM of captan for 24 hours presented a higher percentage of 

micronuclei compared to control cells (Fig. 2E), indicating that the RS response is important to 

prevent genetic instability after captan. In addition, the proportion of 53BP1-positive cells after captan 

exposure was higher after ATR depletion (Fig. 2F), providing further evidence that these DSBs derive 

from captan-induced RS. Taken together, these data demonstrate that captan exposure induces an RS 

that requires ATR to prevent DSB formation and genetic instability.  

3.3 Captan impairs replication fork progression in an XRCC1-independent manner 

The early RS induced by captan should rapidly mitigate the proliferative rate of exposed cells. 

Remarkably, AA8 and EM9 CHO cells treated with captan for 48 hours show a similar dose-

dependent proliferation defect (Fig. S5), suggesting that the captan induced RS does not merely relies 

on the presence of the DNA lesions that require XRCC1 to be repaired. To obtain better insights into 

the RS induced by captan and investigate the impact of XRCC1 deficiency in this process, we 

analysed ɣH2AX distribution through the cell cycle by flow cytometry in AA8 and EM9 CHO cells. 
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We observed a significant increase in ɣH2AX staining in the S phase of both cell lines in the same 

range, mostly at the onset of the S phase (Fig. 3A). These data confirm the RS induction by captan 

highlighted in figure 2 but suggest that it could be independent of the repair defects caused by XRCC1 

deficiency. Then, we assessed the impact of captan treatment on the cell cycle, especially in the S 

phase, by performing EdU incorporation experiments followed by flow cytometry analysis. In the 

absence of treatment, almost all AA8 and EM9 CHO cells in the S phase incorporated EdU (Fig. 3B). 

However, captan induced a huge loss of global EdU intensity only 2 hours after treatment (Fig. 3B and 

Fig. S6). Consequently, the proportion of EdU-negative S phase cells increased significantly in the 

same range in both cell lines (Fig. 3B). Impairment of EdU incorporation during replication suggests a 

slowing down of replication fork velocity. To directly address this question, we performed DNA fibre 

assays by successive double-pulse labelling with two nucleotide analogues, CldU followed by IdU 

incorporation, to measure replication fork speed in the DNA fibre. AA8 and EM9 CHO cell lines were 

treated with captan only during the second pulse labelling (IdU incorporation) and the track lengths 

were measured (Fig. 3C). We observed a significant decrease in IdU track length, reflecting a slowing 

down of replication fork velocity in the presence of captan. Moreover, the decrease in replication fork 

speed was similar between AA8 and EM9 cells, suggesting that the captan-related replication fork 

slowdown is independent of the repair defects caused by XRCC1 deficiency. To test whether XRCC1 

could influence the fork restart, we performed a DNA fibre assay on AA8 and EM9 CHO cell lines 

exposed to captan only during the first pulse labelling (CldU), then quantified the fork restart by 

measuring the IdU track length (Fig. 3D). As shown, the replication fork restart was similar in both 

cell lines, suggesting that XRCC1 depletion does not affect the replication fork restart. Altogether, 

these results demonstrate that during the S phase, captan exposure inhibits replication fork 

progression, leading to H2AX phosphorylation, independently of BER pathway.  
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4 Discussion 

Despite the mutagenic effect of captan reported on bacteria testing strains [e.g. see (Bridges 1975; 

Barrueco and de la Pena 1988; Ohta et al. 2002)], the genotoxic effect of captan on eukaryotic cells, 

and in particular on human cells, is still under debate. 

Our data indicate that the susceptibility of mammalian cells to captan is linked to its genotoxic 

potential, as revealed by the sensitivity of XRCC1-deficient cells. XRCC1 polymorphism has been 

associated with a higher risk of cancers (Hu et al. 2005; Hung et al. 2005). We show here that in 

absence of XRCC1, captan exposure of mammalian cells induces more micronucleus formation, 

indicating that XRCC1 may prevent genetic instability after captan. Indeed, XRCC1 plays a major role 

in maintaining chromosomal stability, its deficiency leading to an elevated level of sister chromatid 

exchange and chromosomal aberrations (Thompson et al. 1982; Zdzienicka et al. 1992). XRCC1 is a 

scaffold protein that interacts with different components of the BER machinery to stabilize or 

stimulate them (Caldecott 2014). BER is a versatile system capable of dealing with a broad range of 

base modifications, including oxidation, alkylation or deamination as well as abasic sites and single-

strand breaks (Krokan and Bjoras 2013). The modified alkaline comet assay allowed us to shed the 

light on the presence of Fpg-sensitive DNA sites after captan exposure. As Fpg is a bacterial 

glycosylase mainly active across oxidized purines (Boiteux et al. 2017), our results corroborate 

bacterial mutagenicity studies with strains that detect oxidative compounds. Moreover, the sensitivity 

and the repair defects of CHO cells defective in XRCC1 protein demonstrate the role of BER in 

overcoming the genotoxic effect of captan. The XRCC1 deficient EM9 cells show moderate 

hypersensitivity to captan, which might suggest that other DNA repair pathways could be required to 

survive captan exposure. However, EM9 cells have previously been reported to exhibit massive or 

slight hypersensitivity to base modifications depending on the ROS-generating or methylating agent, 

which may be correlated to differential XRCC1 requirement in many BER sub-pathways implying 

different DNA glycosylases (Barrows et al. 1991; Horton et al. 2008). While the highlighting of Fpg-

sensitive sites and the moderated sensitivity of XRCC1 deficient cells after captan exposure argue for 

the formation of oxidized bases such as 8-oxoguanine, our data cannot exclude that other lesions such 
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as alkylated bases are induced. Further studies will be necessary to better characterize the base lesions 

induced by captan and the cellular mechanisms involved for repair. In summary, these results indicate 

that captan induces Fpg-sensitive DNA lesions in mammalian cells, presumably altered bases, which 

require an XRCC1-dependent BER process to be repaired, as depicted in the model (Fig. 4).  

The cellular consequences of captan genotoxicity were first analysed by co-immunodetection of 

ɣH2AX and 53BP1. After captan exposure, HeLa cells accumulated more ɣH2AX- than 53BP1-

positive cells. 53BP1 is specifically recruited to DSBs (Schultz et al. 2000), whereas ɣH2AX can form 

foci after RS independently of DSB formation (Ray Chaudhuri et al. 2012). This suggests that captan 

induces an RS that may subsequently result in S-phase-dependent DSBs. Indeed, captan-treated HeLa 

cells rapidly exhibit enhanced Chk1 phosphorylation and FANCD2 monoubiquitinylation, two 

hallmarks of RS signalling (Liu et al. 2000; Taniguchi et al. 2002). These data are strengthened by the 

role of ATR, the major kinase governing the cellular response to RS (Liu et al. 2000; Taniguchi et al. 

2002) to survive captan exposure. Finally, the increase in micronuclei- and 53BP1-positive cells after 

captan exposure in ATR-deficient cells compared to control cells demonstrates that an effective RS 

response is necessary to prevent DSB formation and genetic instability in response to captan, as 

depicted in the model (Fig. 4). This indicates that the most dramatic cellular consequences of captan 

exposure arise during the S phase.  

The latter finding prompted us to characterize the RS induced by captan in more detail. Furthermore, 

we wondered whether the induction of the Fpg-sensitive sites by captan sustains the replication defects. 

The slowing down of the replication fork observed from only 20 min after captan treatment was not 

exacerbated by XRCC1 deficiency. This suggests that in parallel to induction of the Fpg-sensitive DNA 

lesions detected by the Fpg-modified comet assay, captan also inhibits DNA replication, which is in 

good agreement with previous studies. Indeed, biochemical analyses have shown that captan could be a 

general inhibitor of both eukaryotic and prokaryotic DNA polymerases (Dillwith and Lewis 1982; 

Freeman-Wittig et al. 1989; Snyder 1992). These reports showed that the fungicide impairs initiation of 

polymerisation, but not the elongation step of DNA synthesis, in an irreversible manner by competing 

with DNA regarding polymerase loading. Consequently, dissociation of the polymerase from the DNA 

template would promote its inhibition by captan. This observation could explain the difficulties 
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encountered by replicative forks to restart after captan treatment. It also raises the question of potential 

differences in captan sensitivity between replicative polymerases and specialized DNA polymerases, 

which are involved in DNA repair, translesion synthesis and replication. On the other hand, we cannot 

exclude that captan may induce different type of DNA lesions which repair is independent of XRCC1, 

and that may impede replication fork progression. Indeed, the repair of Fpg-sensitive sites induced by 

captan is less efficient than those induced by Ro 19-8022, suggesting a more complex situation. In the 

same way, the previously reported interaction of captan with DNA or proteins associated to chromatin 

(Arce GT 2010), such as the topoisomerase II inhibition by captan (Rahden-Staron 2002), may be 

responsible for the RS we report in this study. Further analyses on the possible role of other DNA repair 

pathways will be necessary to address these issues. 

DNA strand breaks and micronuclei are induced as a consequence of RS, which in turn leads to genomic 

instability. Our study demonstrates that captan exposure in mammalian cells induces various genotoxic 

effects, corroborating previous in vivo reports (Legator 1969; Feng and Lin 1987; Snyder 1992) and 

suggesting that these mechanisms could play a role in carcinogenesis. Moreover, our in vitro results on 

human peripheral lymphocytes, showing DNA damage with alkaline comet assay after captan treatment 

(Fig. S2), corroborate human in vivo study which has reported a significant positive association between 

DNA damage using alkaline comet assay and urinary concentration of captan (McCauley et al. 2008). 

In view of recent epidemiological data pointing to a carcinogenic effect in farmers exposed to captan 

(Presutti et al. 2016), more data are needed to evaluate the human health risk that this fungicide 

potentially represents. 
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Figure legends 

Fig. 1. Hypersensitivity to captan in XRCC1-deficient mammalian cells. (A) Left Panel: HeLa cells were transfected with 

scramble (Ctrl) or XRCC1 siRNA and XRCC1 protein level was analysed by Western blot. GAPDH is shown as a loading 

control. Right panel: clonogenic survival of HeLa cells transfected with scramble (Ctrl) or XRCC1 siRNA and exposed to 

captan. Results are the mean ± SEM of at least four independent experiments. (*P < 0.05). (B) Clonogenic survival of AA8) 

and EM9 CHO cells after treatment with captan. Results represent the mean ± SEM of three independent experiments. (***P 

< 0.001). (C) Micronucleus frequency after captan treatment for 24 hours observed in AA8 and EM9 cells. Data are 

expressed as the mean ± SEM of four independent experiments. (*P < 0.05, ***P < 0.001). (D) DNA damage evaluated by 

alkaline (-Fpg) and Fpg-modified comet assay (+Fpg) after 1 µM captan treatment for 2 hours in AA8 or EM9 CHO cells. 

Results are mean ± SEM of three independent experiments. (***P < 0.001 versus non-treated). (E) DNA damage evaluated 

by Fpg-modified comet assay, represented as increase of Net Fpg-sensitive sites (above the control treatment cells), 

immediately after 2 hours of captan treatment (1 µM) (time = 0) and after a recovery time of 60 minutes. Results are mean ± 

SEM of six independent experiments. (**P < 0.01). 

Fig. 2. Importance of replicative stress signalling in response to captan. (A) Representative images of γH2AX and 53BP1 

immunostaining of HeLa cells treated with 20 µM of captan for 2 hours. Asterisks indicate cells scored positive for γH2AX 

or 53BP1 staining. Scale bar = 20 µm. (B) Quantification of HeLa cells positive for γH2AX or 53BP1 signal. (**P < 0.01, 

***P < 0.001 versus non-treated for each staining). [PCaptan*IF staining represents the P-value of the interaction between captan 

treatment and staining (γH2AX or 53BP1) showing a significant higher staining of γH2AX than 53BP1 induced by captan]. 

(C) p-Chk1, Chk1 and FANCD2 immunoblots of soluble extracts from HeLa cells treated for 2 hours with captan 20 µM or 

non-treated cells. (D) Left Panel: HeLa cells were transfected with scramble (Ctrl) or ATR siRNA and ATR protein level was 

analysed by Western blot. Lamin C is shown as a loading control. Right panel: Clonogenic survival of HeLa cells transfected 

with scramble (Ctrl siRNA) or ATR siRNA and exposed to captan. Results are the mean ± SEM of at least three independent 

experiments. (*P < 0.05, **P < 0.01). (E) Micronucleus frequency after 10 µM captan treatment for 24 hours measured in 

HeLa control (scramble siRNA) and ATR siRNA. Data are expressed as mean ± SEM of three independent experiments. 

***P < 0.001 versus non-treated for each cell line). (PCaptan*siRNA represents the P-value of the interaction between treatment 

and siRNA). (F) Left panel: Representative images of 53BP1 immunostaining of HeLa cells transfected with scramble (Ctrl 

siRNA) or ATR siRNA and treated with 10 µM of captan for 2 hours. Scale bar = 50 µm. Right panel: Quantification of 

HeLa cells positive for 53BP1 foci formation. Data represent the mean ± SEM of three independent experiments. (***P < 

0.001 versus non-treated for each cell line). (PCaptan*siRNA represents the P-value of the interaction between treatment and 

siRNA). 

Fig. 3. Captan decreases replication speed and fork restart independently of XRCC1. (A) Left panel: Representative flow 

cytometry of AA8 and EM9 CHO cells treated or not with 10 µM captan for 2 hours followed by γH2AX and DAPI staining. 

Right panel: Quantification of γH2AX positive cells. Data represent the mean ± SEM of four independent experiments. (***P 
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< 0.001 versus non-treated for each cell line). PCaptan*cell line represents the interaction between treatment (captan or non-

treated) and cell line (AA8 or EM9 CHO cell lines). (B) Left panel: Representative flow cytometry of AA8 and EM9 CHO 

cells treated or not with 10 µM captan for 2 hours followed by cell cycle analysis. EdU incorporation is plotted against the 

cellular DNA content (DAPI). Quantification of G1, S and G2 cell population (boxed) is indicated. Right panel: Data 

represent the percentage of EdU-positive (upper panel) and EdU-negative cells (lower panel) in the S phase (mean ± SEM of 

three independent experiments). (*P < 0.05, **P < 0.01 versus non-treated for each cell line). (C) Upper panel: Replication 

fork speed was analysed by DNA fibre assay. AA8 and EM9 CHO cell lines were treated or not with 10 µM of captan during 

IdU incorporation. IdU track length was determined. Middle panel: Representative images of replication tracks: CldU (red) 

and IdU (green) (Original magnification X40, Scale bar = 10 µm). Lower panel: Horizontal red lines represent the median 

(*** P < 0.001). This experiment is representative of two independent experiments. (D) Quantification of replication fork 

restart in AA8 and EM9 CHO cell lines after captan treatment. Cells were treated or not with 10 µM of captan during CldU 

incorporation, and IdU track length was analysed. Middle panel: Representative images of replication tracks: CldU (red) and 

IdU (green) (Original magnification X40, Scale bar = 10 µm). Lower panel : Horizontal red lines represent the median (***P 

< 0.001).  

Fig. 4. The fungicide captan induces two independent genotoxic effects. Left part: captan induces base modifications that 

require XRCC1 to be repaired. Right part: captan is also responsible for a replicative stress, impacting replicative-fork speed 

and leading to double-strand breaks. Both effects contribute to the establishment of genomic instability. 
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