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Abstract 

Early nutritional management including fortified human breastmilk is currently recommended to fulfil 

the energy demands and counterbalance risks associated to preterm birth. However, little is known 

about the potential adverse effects of exposure to persistent organic pollutants (POPs) carried in 

human milk on preterm infant growth. We conducted a pilot study proving the application of an 

integrative analytical approach based on mass spectrometry (MS) coupled to advanced statistical 

models, favouring the comprehensive molecular profiling to support the identification of multiple 

biomarkers. We applied this workflow in the frame of a preterm infants’ cohort to explore 

environmental determinants of growth. The combination of high resolution gas and liquid 

chromatography MS platforms generated a large molecular profile, including 102 pollutants and 

nutrients (targeted analysis) and 784 metabolites (non-targeted analysis). Data analysis consisted in a 

preliminary examination of associations between the signatures of POPs and the normalized growth of 

preterm infants, using multivariate linear regression adjusting for known confounding variables. A 

second analysis aimed to identify multidimensional biomarkers using a multiblock algorithm allowing 

the integration of multiple datasets in the growth model of preterm infants. The preliminary results did 

not suggest an impairment of preterm growth associated to the milk concentrations of POPs. The 

multiblock approach however revealed complex interrelated molecular networks of POPs, lipids, 

metabolites and amino acids in breastmilk associated to preterm infant growth, confirming the high 

potential of biomarkers exploration of this proposed workflow. Whereas the present study intended to 

identify simultaneously pollutant and nutrient exposure profiles associated to early preterm infant 

growth, this workflow may be easily adapted and applied to other matrices (e.g. serum) and research 

settings, favouring the functional exploration of environmental determinants of complex and 

multifactorial diseases. 
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1. Introduction 

Preterm infants are at higher long-term health risks, including postnatal growth failure. Postnatal 

nutrition thus becomes a major strategy to counterbalance the associated deleterious effects (Agostoni 

et al., 2010; Boquien, 2018). Early nutritional management during the first weeks of life, including 

parenteral and enteral feeding with human fortified milk, has been recommended, particularly for very 

preterm infants, by the European Society for Paediatric Gastroenterology Hepatology and Nutrition 

(EPSGHAN) to improve the infant development and cognitive function (Agostoni et al., 2010). 

Human breastmilk is a highly complex and dynamic media, characterized by a rich composition in 

energy and macronutrients, but also vitamins, minerals, immunoglobulins and enzymes. Energy intake 

has been identified as a main independent factor associated with infant growth until the age of 2 years 

(Hiltunen et al., 2018), being lipids the main contributor of energy requirements of healthy infants 

supplying up to 45-55%. The lipid fraction of breastmilk also represents a substantial source of 

functional and structural lipids, such as long-chain polyunsaturated fatty acids (LC-PUFA), derived 

from essential fatty acids: linoleic acid (LA) and α-linolenic acid (ALA), with central roles in brain 

development and child growth.  

The nutritional richness of breastmilk is tightly confronted by the unintended presence of xenobiotics 

including the lipophilic pollutants excreted within the lipid fraction, such as the vast family of 

persistent organic pollutants (POPs). For these pollutants, toxicologically safe levels through 

breastfeeding have been proposed. For instance, a tolerable daily intake levels of 1–4 pg toxic 

equivalents (TEQ)/kg body weight (bw) per day have been proposed for polychlorinated 

dibenzodioxins and dibenzofurans (PCDD/F) (WHO 2000, 2002), and a minimum risk level (MRL) is 

30 ng/kg bw per day for polychlorinated biphenyls (PCBs) as group (ATSDR 2000). The last report 

from the World Health Organization (WHO) United Nations Environment Programme (UNEP) global 

monitoring survey, revealed the still pervasive occurrence of POPs in breastmilk worldwide with 

highest levels of PCDD/Fs and PCBs in India, but also in some European countries (van den Berg et 

al., 2017). In all evaluated countries, infant exposure to dioxin-like TEQs was estimated to exceed by 

one or two orders of magnitude the safe levels, derived from perinatal effects reported in rodents and 
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monkeys (van den Berg et al., 2017) . The risk-benefit analysis associated to breast milk consumption 

emphasized that adverse health effects of POPs in milk appear mostly subtle and transient in nature, 

whereas the benefits of breastfeeding are largely supported by compelling evidence associated to 

reduced mortality and morbidity in preterm infants with a large list of health benefits during the entire 

life (van den Berg et al., 2017). In any case, no formal quantitative risk-benefit analysis of 

breastfeeding has been performed at individual level addressing the main methodological challenges 

and uncertainties associated to POPs in breastmilk (Boue et al., 2018; Nauta et al., 2018). 

Considering the relevance of breastfeeding in the nutritional care of preterm infants and the tight 

relationship between lipid/energy fraction of breastmilk and POPs, we hypothesized that POPs may 

be particularly associated with the different breastmilk nutrient profiles and potentially impact 

preterm infant growth. Hence we conducted a proof-of-concept study illustrating the application of an 

integrated targeted and non-targeted analytical platform for the characterization of breastmilk 

pollutants, nutrients and metabolites, coupled to multidimensional statistical models to identify 

relevant molecular signatures for preterm infant growth and their associated networks. Specifically, 

the sub-objectives of the pilot study were: 1) to evaluate the associations between the concentrations 

of POPs and nutrient profiles (i.e. nutriome) in preterm breastmilk; 2) to evaluate the associations 

between the concentrations of POPs in breastmilk and early growth of preterm infants; and 3) to 

identify integrated signatures of POPs and nutrients in human milk associated to the early growth of 

preterm infants accounting for the underlying correlation structures.  

2. Material and methods 

2.1. Study population 

The present pilot study was conducted on a sub-group of participants selected among the mother-

preterm infants’ dyads enrolled in the mono-centric prospective population-based LACTACOL birth 

cohort (registered at www.clinicaltrails.gov as #NCT01493063) recruited from October 2011 to 

March 2016 in the University Hospital of Nantes, France. The milk biobank was approved by the 

Committee for the Protection of Persons in medical research (CPP CB-2010-03). A written consent 

was obtained from all participants at enrolment. One hundred thirty-eight pre-term infants with no 

major congenital disease except prematurity, were included, for a total of 118 mothers finally enrolled 



5 

 

in the LACTACOL cohort. Further details of the cohort have been published elsewhere (Alexandre-

Gouabau et al., 2018). From the entire cohort, two overlapping sub-cohorts were created for this 

proof-of-concept study. For the first sub-cohort (LACTAPOP), a random sub-sample of 58 of mothers 

(delivering 68 infants, including 10 twins, born between 28 and 34 weeks of gestational age) where 

selected to conduct the present study involving the determination of POPs levels (Figure 1). The 

selection of participants was conducted without any knowledge of exposure levels and with no formal 

sample size calculation due to the exploratory nature of this pilot study. The 68 selected infants were 

ranked according to their change in weight Z-score (expressed in units of Standard Deviation (SD) 

and calculated as previously described (Alexandre-Gouabau et al., 2018), depicting their growth 

velocity during the hospital stay (i.e. difference between weight z-scores at birth and discharge) and 

then, were grouped in tertiles of their delta weight z-scores. For the second sub-cohort (i.e. cross-

platform approach), a small group was previously selected with infants exhibiting extreme patterns of 

postnatal growth, belonging to the first and third tertile of weight Z-score from the entire 

LACTACOL cohort distribution (Alexandre-Gouabau et al., 2018). To sum up, from the preliminary 

selection of 26 infants (n=11, “fast growth” and n=15 “slow growth”), a subgroup of 19 infants (n=6, 

“fast growth” and n=13 “slow growth”) were finally included in this pilot study because complete 

data on POPs and nutrients in milk was available (Figure 1).  

 

Figure 1. Study design and sampling framework. Abbreviations: POPs, persistent organic pollutants; 

FAs, targeted fatty acids; AAs, targeted amino acids; LIP, non-targeted lipidome; MET, non-targeted 

metabolome; GLYC, non-targeted glycome. 
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Infants admitted to the Neonatal Intensive Care Unit at Nantes University Hospital were eligible if 

they received human milk as their sole feeding for more than 28 days. Clinical characteristics were 

collected both on mothers and infants, including: maternal age, educational level, pre-gravid BMI, 

adverse events during pregnancy and delivery, infants’ gestational age, birth weight and head 

circumference, growth trajectory through hospital discharge, and events during hospital stay in 

neonatology (Cohort characteristics in Supplemental Table 1). Volume of milk delivered per feeding 

session, fortifiers used and fortification level included in the parenteral nutritional supply (around 10 

kcal/kg body weight/day), that generally does not exceed the first two weeks of life, as well as enteral 

intake, predominantly with expressed own mother’s breast milk, was recorded daily. Energy and 

protein contents in preterm standard formula were 72 kcal/100 mL and 2 g/100 mL, respectively. 

Preterm infants received parenteral nutrition and minimal enteral feeding, predominantly with 

expressed breast milk, for a minimum of two weeks. By taking into account native own mother’s milk 

macro-nutriments contents and routine fortification, the mean total enteral intake, particularly total 

energy intake, were reasonably close to that of EPSGHAN guidelines regarding daily and 

LACTACOL cohort
118 mothers and 138 preterm infants 

LACTAPOP study

58 mothers and 68 preterm infants 

POP x growth models (Milk Week 4)

Multi-OMIC models (Milk Week 2-4)

Slow growth

N=23  

Mid growth
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Fast growth
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Slow growth
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24 
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macronutrient intake, except for protein intake (which was 28% below recommended intake) 

(Alexandre-Gouabau et al, Nutrients 2018).The median energy intake was 124 kcal/kg body 

weight/day in both, the “faster growth” and the “slower growth” group, being 104 kcal/kg body 

weight/day in the “medium growth” group (p-value = 0.29). Anthropometrical evaluation of infants 

was registered at follow-up visits conducted at 12 and 24 months.  

 

 

2.2. Human Milk Collection  

Breast milk expression was performed manually by mothers at home, using a Medela Manual Breast 

pump (Medela Inc., Etampes, France). Weekly representative 24-h mature milk samples were 

obtained by pooling breast milk sampled from 5 to 6 bottles brought daily to the Milk Bank of the 

Nantes University Hospital. The whole milk pool was homogenized with a disruptor (Polytron, 

Lucerne, Switzerland) and kept frozen at 80°C until untargeted and targeted analysis of nutriome at 

week 2 and week 4 of lactation. Preliminary analysis using principal components showed no marked 

trajectories on nutrients during the hospital stay, supporting the use of these time points. A 30ml-

breast milk expression was specifically collected at once, at discharge and frozen at −80 °C until the 

analysis.  

 

2.3. Breast-milk lipidomic profiling 

Figure 2. Analytical workflow for the targeted and untargeted breastmilk profiling and 

statistical analysis for the molecular profiling and biomarkers identification. Abbreviations: 

AA, amino acids; BFR, brominated flame retardants; FAs, fatty acids; GC, gas 

chromatography; GLYC, glycome; HRMS, high resolution mass spectrometry; LC, liquid 

chromatography; LIP, lipidome; MET, metabolome; MS, mass spectrometry; OCP, 

organochlorinated pesticides; PBBs, polybrominated biphenyls; PCBs, polychlorinated 

biphenyls; PCDD/Fs, polychlorinated dibenzodioxins and dibenzofurans. 

 



8 

 

 

Breast milk Liquid Chromatography-High-Resolution-Mass Spectrometry (LC-HRMS)–based 

lipidomic (LIP), metabolomic (MET) and glycomic (GLYC) untargeted profiling 

Milk aliquots (50 μl) were submitted to the following preliminary treatment before analysis: 50 μl of 

sodium chloride 150 mmol/L were added to each milk sample followed by 100 μl of methanol and 

then, 100µl of chloroform, according to a modified “Bligh-Dyer” extraction. Then, two extractions 

with 100 μl chloroform were performed. After centrifugation (10,000 g for 10 min), the organic and 

aqueous layers were collected separately, dried under N2and subsequently reconstituted, in 

acetonitrile-isopropanol-water (ACN: IPA: H2O 65:30:5, v/v/v), and in water-acetonitrile (H2O: ACN 

95:5, v/v), for lipid (lipidome) and polar (metabolome) species, respectively. A 1200 infinity series 

high performance liquid chromatography (HPLC) system (Agilent Technologies, Santa Clara, 

California, USA) coupled to an Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific, 

Bremen, Germany) was used for both lipidomic and metabolomic profiling as previously described 

(Alexandre-Gouabau et al., 2019). Briefly, lipid species separation was performed on a reverse phase 

CSH C18 (100 x 2.1 mm2 i.d., 1.7 µm particle size) column (Waters Corporation, Milford, MA). 
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Sample metabolomics fingerprinting was performed, on the same LC-HRMS system, on a reverse 

phase with a Hypersil GOLD C18 column (1.9 μm particle size, 100x2.1 mm). The precision 

associated with sample preparation and LC-HRMS measurement was determined on the basis of a 

quality control (QC) consisting of a pool of 10 mothers’ milk provided by the milk bank of Nantes 

Hospital Center. QCs samples were extracted similarly than others samples and injected sequentially 

in-between the milk samples. The tight clustering of QC samples before and after normalization were 

checked on principal component analysis (PCA) score plot. The extraction and reduction of human 

milk oligosaccharides (HMO) were performed as previously described, following milk delipidation by 

centrifugation and NaBH4-reduction (Alexandre-Gouabau et al., 2019; Oursel et al., 2017). Milk 

reduced oligosaccharides were separated on a Hypercarb column (2.1 mm i.d. × 100 mm, 3µm 

particle size, Thermo Scientific, San Jose, CA, USA) on an Ultimate 3000 HPLC system coupled to 

an LTQ-Orbitrap mass spectrometer (Thermo Scientific, San Jose, CA, USA).  

Lipidomic, metabolomic and glycomic data analysis and metabolites characterization 

As previously described (Alexandre-Gouabau et al., 2018; 2019), lipidomics and metabolomics raw 

data files were preprocessed with Xcalibur 2.2 (Thermo Fisher Scientific, San Jose, CA, USA), 

Then, lipidomics and metabolomics data were extracted using pre-processing within 

Workflow4Metabolomics (W4M) (http://workflow4metabolomics.org) for automatic integration for 

each detected features (ions of given mass-to charge ratio and retention time) combined with 

CAMERA®, for annotation of isotopes and adducts and for normalization of intra- and inter-batch 

effects using QC samples. The resulting features [m/z; RT]) for each sample was subsequently 

manually sorted out according to their quality of integration and filtered by a 30% relative SD cutoff 

within the repeated pooled QC injections. Thereafter, accurate mass measurement of each putative 

metabolite was submitted to LIPID Metabolites And Pathways Strategy (LipidMaps®, 

www.lipidmaps.org), Human Metabolite Data Base (HMDB®, www.hmdb.ca), Biofluid Metabolites 

Database (MetLin®, metlin.scripps.edu) and milk metabolome database (MCDB®, www.mcdb.ca) 

annotation. The GlycoWorkBench software was used to draw HMOs structures. Moreover, the use of 

all ion fragmentation, when reverse phase chromatography was applied, helped us identify the 
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proposed lipids, metabolites by examination of the (pseudo) tandem mass spectrum generated, 

combined with the use of in-house reference databanks (Ferchaud-Roucher et al, 2015; Courant et al, 

2012). Metabolite’s identification level was level one, for metabolites definitively annotated with our 

home data base (i.e., based upon characteristic physicochemical properties of a chemical reference 

standard (m/z,RT) in our in-house reference databanks and their M/MS spectra compared to those of 

breastmilk QC) or level two, for metabolites putatively annotated (i.e., without chemical reference 

standards, based upon physicochemical properties and MS/MS spectral similarity with 

public/commercial spectral libraries, e.g.,LipidMaps®,MetLin®,and MCDB®). 

2.5 Breast milk targeted free amino acids (FAAs) and total fatty acids (FAs) analysis. 

FAA and FA concentrations were determined in expressed breast milk samples, collected at 

week 2 and week 4 of lactation. FAAs were separated and quantified, using Acquity H-Class® Ultra 

Perfomance Liquid Chromatography system (Waters Corporation, Milford, CO, USA) combined to a 

Xevo TQD® mass spectrometer (Waters Corporation, Milford, COMA, USA), following 

derivatization using AccQ®TagTM Ultra reagent (Waters Corporation,Milford, USA), as previously 

described (Alexandre-Gouabau et al, 2019). FAs concentrations were determined using the modified 

liquid–liquid extraction method of Bligh-Dyer and were analyzed by gas chromatography using an 

Agilent Technologies 7890A® instrument (Perkin Elmer, France), following trans-esterification 

previously described (Alexandre-Gouabau et al, 2018). 

2.6. Breast-milk targeted profiling of persistent organic pollutants 

 The methodologies applied to isolate, detect, and quantify the targeted POPs including 

dioxins (17 PCDD/F congeners), polychlorobiphenyls (PCB) (12 dioxin-like and 6 non-dioxin-like 

PCB congeners), polybromodiphenylethers (8 PBDE congeners), polybromo biphenyls (3 PBB 

congeners) and organochlorine pesticides (30 OC compounds) have been previously described 

(Antignac et al., 2009; Costera et al., 2006; Cariou et al., 2005; Antignac et al., 2009; Bichon et al., 

2015). Briefly, 13C-labelled congeners were added to each sample for quantification according to the 

isotopic dilution method. Breast milk samples were first submitted to a liquid/liquid extraction with 

pentane. Resulting extracts were weighed to measure fat content (gravimetric method) and 

reconstituted in hexane for further sample clean up. Gel lipid compounds originated from the matrix. 
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For other targeted substances, three successive acid silica, florisil, and celite/carbon columns were 

applied for lipid removal, fractionation and further purification, respectively. PCDD/F, PCB, PBDE 

and OC measurements were performed by gas chromatography (Agilent 7890A) coupled to high-

resolution mass spectrometry (GC-HRMS) on electromagnetic sector instruments (JEOL MS 700D or 

800D®), operating at 10000 resolution and in the single ion monitoring (SIM) acquisition mode. 

Hexabromocyclododecane (HBCD) isomers were quantified using liquid chromatography coupled to 

tandem mass spectrometry (LC-MS/MS) on a triple quadrupole instrument (Agilent 6410®). All these 

methods were fully validated according to current European criteria in the field of regular control of 

foodstuff of animal origin and accredited according to the ISO 17025 standard. Quality 

assurance/control (QA/QC) procedures included systematic analysis of negative and positive control 

samples in each batch of analyzed samples. Recoveries were classically calculated according to the 

rules defined at regulatory level (Commission Regulation 2012) and were in the 80-120% range. The 

method's extended uncertainty was lower than 20%. In order to investigate not only contamination 

levels but also contamination patterns, all determined POPs concentrations were secondly expressed 

as relative contributions (%) of each particular congener to the sum of all congeners from the same 

family. 

2.7. Postnatal POP exposure estimation 

The infant i postnatal exposure to the contaminant n (ET2,n,i, ng/kg bw/day) from breast milk, was 

estimated by the combination of the individual normalised breastmilk intake (INTi, mL/kg bw/day), 

the lipid normalised concentration in breastmilk sample p of contaminant n (POPn; ng/g lipids) and 

the specific content of lipids in breastmilk sample p (LIP; g lipids/100 mL milk) as follows:  

���,�,� = �	
� � ��,� � ���  

This approach is analogous to the estimation of the estimated daily intakes (EDI) used by WHO and 

allows the comparison with the safety values like the tolerable daily intakes (TDI) for given 

contaminants (WHO 2000). These estimates only consider the exposure from human milk, not 

eventual contamination of formulas, that would be expected to be similar for all infants. 

2.8. Statistical analysis 
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Individual characteristics were summarized with median and interquartile range, for continuous 

variables, and frequency and percentage, for categorical variables. The tertiles of delta weight Z-score 

(difference between weight Z-score at birth and hospital discharge) was used to rank the infants in 3 

groups: “Slower growth”, “Medium growth”; “Faster growth”. The statistical comparison of 

individual characteristics between groups (i.e. faster, medium and lower growth) was performed using 

Kruskal Wallis Test and Fisher’s exact test, for numerical and categorical variables, respectively. The 

distributions of POPs among groups were summarized by medians and interquartile ranges and 

compared statistically as continuous variables. Those chemicals with detection rates below 75% were 

excluded from the statistical analysis. For four analytes (PBDE 28, 154, 183 and 209) whose detection 

rates were between 93 and 98%, the non-detected values were replaced by limits of detection 

(Antweiler 2015).  

The bivariate associations between milk POPs and fatty acid variables were calculated with 

Spearman’s correlation coefficients (ρ) and plotted them in heatmaps. Furthermore, sparse partial 

least squares (sPLS) was conducted to identify association patterns between milk POPs and nutrients 

(FAs and macronutrients) considering the correlation structure of both datasets, and displayed by 

means of network plots (Chun and Keles 2010). The association between the infant exposure to POPs 

(pg or ng/Kg BW/day, log-scale) and infant growth during hospital stay (Delta Z-score) was estimated 

through multivariate linear regression considering known confounding variables such as maternal age, 

maternal body mass index (Kg/m2, log-scale), birth weight (grams, log-scale), gestational age 

(weeks), newborn sex, hospital stay duration (days) and energy intake (Kcal/kg/day, log-scale) from 

complementary parenteral and enteral nutrition. The two-way product interaction terms between 

considered variables were evaluated for statistical significance. The associations are summarized 

using the beta regression coefficients and 95% confidence intervals. 

For a sub-group of 19 infants with duplicated breast milk sample measurements (Week 2 and Week 4, 

n=38) of lipidome (LIP), metabolome (MET), glycome (GLY), amino acids (AAs) and fatty acids 

(FAs), we extended the analytical framework towards a more comprehensive approach to integrate the 

chemical complexity of breastmilk in the growth models. Assuming the computational limitations 

associated to the minimal sample size of this sub-group, in this section we mainly aimed to set-up and 
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evaluate the applicability of a large-scan spectrometric platform coupled to multi-block models for a 

more comprehensive exploration. The results associated to the nutritional fraction has been published 

elsewhere, thus in this publication we will emphasize the interplay between POPs and the different 

nutritional fractions (Alexandre-Gouabau et al., 2018; 2019). In this regard, we finally integrated the 

six pre-processed (normalized and standardized) data-blocks from targeted methods, including POPs 

(n=52 variables), FAs (n=34 variables), AAs (n=16 variables), and the matrices from non-targeted 

methods, GLY (n=75 variables), LIP (n=488 variables) and MET (n=221 variables) against the infant 

growth (weight delta Z-score between birth and discharge) dichotomized to generate two groups of 

infants (“faster growth” and “slower growth”). The group of “medium” growth was not considered in 

this pilot study favouring the identification of molecular signatures discriminating the more extreme 

growth trajectories. The MS-based metabolomics and lipidomic features were previously submitted to 

a throughout pre-processing and filtering process of raw spectral data using Analysis of Variance- 

Partial Least Square (AoV-PLS) (Ghaziri et al., 2015) to reduce the internal redundancy and to 

pintpoint the most discriminant polar and apolar features providing a clear separation between the two 

infant growth groups, obtaining the final sets of 488 lipidomic and 211 metabolomic 

variables(Alexandre-Gouabau et al., 2018; 2019) . The datasets were integrated using the sparse 

generalized canonical correlation models (Tenenhaus and Tenenhaus, 2014) extended to a 

discriminant mode so-called DIABLO (Data Integration Analysis for Biomarker discovery using 

Latent variable approaches for ‘Omics studies) workflow implemented with the MixOmics R package 

(Rohart et al., 2017; Singh et al., 2019). Briefly, similar to the partial least-squares regression, the 

model projects latent variables (i.e. components) based on linear combinations of underlying features 

maximally correlated across data-blocks and the response variable, performing variable selection via 

L1 penalisation (Tibshirani, 2011) to support the data-driven variable selection. The main parameters 

of the model are the correlation matrix design that pre-establish the degree of association known 

between blocks (between 0 and 1), number of components and degree of penalisation (number of 

variables to retain) for each component and block. The number of components is optimized through 

another 10-fold cross-validation (CV) process seeking at minimizing the misclassification model error 
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rate whereas the degree of penalisation is also driven by an internal CV procedure. The statistical 

analysis was conducted entirely using the R software, v. 3.5.0, with the MixOmics R package.  

3. Results 

3.1. Levels of contaminants in breast-milk and infant post-natal exposure estimates 

The concentrations of POPs are summarized in Supplemental Table 2 expressed in lipid basis, 

confirming the presence of all monitored POPs in the analysed breastmilk samples. Mean dioxin toxic 

equivalent factors (TEF) of 6.17 and 4.50 WHO TEF2005/g l.w. were observed for the sum of 

PCDD/Fs and dioxin-like PCBs, respectively. The mean sum concentrations of non-dioxin like PCBs, 

PBDEs and PBB153 resulted in respective values of 87.27, 1.7 and 0.08 ng/g l.w. Strong positive 

Spearman’s rank bivariate correlations were noticed between POPs from the same family, whereas 

weaker correlations were noticed between family comparisons, especially for the case of PBDEs 

(Figure S1).  
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3.2. Levels of macronutrients, fatty acids and correlations with POPs 

The summary of levels for macronutrients and FAs in breastmilk can be found in Supplemental Table 

3. The correlation analysis of targeted lipophilic chemicals in breastmilk revealed strong positive 

associations between ω3 PUFAs (docohexaenoic acic or DHA, docosapentaenoic acid or DPA and 

eicosapentaenoic acid or EPA) and most POPs, most substantially for TCDD, non-coplanar and non-

dioxin like PCBs (Figure 3). These toxicants were also strongly correlated to saturated FAs such as 

pentadecanoic acid (15:0), palmitic acid (16:0), stearic acid (18:0) and arachidic acid (20:0). Some 

strong inverse correlations were also noticed for ω6  PUFAs and non-coplanar PCBs, and specially 

docosapentaenoic acid (22:5n-6), docosadienoic acid (22:2n-6) and linoleic acid (18:2n-6) exhibiting the 

strongest negative correlation with most POPs. The bivariate correlation analysis was extended with 

sPLS allowing the efficient integration of two correlated matrices and the identification of the most 

relevant variables and their networks, displayed in Figure 4. The relevance networks display the 

topological associations between FAs and POPs considering a cut-off level of bivariate correlation of 

0.34 to favour the visualization of most relevant associations. This approach showed that FAs, 15:0 

(pentadecanoic acid) and 20:1 (eicosenoic acid) appeared as central nodes on the association network 

with PBDEs, highlighting the strong negative associations between 15:0 and PBDE99 and positive 

associations between 20:1 and PBDE99 or the sum of PBDEs. Another network was built around total 

lipids and energy, negatively associated to PCBs and around the saturated FAs 20.0 (arachidic acid) 

and 18.0 (stearic acid) displaying positive associations with coplanar PCBs such as PCB114. 
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Figure 3. Heatmap representing the bivariate correlations between macronutrients, saturated 

(SAT), monounsaturated (MUFAs) and polyunsaturated (PUFAs) fatty acids with persistent 

organic pollutants in breast-milk. The Spearman correlation coefficients are represented by the 

colour scale. The grouped variables as sum of individual concentrations are identified by an asterisk.  
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Figure 4. Relevance network plots representing the strongest associations between fatty acids (green 

boxes) and pollutants (purple boxes) using sparse partial least squares. The strength of the correlations 

between pollutants and fatty acids is represented by colour key of edges. The threshold of correlations 

was set up at -0.28 (negative associations, black-green) and 0.28 (positive associations, red) in order 

to highlight the most relevant clusters.  
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3.3. Associations between POPs and preterm infant growth 

First, we explored the distribution of estimated daily intake of POPs through maternal breastmilk 

intake during the hospital stay for the infant growth groups (“Slower”, “Medium” and “Faster” 

growth) established by the tertiles distributions of weight z-score difference between birth and 

hospital discharge (weight Delta z-score). The Estimated Dietary Intake (EDI) of POPs for the 

different Delta z-score are summarized in Table 1, showing higher concentration levels of several 

POPs among the “Faster” group, especially dioxin-like PCBs (e.g. PCB 126, 127, 157). In order to 

account for known confounding variables related to infant growth, we further conducted multivariate 

linear regression considering maternal age, BMI, birth weight, hospitalisation days and energy intake 

as covariates. The regression coefficients (and 95% confidence intervals) for the different pollutants 

and models are displayed with forest-plots in the Figure 5, showing the observed associations between 

the different POPs and infant growth. Overall, the results showed the strong confounding effect of 

energy intake underlying the positive association between the exposure to POPs and preterm infant 

growth during the hospital stay (Model 2). After the adjustment by energy intake, some chemicals 

exhibited positive significant associations (i.e. PCB101, 105, 118, 126, 138) with postnatal preterm 

infant growth. The EDI of POPs through breast-feeding was also modelled against the infant weight 

z-score at 24 months showing positive associations for a substantial number of dioxins after the 

adjustment for the confounding factors including, energy intake (Figure 6). The larger associations 

were depicted by 2.3.4.7.8-PeCDF (p=0.009) and the sum of PCDD/Fs WHO-TEQ (p=0.01). Some 

furans such as 2.3.4.6.7.8-HxCDF were also found consistently associated with preterm infant growth 

throughout both growth time points.  
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Table 1. Summary of estimated dietary intake (Median (Interquartile range) of persistent organic 

pollutants, macronutrients and energy from breast milk for preterm infants with slower, medium and 

faster growth trajectories. Infants were grouped in tertiles of weight z-scores difference between birth 

and discharge. P-value was estimated using Mann-Whitney-Wilcoxon Test.  
 

 
Slower 

N=23 

Medium 

N=22 

Faster 

N=23 
P-value 

Macronutrients and energy daily intake 

Energy enteral total a 123.7 (79.1 - 130.4) 104.4 (83.6 - 133.6) 124.3 (111.3 - 135.1) 0.29 

Proteins enteral total b 2.5 (1.4 - 2.7) 1.8 (1.3 - 2.6) 2.4 (1.9 - 2.7) 0.21 

Lipids enteral total b 5.2 (3.7 - 6.5) 5.7 (3.5 - 7.1) 5.6 (5.0 - 7.5) 0.31 

Carbohydrates enteral total b 14.3 (8.8 - 15.6) 10.2 (7.9 - 13.6) 14.8 (12.2 - 15.4) 0.099 

Energy breast-milk a 91.0 (72.1 - 102.9) 99.7 (77.8 - 118.6) 107.3 (101.2 - 112.1) 0.070 

Proteins breast-milk b 1.3 (1.1 - 1.7) 1.4 (1.0 - 1.7) 1.6 (1.4 - 1.7) 0.091 

Lipids breast-milk b 4.5 (3.7 - 5.3) 5.7 (3.3 - 7.1) 5.6 (5.0 - 7.1) 0.085 

Carbohydrates breast-milk b 10.8 (7.1 - 11.7) 10.2 (6.5 - 11.9) 11.8 (9.7 - 12.3) 0.081 

Persistent organic pollutants daily exposure 

2.3.7.8-TCDD c 1.8 (1.3 - 3.3) 2.0 (1.3 - 2.7) 2.7 (1.6 - 4.6) 0.072 

1.2.3.7.8-PeCDD c 6.4 (4.2 - 11.0) 7.5 (5.4 - 9.1) 11.5 (5.8 - 14.0) 0.097 

1.2.3.4.7.8-HxCDD c 2.8 (2.0 - 4.7) 2.8 (2.3 - 3.8) 4.2 (2.9 - 5.5) 0.060 

1.2.3.6.7.8-HxCDD c 15.6 (10.3 - 25.2) 18.2 (13.4 - 23.9) 27.7 (14.2 - 37.8) 0.16 

1.2.3.7.8.9-HxCDD c 3.9 (2.4 - 5.3) 3.7 (2.6 - 4.5) 5.2 (3.7 - 8.0) 0.087 

1.2.3.4.6.7.8-HpCDD c 17.4 (12.4 - 30.1) 17.8 (13.2 - 25.4) 23.4 (16.8 - 31.5) 0.30 

OCDD c 93.1 (59.8 - 141.6) 89.6 (66.3 - 141.0) 105.9 (79.5 - 141.5) 0.62 

Sum PCDDs c 157.1 (93.4 - 241.1) 136.9 (109.8 - 221.5) 167.1 (149.0 - 238.1) 0.33 

2.3.7.8-TCDF c 1.2 (0.6 - 2.1) 1.3 (1.0 - 1.6) 1.8 (1.1 - 2.5) 0.19 

1.2.3.7.8-PeCDF c 0.7 (0.4 - 1.3) 0.9 (0.7 - 1.0) 1.1 (0.6 - 1.4) 0.26 

2.3.4.7.8-PeCDF c 15.1 (8.8 - 26.0) 17.8 (10.7 - 20.8) 21.6 (13.2 - 37.5) 0.13 

1.2.3.4.7.8-HxCDF c 4.6 (3.4 - 7.1) 5.6 (3.9 - 7.2) 5.6 (4.3 - 9.7) 0.25 

1.2.3.6.7.8-HxCDF c 4.6 (3.2 - 7.0) 5.9 (3.7 - 6.8) 6.4 (4.3 - 9.9) 0.23 

1.2.3.7.8.9-HxCDF c 0.3 (0.1 - 0.4) 0.3 (0.2 - 0.4) 0.3 (0.2 - 0.5) 0.28 

2.3.4.6.7.8- HxCDF c 2.5 (1.5 - 3.8) 2.5 (1.7 - 3.3) 2.6 (1.7 - 4.2) 0.50 

1.2.3.4.6.7.8-HpCDF c 4.0 (2.3 - 5.1) 3.9 (3.4 - 6.1) 4.0 (2.8 - 6.2) 0.70 

1.2.3.4.7.8.9-HpCDF c 0.3 (0.3 - 0.6) 0.4 (0.3 - 0.6) 0.4 (0.3 - 0.5) 0.53 

OCDF c 0.8 (0.6 - 1.2) 0.9 (0.5 - 1.5) 1.0 (0.9 - 1.6) 0.17 

Sum PCDFs c 35.0 (20.9 - 54.9) 41.0 (32.1 - 49.2) 48.0 (31.1 - 70.4) 0.19 

OMS-TEQ PCDD/F d  15.6 (11.4 - 27.6) 19.0 (13.9 - 22.7) 25.7 (14.9 - 36.5) 0.12 

PCB 77 c 9.4 (7.4 - 14.0) 11.7 (7.7 - 19.5) 14.5 (9.4 - 23.4) 0.13 

PCB 81 c 5.3 (3.0 - 9.4) 4.8 (3.0 - 7.1) 7.4 (4.7 - 12.3) 0.31 

PCB 126 c 77.5 (40.5 - 174.4) 83.2 (50.7 - 146.6) 123.2 (100.8 - 314.9) 0.035 

PCB 169 c 51.6 (28.4 - 99.8) 49.3 (34.6 - 58.8) 88.2 (43.1 - 136.6) 0.06 

Sum Copl. PCBs c 142.2 (78.3 - 317.2) 148.3 (106.1 - 243.0) 222.7 (170.6 - 502.9) 0.035 

PCB 105 c 5001.6 (2434.2 - 10041.8) 5385.0 (3028.2 - 9069.6) 8058.6 (6816.1 - 14580.4) 0.046 

PCB 114 c 1177.5 (481.4 - 2158.6) 950.8 (674.7 - 1549.6) 1892.2 (1116.4 - 3229.9) 0.039 

PCB 118 c 22777.3 (10346.1 - 44823.8) 20028.5 (12433.6 - 35803.7) 38553.2 (27118.5 - 71359.0) 0.039 

PCB 123 c 240.5 (119.0 - 524.5) 241.4 (119.1 - 468.7) 444.9 (334.8 - 842.8) 0.033 

PCB 156 c 9208.5 (4182.1 - 18217.1) 8799.5 (5088.2 - 10683.7) 15913.1 (7700.4 - 20898.5) 0.059 

PCB 157 c 1743.5 (687.5 - 3653.1) 1353.4 (835.1 - 1844.1) 2923.9 (1329.0 - 3435.5) 0.026 

PCB 167 c 2422.3 (1117.8 - 6153.4) 2203.1 (1611.9 - 3375.9) 4658.6 (2565.7 - 6980.3) 0.025 

PCB 189 c 873.4 (408.8 - 1790.9) 786.8 (539.5 - 1000.3) 1855.5 (665.4 - 2200.5) 0.079 

Sum Non Cop. PCBs c 42336.3 (19966.5 - 90500.2) 36028.2 (25865.5 - 65409.0) 
77086.9 (48508.3 - 

144809.2) 
0.029 

OMS-TEQ dl-PCB d 10.0 (5.2 - 24.2) 10.3 (7.2 - 18.6) 15.7 (13.7 - 41.0) 0.038 

PCB 28 e 3.8 (2.4 - 6.6) 3.7 (2.1 - 8.0) 5.0 (2.9 - 7.5) 0.69 

PCB 52 e 0.8 (0.5 - 1.0) 0.8 (0.5 - 1.4) 0.9 (0.7 - 1.5) 0.44 

PCB 101 e 1.3 (0.8 - 1.7) 1.2 (0.8 - 2.2) 1.9 (1.4 - 2.1) 0.10 

PCB 138 e 50.5 (23.3 - 121.9) 59.6 (36.9 - 82.4) 97.9 (56.2 - 145.1) 0.050 

PCB 153 e 107.2 (47.4 - 229.1) 111.6 (74.0 - 141.7) 197.8 (97.7 - 256.8) 0.10 

PCB 180 e 60.4 (29.3 - 125.6) 61.6 (39.7 - 70.4) 124.5 (47.2 - 184.2) 0.062 

Sum 6 ndl-PCB e 221.5 (100.0 - 484.3) 231.1 (162.5 - 313.3) 456.1 (203.2 - 578.0) 0.074 
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PBDE 28 e 0.11 (0.05 - 0.15) 0.09 (0.06 - 0.15) 0.11 (0.08 - 0.16) 0.56 

PBDE 47 e 1.30 (0.64 - 1.79) 1.27 (0.77 - 2.23) 1.22 (0.88 - 2.54) 0.48 

PBDE 99 e 0.24 (0.15 - 0.40) 0.27 (0.17 - 0.40) 0.24 (0.20 - 0.48) 0.60 

PBDE 100 e 0.34 (0.14 - 0.52) 0.34 (0.17 - 0.59) 0.34 (0.25 - 0.76) 0.50 

PBDE 153 e 1.76 (0.95 - 2.65) 1.38 (0.95 - 2.62) 2.46 (1.73 - 3.03) 0.12 

PBDE 154 e 0.05 (0.03 - 0.09) 0.08 (0.05 - 0.19) 0.07 (0.04 - 0.09) 0.18 

PBDE 183 e 0.14 (0.09 - 0.23) 0.16 (0.10 - 0.22) 0.18 (0.14 - 0.30) 0.20 

PBDE 209 e 0.87 (0.23 - 1.77) 0.52 (0.11 - 2.41) 0.40 (0.05 - 1.21) 0.25 

Sum 7 i PBDE e 4.34 (2.17 - 5.57) 4.63 (2.45 - 7.34) 4.94 (3.88 - 6.76) 0.39 

PBB 153 e 0.22 (0.11 - 0.46) 0.18 (0.14 - 0.23) 0.25 (0.17 - 0.66) 0.037 

 

Units: a 
Kcal/kg bw /day; 

b 
g/kg bw /day; 

c 
pg/kg bw /day; 

d 
TEF/kg bw /day; 

e 
ng/kg bw /day
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Figure 5. Forest plot representing the associations (β coefficient, 95% confidence interval) between 1 
postnatal exposure of preterm infants to POPs (continuous variable, log-scale), through breastmilk, 2 
and growth during hospital stay, measured as the difference of weight Z-score between birth and 3 
discharge (continuous variable) (n= 68). Model 1, crude model. Model 2, adjusted for birth weight, 4 
hospital stay duration, maternal age, maternal body mass index and infant energy intake. Statistical 5 
significance is represented of coefficients is represented by * p<0.05 and ** p<0.01. 6 

 7 
 8 

 9 
  10 
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Figure 6. Forest representing the associations (β coefficient, 95% confidence interval) between 11 
exposure of preterm infants to POPs (continuous variable, log-scale) through breastmilk and weight z-12 
score at 24 months (continuous variable) (n= 54). Model 1, crude model. Model 2, adjusted for birth 13 
weight, infant energy intake during delivery hospital stay, maternal age and maternal BMI. Statistical 14 
significance of coefficients is represented by * p<0.05 and ** p<0.01. 15 
 16 

 17 

 18 

3.4. Integrated expotypes and nutritypes associated to preterm infant growth 19 

After the iterative tuning process conducted within DIABLO framework, we finally selected a null 20 

design for the correlation matrix that emphasized the selection process of most discriminatory 21 

variables and maximized the separation of growth groups. The CV optimization process led us to 22 
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setup the model with 2 components. We established, for the blocks lipidome, metabolome, glycome, 23 

POPs, FAs and AAs, a list of 20, 7, 7, 9, 5 and 5 variables selected, respectively in the first 24 

component and 10, 7, 5, 7, 5 and 5 variables selected for the second component. The scatter plots 25 

from the multiblock model showed the most discriminant ability for the blocks lipidome, metabolome 26 

and POPs (Figure S2). Among the unknown molecules retained from the non-targeted approaches, we 27 

were able to finally annotate 14 lipids, including five phosphatidylethanolamines (plasmalogen-28 

derivative PE PE(38:5e): PE(O-18:0/20:5), PE(38:3): PE(18:0/20:3), PE(40:4): PE(20:4/20:0), 29 

PE(38:4): PE(18:0/20:4), PE(38:1): PE(20:0/18:1)), three phosphatidylcholines (PC(36:2): 30 

PC(18:0/18:2), PC(42:1): PC(18:1/24:0) and PC(30:1): PC(14:0/16:1)) , two sphingomyelins (SM 31 

(d18:1/16:1) and SM(d18:1/24:0)), one diacylglycerol (22:5n-3/22:6n-3), one fatty acyl (3-hydroxy-32 

adipic acid), one lysophosphatidylglycerol (LPG(22:4)), and one leukotriene (M10,11-dihydro-20-33 

trihydroxy-leukotriene-B4). Additionally, we identified 3 molecules from the metabolome dataset 34 

(cystathionine, glycerophosphorylcholine and p-cresol). The associations between variables across 35 

blocks can be visualized in the correlation individual plots (Figure S3A and S3B) and in the 36 

correlation between molecular variables in the circle plots (Figure S3C and S3D) for the component 1 37 

and 2, respectively. The circle plot from the component 1 highlighted mainly positive correlations 38 

between lipids with oligosaccharides and some POPs, conversely the component 2 showed a higher 39 

number of negative correlations between biomarkers, specially between glycome, lipidome datasets, 40 

some POPs and the glutamic acid. The relevance network plot displayed in the Figure 7A highlights 41 

the most relevant clusters of variables that discriminated the preterm infant growth groups, supported 42 

by the clustered image map (Figure S4). The loading vectors for each selected variable from each 43 

molecular block is illustrated in the Figure S5, grouped by blocks, and in the Figure 7B and 7C, 44 

grouped by the growth class where the molecules are more abundant, sorted by the loading weights. 45 

Globally, the chemical signature observed for the “Faster growth” group exhibited a characteristic 46 

profile of polyunsaturated fatty acids type ω-3 and ω-6, phosphatidylethanolamines, 47 

phosphatidylcholines, the branched chain amino acid isoleucine, the oligosaccharide Lacto-N-48 

neohexaose (LNnH) and the metabolite cystathionine. The “Slower growth” group was more 49 

associated with a molecular signature richer in the AAs: glycine, taurine and glutamic acid, the 50 
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metabolite p-cresol, some saturated fatty acids, the hydroxyl adipic acid and a leukotriene. We also 51 

observed a different pattern among groups in terms of POPs exposure, being the PBDEs (specially the 52 

PBDE183 and some dioxins) more associated with the slower growth group, whereas the PCBs (i.e. 53 

123, 105, 52) were more abundant in the faster growth group.  54 

 55 

Figure 7. 7.A. Relevance network plot representing the group of molecular variables more associated 56 
with the growth of preterm infants (cut-off of absolute correlation set-up at ± 0.7) generated by the 57 

multiblock model. The colour code of circles identifies the different bocks: metabolome (red), purple 58 

(lipidome), glycome (orange), amino acids (blue), fatty acids (grey) and persistent organic pollutants 59 

(green). 7.B. and 7.C. Bar plots representing the loading vectors from both components generated by 60 
the multiblock model, grouped by the growth class (“Faster” in blue; “Slower” in orange) where the 61 

molecules were more abundant. The block identifiers can be found in brackets: amino acids [AA], 62 

fatty acids [FA], glycome [GLYC], lipidome [LIP], metabolome [MET] and persistent organic 63 

pollutants [POP].  64 

  65 
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4. Discussion 70 

The literature has previously shown that in utero exposure to some organochlorine pesticides 71 

including dichlorodiphenyldichloroethylene (p,p’-DDE) or chlordecone may be associated 72 

with preterm birth (Longnecker et al., 2001). The associations with other POPs, such as 73 

PCDD/Fs or PCBs were reported as insignificant (Casas et al., 2015; Ferguson and Chin, 74 

2017; Longnecker et al., 2005). Nonetheless, one study has shown significant positive 75 

associations between exposure to PBDEs and the risk preterm birth (Peltier et al., 2015). To 76 

the best of our knowledge, no studies have explored the impact of postnatal exposure to POPs 77 

on early growth of preterm infants, highlighting the value of our small cohort. The nutritional 78 

interventions with fortified breastmilk are recommended to favour the high energy and 79 

protein intake required to achieve the normal postnatal growth and neurodevelopment of 80 

preterm infant (Gibertoni et al., 2015). Considering the internal exposure bio-amplification 81 

among low and very low birth weight infants, we hypothesized that the xenobiotic component 82 

of breastmilk, specifically lipophilic pollutants, could contribute to impair the normal preterm 83 

growth interacting with the nutritional fraction.  84 

To this end, we have applied for the first time a novel comprehensive approach based on MS 85 

multi-platform coupled to an advanced data workflow to better understand the molecular 86 

complexity of breastmilk and its simultaneous impact on preterm infant growth. The 87 

analytical approach includes a combination of ultra-trace targeted methods to quantify 88 

accurately low abundance contaminants (i.e. dioxins) combined with global metabolomics 89 

and lipidomics profiling methods to extend the framework to capture potential nutrient-90 

contaminant associations. The potential of metabolomics in epidemiological exposome-health 91 

studies is vast. Some examples include the identification of endogenous metabolites to gain 92 

insights into the underlying pathological processes or to better understand the role of 93 

exposure biomarkers and molecular mediators, informing about specific exposure-to-disease 94 
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pathways (Assi et al., 2015; Chadeau-Hyam et al., 2011; Niedzwiecki et al., 2019). 95 

Additionally, the development of non-targeted metabolomics to identify exogenous stressors 96 

in human samples at a massive scale is growing rapidly (Andra et al., 2017; Dennis et al., 97 

2017; Jones, 2016; Warth et al., 2017), shaping a novel path for environmental epidemiology. 98 

Actually, the high-throughput generation of exposure biomarkers has been already 99 

demonstrated as a promising tool to support data-driven approaches, however, a large sample 100 

size is imperative to statistically identify the subtle associations commonly found between 101 

environmental exposures and diseases with enough statistical power after correcting for the 102 

false discovery rate (Chung et al., 2019; Manrai et al., 2017). Currently, there is not 103 

consensus about the best approach (i.e. data-driven vs hypothesis-driven) to identify complex 104 

associations between chemical mixtures and health outcomes. On the one hand, data-driven 105 

or comprehensive approaches benefit of a high discovery potential by screening a large panel 106 

of molecules at the cost of correction for the false discovery rates. On the other hand, 107 

hypothesis-driven approaches takes advantage of available knowledge to depict more 108 

biologically consistent models. For that reason, we believe that combining ultra-trace 109 

methods with semi-target metabolomics may provide a technical compromise between 110 

accuracy and selectivity to extend hypothesis-driven approaches towards a more 111 

comprehensive paradigm.  112 

The results from the linear models, built on 58 mother-infant dyads, between the postnatal 113 

exposure to POPs and growth outcomes did not support an impairment of preterm infant 114 

growth during the hospital stay (Delta weight z-score between birth and discharge) or at 24 115 

months (weight z-score). Conversely, we observed statistically significant and positive 116 

associations between some PCBs and delta weight z-score strongly influenced by the 117 

adjustment by energy intake. Similarly, positive associations were observed between some 118 

dioxins and the weight z-score at 24 months. The associations were no longer significant after 119 
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the FDR correction. The positive associations could be strongly confounded by the energy 120 

and fat intake of infants considering the limitations to accurately estimate the energy and milk 121 

intake among breastfeeding new-borns, especially during the time after the hospital stay. The 122 

lack of concordance between the growth models at discharge and 24 months could be 123 

explained by the limited information on infants’ dietary habits and lifestyle potentially 124 

confounding the associations. Another hypothesis could be the obesogenic potential of some 125 

PCBs, for instance PCB-77 has been associated to increased adipogenesis and gain of body 126 

fat (Arsenescu et al., 2008). However, this was not supported by the results at 24 months, 127 

when the group of dioxins (inhibitors of adipogenic differentiation) positively associated with 128 

weight z-score (Hsu et al., 2010). Moreover, it is necessary to keep in mind that these 129 

expotypes and nutritypes signatures may be very different in case of full-term newborn 130 

infants. Indeed, preterm infants, particularly male infants, are reported to experience 131 

insufficient fat-free mass accretion but higher fat mass percentage during hospitalization in 132 

neonatal intensive care unit (Simon et al, 2013) which likely interfere with lipophilic 133 

pollutants exposure. In any case, further research should extend the present study, especially 134 

with a larger population (preterm versus term), through a longer follow-up and gaining 135 

insight about the metabolic status and lean-fat mass ratio of children, taking into account their 136 

sex-related differences. 137 

For the first time, we have shown with an integrative multi-platform approach the complex 138 

exposome-metabolome chemical space of human milk and its potential interactive impact on 139 

preterm outcomes. For instance, the milks from the ‘slower’ growth group presented a 140 

characteristic profile of saturated fatty acids whereas the ‘faster’ group were mainly 141 

polyunsaturated. The previous analysis of preterm milk reduced to the lipidomic block alone 142 

(Alexandre-Gouabau et al, 2018) highlighted the major effect of several ω-3 FAs, such as 143 

DHA and its precursors EPA and DPA on postnatal infant growth during the hospital stay. 144 
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We also noticed high correlation between some PCBs and ω-3 FAs found in the analysed 145 

breastmilk, reflecting the common dietary pathways such as fish and seafood products. 146 

Interestingly, some studies have found that ω-3 FAs could counterbalance the harmful effects 147 

of POPs (Marushka et al., 2017). This interaction could also explain the inconsistent results 148 

on the beneficial effects of dietary intake of ω-3 FAs for cognitive function and growth of 149 

preterm infants that have been reported (Smith and Rouse, 2017). Interestingly, using the 150 

multiblock model we identified PBDE183 and some dioxins (12378-PeCDF and 1234678-151 

HpCDD), being more associated with the “slower” growth group. These chemicals were not 152 

highlighted by the linear growth models; thus, it may suggest that molecular covariation with 153 

the rest of molecules could mask an elusive underlying association. The impact of negative or 154 

positive confounding of nutrients in environmental epidemiology has been scarcely 155 

investigated, however the few studies that accounted for it has reported interesting findings. 156 

For instance the negative confounding was elucidated with methyl mercury (MetHg) and 157 

polyunsaturated fatty acids on the associations with neurotoxicity of children from Faroe 158 

Islands, well known by their high fish intake (Choi et al., 2014). The co-exposure of MetHg, 159 

omega-3 fatty acids and selenium has been reported also in cord blood, resulting in negative 160 

confounding and effect modification on the associations with foetal growth outcomes (Wells 161 

et al., 2016).  162 

The higher nutritional content related with “faster” growth group is consistent with anabolic 163 

function associated to the specific identified nutrients and related metabolites, such as, for 164 

example, the higher abundance of isoleucine, a branched-chain amino acid, in the “faster” 165 

milks, an amino acid previously associated with a higher early weight gain (Alexandre-166 

Gouabau et al., 2019; Kirchberg et al., 2015). Conversely, as in the previous preterm milk 167 

metabolomics analysis without considering pollutants, we observed higher abundance of 168 

taurine and glycine, under their free form, in “slower” breast milk along with a lower total fat 169 



30 

 

content. Taurine contributes to intestinal fat absorption, bile acid secretion and hepatic 170 

functions, but no associations have been reported with growth outcomes among preterm or 171 

low birth weight infants in randomized trials (Verner et al., 2007). The present results could 172 

be explained by a depleted bile acid conjugation by taurine and glycine in “slower” breast 173 

milk, that could subsequently limit the solubilisation of lipids and sterols in mixed micelles, 174 

resulting, in turn, in the limited uptake of lipids into enterocytes (Alexandre-Gouabau et al., 175 

2019) in addition to preterm gastrointestinal immaturity. The extend of the impact of milk 176 

composition on infant’s absorption of organochlorines remains largely unexplored, being 177 

most of pharmacokinetic models developed under very simplistic assumptions (Lehmann et 178 

al., 2014).  179 

The nutritional metabolites identified in the present study were slightly different from our 180 

previous analysis without considering POPs, probably explained by multi-block approach 181 

used and the potential covariation due to the block of POPs (Alexandre-Gouabau et al., 182 

2019). Actually, the development and application of multiblock models is in full emergence, 183 

especially in the field of molecular biology or clinical settings where the cross-omic and 184 

multi-way integration is more common (Sun and Hu, 2016; Wu et al., 2019). In the present 185 

study, we have applied a powerful statistical approach that allows the variable selection 186 

accounting for the correlation between variables but also between data-blocks, presumably 187 

outperforming the concatenation approaches (Singh et al., 2019). This proposed approach 188 

may extend the growing toolkit to analyse the complex exposome-health data structures, 189 

favouring the holistic analysis of multiple exposures and potential mediators (Lazarevic et al., 190 

2019). Additionally, it could be easily coupled to generic physiologically based 191 

pharmacokinetic (PBPK) models for POPs to refine the exposure estimates through different 192 

exposure windows or to generate cumulative exposure signatures through the perinatal period 193 

(Verner et al., 2013). 194 
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5. Conclusions 195 

To sum up, the results from the present study support the methodological potential of cross-196 

platforms integration to elucidate complex exposome-health associations. Despite we applied 197 

the workflow to identify nutritional metabolites in human preterm breastmilk, this could be 198 

applied to other matrices such as serum or adipose tissue to identify endogenous metabolites 199 

favouring the functional phenotyping. Furthermore, these preliminary results did not 200 

elucidate an impairment of preterm infant growth associated to the postnatal exposure to 201 

POPs, supporting the use of human milk in the nutritional strategies for preterm newborns. 202 

However, further research will be required 1) to evaluate the associations with higher 203 

exposure concentrations of POPs and more complex mixtures with emerging contaminants, 204 

2) to gain insight into the suggested nutrient-pollutants interactions and 3) to evaluate the 205 

potential obesogenic effect of POPs on preterm infants that could exacerbate their already 206 

acknowledged risk for metabolic diseases (Chehade et al., 2018).  207 
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