K. F. Fischbach and D. Apm, The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure, Cell Tissue Res, vol.258, pp.441-475, 1989.

J. Morante and C. Desplan, The color-vision circuit in the medulla of Drosophila, Curr Biol, vol.18, pp.553-565, 2008.

B. Bausenwein, A. P. Dittrich, and K. F. Fischbach, The optic lobe of Drosophila melanogaster. II. Sorting of retinotopic pathways in the medulla, Cell Tissue Res, vol.267, pp.17-28, 1992.

S. Gao, The neural substrate of spectral preference in Drosophila, Neuron, vol.60, pp.328-342, 2008.

J. D. Mast, S. Prakash, P. L. Chen, and T. R. Clandinin, The mechanisms and molecules that connect photoreceptor axons to their targets in Drosophila, Semin Cell Dev Biol, vol.17, pp.42-49, 2006.

D. F. Reiff, J. Plett, M. Mank, O. Griesbeck, and A. Borst, Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila, Nat Neurosci, vol.13, pp.973-978, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00554657

S. Y. Takemura, Cholinergic circuits integrate neighboring visual signals in a Drosophila motion detection pathway, Curr Biol, vol.21, pp.2077-2084, 2011.

J. Rister, Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster, Neuron, vol.56, pp.155-170, 2007.

, Comment citer ce document

T. Erclik, X. Li, M. Courgeon, C. Bertet, Z. Chen et al., Integration of temporal and spatial patterning generates neural diversity, Nature, vol.541, issue.7637, pp.365-370, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02620278

J. Morante and C. Desplan, Building a projection map for photoreceptor neurons in the Drosophila optic lobes, Semin Cell Dev Biol, vol.15, pp.137-143, 2004.

C. Nassif, A. Noveen, and V. Hartenstein, Early development of the Drosophila brain: III. The pattern of neuropile founder tracts during the larval period, J Comp Neurol, vol.455, pp.417-434, 2003.

B. Egger, J. Q. Boone, N. R. Stevens, A. H. Brand, and C. Q. Doe, Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe, Neural Dev, vol.2, issue.1, 2007.

Z. Huang and S. Kunes, Signals transmitted along retinal axons in Drosophila: Hedgehog signal reception and the cell circuitry of lamina cartridge assembly, Development, vol.125, pp.3753-3764, 1998.

B. Egger, K. S. Gold, and A. H. Brand, Notch regulates the switch from symmetric to asymmetric neural stem cell division in the Drosophila optic lobe, Development, vol.137, pp.2981-2987, 2010.

T. Yasugi, D. Umetsu, S. Murakami, M. Sato, and T. Tabata, Drosophila optic lobe neuroblasts triggered by a wave of proneural gene expression that is negatively regulated by JAK/STAT, Development, vol.135, pp.1471-1480, 2008.

T. Yasugi, A. Sugie, D. Umetsu, and T. Tabata, Coordinated sequential action of EGFR and Notch signaling pathways regulates proneural wave progression in the Drosophila optic lobe, Development, vol.137, pp.3193-3203, 2010.

K. T. Ngo, Concomitant requirement for Notch and Jak/Stat signaling during neuroepithelial differentiation in the Drosophila optic lobe, Dev Biol, vol.346, pp.284-295, 2010.

B. V. Reddy, C. Rauskolb, and K. D. Irvine, Influence of fat-hippo and notch signaling on the proliferation and differentiation of Drosophila optic neuroepithelia, Development, vol.137, pp.2397-2408, 2010.

J. Ceron, C. Gonzalez, and F. J. Tejedor, Patterns of cell division and expression of asymmetric cell fate determinants in postembryonic neuroblast lineages of Drosophila, Dev Biol, vol.230, pp.125-138, 2001.

X. Li, Temporal patterning of Drosophila medulla neuroblasts controls neural fates, Nature, vol.498, pp.456-462, 2013.

T. Suzuki, M. Kaido, R. Takayama, and M. Sato, A temporal mechanism that produces neuronal diversity in the Drosophila visual center, Dev Biol, vol.380, pp.12-24, 2013.

T. Isshiki, B. Pearson, S. Holbrook, and C. Q. Doe, Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny, Cell, vol.106, pp.511-521, 2001.

R. Kambadur, Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS, Genes & development, vol.12, pp.246-260, 1998.

T. Brody and W. F. Odenwald, Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development, Dev Biol, vol.226, pp.34-44, 2000.

X. Cui and C. Q. Doe, ming is expressed in neuroblast sublineages and regulates gene expression in the Drosophila central nervous system, Development, vol.116, pp.943-952, 1992.

D. M. Mellerick, J. A. Kassis, S. D. Zhang, and W. F. Odenwald, castor encodes a novel zinc finger protein required for the development of a subset of CNS neurons in Drosophila, Neuron, vol.9, pp.789-803, 1992.

X. Yang, S. Yeo, T. Dick, and W. Chia, The role of a Drosophila POU homeo domain gene in the specification of neural precursor cell identity in the developing embryonic central nervous system, Genes & development, vol.7, pp.504-516, 1993.

R. Grosskortenhaus, B. J. Pearson, A. Marusich, and C. Q. Doe, Regulation of temporal identity transitions in Drosophila neuroblasts, Dev Cell, vol.8, pp.193-202, 2005.

, Version postprint Comment citer ce document

T. Erclik, X. Li, M. Courgeon, C. Bertet, Z. Chen et al., Integration of temporal and spatial patterning generates neural diversity, Nature, vol.541, issue.7637, pp.365-370, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02620278

K. S. Gold and A. H. Brand, Optix defines a neuroepithelial compartment in the optic lobe of the Drosophila brain, Neural Dev, vol.9, issue.18, 2014.

T. Chang, J. Mazotta, K. Dumstrei, A. Dumitrescu, and V. Hartenstein, Dpp and Hh signaling in the Drosophila embryonic eye field, Development, vol.128, pp.4691-4704, 2001.

K. Kaphingst and S. Kunes, Pattern formation in the visual centers of the Drosophila brain: wingless acts via decapentaplegic to specify the dorsoventral axis, Cell, vol.78, pp.437-448, 1994.

C. Bertet, Temporal patterning of neuroblasts controls Notch-mediated cell survival through regulation of Hid or Reaper, Cell, vol.158, pp.1173-1186, 2014.

Z. Chen, A Unique Class of Neural Progenitors in the Drosophila Optic Lobe Generates Both Migrating Neurons and Glia, Cell Rep, 2016.

E. Hasegawa, Concentric zones, cell migration and neuronal circuits in the Drosophila visual center, Development, vol.138, 2011.

J. B. Skeath, Y. Zhang, R. Holmgren, S. B. Carroll, and C. Q. Doe, Specification of neuroblast identity in the Drosophila embryonic central nervous system by gooseberry-distal, Nature, vol.376, pp.427-430, 1995.

J. B. Weiss, Dorsoventral patterning in the Drosophila central nervous system: the intermediate neuroblasts defective homeobox gene specifies intermediate column identity, Genes Dev, vol.12, pp.3591-3602, 1998.

J. A. Mcdonald, Dorsoventral patterning in the Drosophila central nervous system: the vnd homeobox gene specifies ventral column identity, Genes Dev, vol.12, pp.3603-3612, 1998.

G. M. Technau, C. Berger, and R. Urbach, Generation of cell diversity and segmental pattern in the embryonic central nervous system of Drosophila, Dev Dyn, vol.235, pp.861-869, 2006.

A. Rogulja-ortmann and G. M. Technau, Multiple roles for Hox genes in segment-specific shaping of CNS lineages, Fly (Austin), vol.2, pp.316-319, 2008.

C. A. Brennan and K. Moses, Determination of Drosophila photoreceptors: timing is everything, Cell Mol Life Sci, vol.57, pp.195-214, 2000.

K. F. Fischbach, Neural cell types surviving congenital sensory deprivation in the optic lobes of Drosophila melanogaster, Dev Biol, vol.95, pp.1-18, 1983.

D. Kosman, S. Small, and J. Reinitz, Rapid preparation of a panel of polyclonal antibodies to Drosophila segmentation proteins. Development genes and evolution, vol.208, pp.290-294, 1998.

S. Roy, Identification of functional elements and regulatory circuits by Drosophila modENCODE, Science, vol.330, pp.1787-1797, 2010.

J. Morante and C. Desplan, Dissection and Staining of Drosophila Optic Lobes at Different Stages of Development, Cold Spring Harbor Protocols, p.5629, 2011.

T. Erclik, V. Hartenstein, H. D. Lipshitz, and R. R. Mcinnes, Conserved role of the Vsx genes supports a monophyletic origin for bilaterian visual systems, Curr Biol, vol.18, pp.1278-1287, 2008.

C. J. Evans, G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila, Nat Methods, vol.6, pp.603-605, 2009.

A. Jenett, A GAL4-driver line resource for Drosophila neurobiology, Cell Rep, vol.2, pp.991-1001, 2012.

R. J. Davis, B. C. Tavsanli, C. Dittrich, U. Walldorf, and G. Mardon, Drosophila retinal homeobox (drx) is not required for establishment of the visual system, but is required for brain and clypeus development, Dev Biol, vol.259, pp.272-287, 2003.

E. R. Vandendries, D. Johnson, and R. Reinke, orthodenticle is required for photoreceptor cell development in the Drosophila eye, Dev Biol, vol.173, pp.243-255, 1996.

T. Erclik, X. Li, M. Courgeon, C. Bertet, Z. Chen et al., Integration of temporal and spatial patterning generates neural diversity, Nature, vol.541, issue.7637, pp.365-370, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02620278

, A Pm3 neuron (GFP in green) generated by flip-out with Vsx1-Gal4

, Only the ventral population of pOPC neurons expresses Tsh (red). h-i. Single cell flip-out clones using 27b-Gal4 label Pm2 (h) and Pm1 (i) neurons

, Tsh (red) is not expressed in the Notch ON (ap-lacZ in green) Hth + neurons of the pOPC. k. Cleaved-caspase-3 (green) marks dying cells that are intermingled with N ON Hth + in the mOPC. l-n. Schematic models summarizing neurogenesis in Hth + neuroblasts of

. Erclik, , p.16

T. Erclik, X. Li, M. Courgeon, C. Bertet, Z. Chen et al., Integration of temporal and spatial patterning generates neural diversity, Nature, vol.541, issue.7637, pp.365-370, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02620278

, Svp expression (green) is lost but Vsx1 (red) is unaffected in the cOPC. b. Svp expression (green) in lost in the pOPC in hth mutant MARCM clone. c and d. Bsh (red) is ectopically expressed in the progeny of older neuroblasts in hth gainof-function (GOF) clones in the cOPC (c) or in the pOPC (d), hth mutant MARCM clone

, Bsh (red) and Svp (green) expression in different LOF and GOF. e. Vsx1 RNAi loss-of-function (LOF) clone in the cOPC. f. Vsx1 GOF clone in the mOPC. g. Rx LOF mutant MARCM clone in the pOPC

, Rx GOF clones in the mOPC

, Optix LOF mutant MARCM clone in the mOPC,. j. Optix GOF clone in the cOPC, Comment citer ce document

T. Erclik, X. Li, M. Courgeon, C. Bertet, Z. Chen et al., Integration of temporal and spatial patterning generates neural diversity, Nature, vol.541, issue.7637, pp.365-370, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02620278

, Svp (green) is ectopically expressed in Rx GOF clones. The Pm1 marker Tsh (red) is ectopically expressed in ventral mOPC clones (solid arrow) but is not in clones in the dorsal mOPC or ventral cOPC

, Wild-type adult optic lobe with 27b-Gal4 driving GFP expression (green) in Pm1 and Pm2