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ABSTRACT Marine regions that have seasonal to long-term low dissolved oxygen
(DO) concentrations, sometimes called “dead zones,” are increasing in number and
severity around the globe with deleterious effects on ecology and economics. One
of the largest of these coastal dead zones occurs on the continental shelf of the
northern Gulf of Mexico (nGOM), which results from eutrophication-enhanced bacte-
rioplankton respiration and strong seasonal stratification. Previous research in this
dead zone revealed the presence of multiple cosmopolitan bacterioplankton lin-
eages that have eluded cultivation, and thus their metabolic roles in this ecosystem
remain unknown. We used a coupled shotgun metagenomic and metatranscriptomic
approach to determine the metabolic potential of Marine Group II Euryarchaeota,
SAR406, and SAR202. We recovered multiple high-quality, nearly complete genomes
from all three groups as well as candidate phyla usually associated with anoxic envi-
ronments—Parcubacteria (OD1) and Peregrinibacteria. Two additional groups with
putative assignments to ACD39 and PAUC34f supplement the metabolic contribu-
tions by uncultivated taxa. Our results indicate active metabolism in all groups, in-
cluding prevalent aerobic respiration, with concurrent expression of genes for nitrate
reduction in SAR406 and SAR202, and dissimilatory nitrite reduction to ammonia
and sulfur reduction by SAR406. We also report a variety of active heterotrophic car-
bon processing mechanisms, including degradation of complex carbohydrate com-
pounds by SAR406, SAR202, ACD39, and PAUC34f. Together, these data help con-
strain the metabolic contributions from uncultivated groups in the nGOM during
periods of low DO and suggest roles for these organisms in the breakdown of com-
plex organic matter.

IMPORTANCE Dead zones receive their name primarily from the reduction of eu-
karyotic macrobiota (demersal fish, shrimp, etc.) that are also key coastal fisheries.
Excess nutrients contributed from anthropogenic activity such as fertilizer runoff re-
sult in algal blooms and therefore ample new carbon for aerobic microbial metabo-
lism. Combined with strong stratification, microbial respiration reduces oxygen in
shelf bottom waters to levels unfit for many animals (termed hypoxia). The nGOM
shelf remains one of the largest eutrophication-driven hypoxic zones in the world,
yet despite its potential as a model study system, the microbial metabolisms under-
lying and resulting from this phenomenon—many of which occur in bacterioplank-
ton from poorly understood lineages— have received only preliminary study. Our
work details the metabolic potential and gene expression activity for uncultivated
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lineages across several low DO sites in the nGOM, improving our understanding of
the active biogeochemical cycling mediated by these “microbial dark matter” taxa
during hypoxia.

KEYWORDS candidate phyla, hypoxia, metagenomics, microbial ecology, microbial
metabolism

Hypoxia (dissolved oxygen [DO] below 2 mg · liter�1/�62.5 �mol · kg�1) is
dangerous or lethal to a wide variety of marine life, including organisms of

economic importance (1). Hypoxia results from oxygen consumption by aerobic mi-
crobes combined with strong stratification that prevents reoxygenation of bottom
waters. These taxa are fueled primarily by autochthonous organic matter generated
from phytoplankton responding to nitrogen input (1). Hypoxic zones have become
more widespread globally through the proliferation of nitrogen-based fertilizers and
the resulting increases in transport to coastal oceans via runoff (2). In the northern Gulf
of Mexico (nGOM), nitrogen runoff from the Mississippi and Atchafalaya Rivers leads to
bottom water hypoxia that can extend over 20,000 km2— one of the world’s largest
seasonal “dead zones” (1). Action plans to mitigate nGOM hypoxia have stressed that
increasing our “understanding of nutrient cycling and transformations” remains vital for
plan implementation (3). These needs motivated our current study of the engines of
hypoxic zone nutrient transformation: microorganisms.

Much of our current knowledge regarding microbial contributions to regions of low
DO comes from numerous studies investigating naturally occurring, deep-water oxygen
minimum zones (OMZs), such as those in the Eastern Tropical North and South Pacific,
the Saanich Inlet, and the Arabian, Baltic, and Black Seas (4–11). In many of these
systems, continual nutrient supply generates permanent or semipermanent decreases
in oxygen, sometimes to the point of complete anoxia (4). During these conditions,
anaerobic metabolisms, such as nitrate and sulfate reduction and anaerobic ammonia
oxidation, become prevalent (5, 9, 11–13). In contrast, nGOM hypoxia is distinguished
by a seasonal pattern of formation, persistence, and dissolution (1); by benthic contri-
butions to bottom water oxygen consumption (14, 15); and by a shallow shelf that
places much of the water column within the euphotic zone (16). While parts of the
nGOM hypoxic zone can become anoxic (1, 17), many areas maintain low oxygen
concentrations even during peak hypoxia while the upper water column remains
oxygenated (18–20).

The first studies of bacterioplankton assemblages during nGOM hypoxia showed
that nitrifying Thaumarchaea dominated (21) and could be highly active (22), suggest-
ing a major role for these taxa in nGOM nitrogen cycling. However, many more poorly
understood organisms from cosmopolitan, but still uncultivated “microbial dark matter”
(23) lineages, such as Marine Group II Euryarchaeota (MGII), SAR406, and SAR202, also
occurred in abundance (21, 22). While the likely functions of some of these groups have
become clearer recently, all of them contain multiple sublineages that may have
distinct metabolic roles. For example, the SAR202 lineage of Chloroflexi contains at least
five subclades with distinct ecological profiles (24, 25), and the best understood
examples have been examined in the context of complex carbon degradation in the
deep ocean (25). Likewise, SAR406 represents a distinct phylum with numerous sub-
lineages, and the bulk of metabolic inference comes from taxa in deep-water OMZs (23,
26–28).

None of these groups have been studied in detail in shallow coastal waters,
particularly in the context of seasonal hypoxia. Thus, we pursued a combined metag-
enomic/metatranscriptomic approach to (i) elucidate the specific contributions of these
uncultivated lineages to biogeochemical cycling in the nGOM during hypoxia, (ii)
evaluate the relative similarity of these organisms to their counterparts elsewhere, and
(iii) determine whether other uncultivated lineages had eluded previous microbial
characterization in the region due to confounding factors such as primer bias (29), 16S
rRNA gene introns (30), or low abundance. Metagenomic binning recovered 20 ge-
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nomes from seven uncultivated lineages, including MGII, SAR406, and SAR202, and
from candidate phyla previously uncharacterized in the nGOM: Parcubacteria (23),
Peregrinibacteria (31), and possibly PAUC34f (32) and ACD39 (33). Our results provide
the first information on the likely potential function and activity of these taxa during
hypoxia in the shallow nGOM, and suggest novel roles for some of these groups that
possibly reflect sublineage-specific adaptations.

RESULTS
Study area. Our previous work used 16S rRNA gene amplicon data and quantitative

PCR (qPCR) to examine correlations between whole microbial communities, nutrients,
and DO across the geographic range of the 2013 seasonal hypoxia (21). Here we
selected six of those samples from offshore of the region between Atchafalaya Bay and
Terrebonne Bay (D=, D, and E transects). These sites ranged considerably in DO
concentration (�2.2 to 132 �mol · kg�1), and we chose them to facilitate a detailed
investigation of the metabolic repertoire of individual taxa across the span of suboxic
(1 to 20 �mol · kg�1 DO) to oxic (�90 �mol · kg�1 DO) (5) water. Microbial samples
from these sites were collected at the oxygen minimum near the bottom. Site depth
ranged from 8 to 30 m, with the hypoxic (�2 mg · liter�1/62.5 �mol · kg�1) layer (at
sites D2, D3, E2A, and E4) extending up to �5 m off the bottom (see Table S1 at
http://thethrashlab.com/publications).

Metagenomic assembly yielded high-quality genomes from multiple unculti-
vated lineages. Our initial assembly and binning efforts recovered 76 genomes. Using
a concatenated ribosomal protein tree that included members of the candidate phylum
radiation (CPR) (34) (see Fig. S1 in the supplemental material), CheckM (35) (Fig. S2), 16S
rRNA genes and other single-copy markers where available, and analyses of individual
gene taxonomy (Fig. S3), we assigned 20 genomes to uncultivated “microbial dark
matter” groups. These were six Marine Group II Euryarchaeota (MGII), five Marinimicro-
bia (SAR406), three in the SAR202 clade of Chloroflexi, and within candidate phyla (CP),
one Parcubacteria (OD1), two Peregrinibacteria, and putatively, one ACD39 and two
PAUC34f (Table 1 and Text S1). We further defined the MGII, SAR406, and SAR202
genomes into sublineages based on average amino acid identity (AAI), GC content,
clade structure in the ribosomal protein tree, and 16S rRNA genes (Text S1). SAR406
genomes belonged to two groups, groups A and B, corresponding to the previously
established Arctic96B-7 and SHBH1141 16S rRNA gene clades (27). The three SAR202
genomes belonged to the previously established subclade I 16S rRNA gene clade (24).
All genomes, with the exception of Parcubacteria Bin 40, had estimated contamination
of less than 6%, and in the majority of cases, less than 2%. Four of the six MGII genomes
had estimated completeness (via CheckM) of greater than 61%, four of the five SAR406
genomes had greater than 73%, and all three SAR202 genomes were estimated to be
greater than 83% complete. All CP lineages had at least one genome estimated to be
greater than 71% complete (Table 1).

Unique roles for the ubiquitous MGII, SAR406, and SAR202 lineages in nGOM
hypoxia. MGII comprised more than 10% of the total community in some samples from
2013, and one MGII operational taxonomic unit (OTU) also had a strong negative
correlation with DO during 2013 hypoxia (21). Within our metagenomic data set, MGII
were more abundant in lower oxygen samples than in fully oxic samples and the most
abundant of the lineages reported here (Fig. S7). The majority of genomes encoded for
aerobic, chemoheterotrophic metabolism, with no predicted genes for nitrogen or
sulfur respiration except for a putative nitrite reductase (nirK) in a single genome, Bin
15 (Fig. 1; see Table S1 at http://thethrashlab.com/publications). MGII genomic abun-
dance correlated well with transcriptional abundance in most samples (Fig. 2), and we
specifically found MGII cytochrome c oxidase expression throughout, though the levels
and patterns differed depending on the gene and the source genome (Fig. 3; see
Table S1 at http://thethrashlab.com/publications). Expression of the nirK gene occurred
in the D2 and E2A samples— both suboxic. All but the most incomplete genome
encoded for ammonia assimilation, making this a likely nitrogen source. Aggregate
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metabolic construction from multiple bins also indicated a complete tricarboxylic acid
(TCA) cycle, glycolysis via the pentose phosphate pathway, and gluconeogenesis
(Fig. 1). Carbohydrate active enzyme (CAZy) genes can provide critical information on
the relationships between microbes and possible carbon sources (36). We found few
CAZy genes, and these were largely restricted to glycosyltransferases (GT) in families 2
and 4, with activities related to cellular synthesis. In general, CAZy expression occurred
for at least one gene in every genome, and we detected expression of GT cellular
synthesis genes in the E2A sample (Fig. 4), likely indicating actively growing cells.

SAR406 represented more than 5% of the population in some locations during
hypoxia in 2013, and one abundant OTU was negatively correlated with DO (21).
Metagenomic read recruitment to the SAR406 bins confirmed this trend, with greater
recruitment in the suboxic samples relative to dysoxic or oxic samples (Fig. S7). Total
RNA recruitment was strongest to Bins 45 and 51-1, though most bins showed an
RNA-to-DNA recruitment ratio of �1 in at least one sample, indicating that these taxa
were likely active (Fig. 2). Despite their affinity for low-oxygen environments, the
SAR406 genomes encoded a predicted capacity for aerobic respiration (Fig. 1), and we
found expression of cytochrome c oxidases in even the lowest oxygen samples (Fig. 3).
The group B genomes encoded both high- and low-affinity cytochrome c oxidases (37),
whereas the high-affinity (cbb3-type) oxidases were not recovered in the group A
genomes (see Table S1 at http://thethrashlab.com/publications), which may indicate
sublineage-specific optimization for different oxygen regimes.

Sublineage variation also appeared in genes for the nitrogen and sulfur cycles.
Group B genomes all contained predicted nitrous oxide reductases (nosZ) and nrfAH
genes for dissimilatory nitrite reduction to ammonium (defined here as DNRA, although

TABLE 1 Genome characteristics for the 20 bins associated with uncultivated lineages

IMG genome
IDa Bin ID Taxonomy

Compl.
(%)b

Contam.
(%)c

Strain
het.d

No. of
scaff.e

Longest
scaff. (bp)

Size
(bp)

No. of
genes

GC
content
(fract.)f

Coding
density
(fract.)

Estim. compl.
size (Mbp)g

2651870035 43-1 Chloroflexi (SAR202) 90.3 0 0 69 161,242 1,972,793 1,882 0.52 0.88 2.2
2651870036 43-2 Chloroflexi (SAR202) 88.6 4.1 15.4 134 157,345 2,402,386 2,373 0.52 0.91 2.7
2651870034 43 Chloroflexi (SAR202) 83.2 0.1 100 179 90,503 2,475,308 2,392 0.53 0.89 3.0
2693429801 45 Marinimicrobia (SAR406)

group B
89.8 5.5 71.4 124 105,140 2,811,623 2,487 0.47 0.93 3.1

2651870052 45-1 Marinimicrobia (SAR406)
group B

85.2 0.1 100 144 100,582 2,410,233 2,235 0.49 0.93 2.8

2693429802 45-2 Marinimicrobia (SAR406)
group B

79.3 1.8 12.5 287 61,408 2,811,444 2,554 0.46 0.94 3.5

2651870053 51-1 Marinimicrobia (SAR406)
group A

73.6 1.7 50 75 191,525 1,901,306 1,835 0.39 0.95 2.6

2651870051 51 Marinimicrobia (SAR406)
group A

21.3 0 0 115 16,923 578,802 686 0.41 0.95 2.7

2651870038 15 Euryarchaeota (MGII) 83.2 1.6 0 43 255,599 1,885,130 1,614 0.62 0.95 2.3
2651870039 17 Euryarchaeota (MGII) 81.9 0.1 50 88 137,319 1,803,861 1,564 0.43 0.96 2.2
2651870037 14 Euryarchaeota (MGII) 71.2 0.8 100 80 90,069 1,389,909 1,305 0.54 0.94 2.0
2651870040 18 Euryarchaeota (MGII) 61.1 0.8 100 155 20,633 1,033,226 1,025 0.50 0.96 1.7
2651870042 38 Euryarchaeota (MGII) 27.1 0 0 138 12,893 615,290 610 0.55 0.96 2.3
2651870041 17-1 Euryarchaeota (MGII) 16.6 2.8 33.3 123 16,952 538,052 566 0.41 0.95 3.2
2693429807 13 Unclassified (ACD39) 89.8 5.1 20 401 75,104 4,269,849 3,686 0.47 0.93 4.8
2693429799 40 Parcubacteria (OD1) 71.9 15.1 75 97 65,104 1,086,283 1,208 0.52 0.92 1.5
2693429797 16 Peregrinibacteria 83.2 0.3 100 67 59,308 1,384,712 1,318 0.39 0.93 1.7
2693429798 39 Peregrinibacteria 49.9 0.3 100 131 18,806 747,520 809 0.45 0.95 1.5
2693429804 50 Unclassified (PAUC34f) 84.8 1.4 0 455 76,269 5,346,994 5,484 0.58 0.92 6.3
2693429803 48 Unclassified (PAUC34f) 51.9 2.2 0 470 20,176 2,566,149 2,596 0.55 0.94 4.9
aID., identifier.
bCompl., estimated completeness.
cContam., estimated contamination.
dStrain het., strain heterogeneity.
escaff., scaffolds.
ffract., fraction.
gEstim. compl. size, estimated complete genome size.
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this acronym frequently refers to nitrate, even though that is a misnomer [38]). The nrfA
genes formed a monophyletic group with Anaeromyxobacter dehalogenans 2CP-1, an
organism with demonstrated DNRA activity (38) (Fig. S8A). The genes also contained
conserved motifs diagnostic of the nrfA gene (38) (Fig. S8B and C). We observed
expression of nrfAH and nosZ at the sites with the lowest DO concentrations (D2, E2A,
and E4), and expression appeared to have a negative relationship with DO concentra-
tion (Fig. 3). The Bin 51-1 group A genome contained predicted narHI genes for
dissimilatory nitrate reduction, which we did not find in the group B genomes. We
observed expression of SAR406 narHI only in the lowest DO sample from station E2A
(Fig. 3). Two group B SAR406 genomes had predicted phsA genes for thiosulfate
reduction to sulfide (and/or polysulfide reduction [39]), as previously described from
fosmid sequences (27). We detected transcripts for these genes only in samples E2A
and E4, the two lowest DO samples (Fig. 3). Many of the anaerobic respiratory genes
were coexpressed with cytochrome c oxidases, indicating a potential for either core-
duction of these alternative terminal electron acceptors or poising of these organisms
for rapid switching between aerobic and anaerobic metabolism (40).

All SAR406 genomes had numerous genes for heterotrophy. We found CAZy genes
in all major categories except polysaccharide lyases, and expression for most of these
genes in both group A and group B genomes in one or more samples (Fig. 4). Notable

FIG 1 Metabolic reconstruction of Marine Group II Euryarchaeota, SAR406, and SAR202, based on the top three or four most complete genomes. Colors indicate
pathway elements based on the number of genomes in which they were recovered, according to the key. Black outlines and/or arrows indicate genes that were
not observed. Boldface black numbers correspond to annotations supplied in Table S1 at http://thethrashlab.com/publications.
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carbohydrate compounds for which degradation capacity was predicted include cellu-
lose (glycoside hydrolase [GH] families GH3 and GH5; carbohydrate binding module
[CBM] family CBM6), starch (GH13), agar and other sulfated galactans (GH2 and GH16),
chitin (GH18), xylan (GH30 and CBM9), and peptidoglycan (GH23, GH103, and CBM50).
The genomes contained putative transporters for a variety of dissolved organic matter
(DOM) components including nucleosides, amino and fatty acids, and oligopeptides
(see Table S1 at http://thethrashlab.com/publications). We also found numerous outer
membrane transporters (including cation symporters), outer membrane receptors
(OMR) (TonB dependent) (which play important roles in transport of metals, vitamins,
colicins, and other compounds), and outer membrane factors (OMF). Most genomes
also had large numbers of duplicated genes (24 in Bin 45-2), identified via hidden
Markov model searches against the Sifted Families (SFam) database (41), annotated as
“Por secretion system C-terminal sorting domain-containing protein,” some of which
were associated with GH16. These genes likely play a role in sorting C-terminal tags of
proteins targeted for secretion via the Por system, which is essential for gliding motility and
chitinase secretion in some Bacteroidetes (42). The extensive gene duplication may indicate
expanded and/or specialized sorting functionality and suggests an emphasis on protein
secretion in this group. Expression of a membrane-bound lytic murein transglycosylase D
(GH23) involved in membrane remodeling also supports the idea of active and growing
cells from group A in all samples (see Table S1 at http://thethrashlab.com/publications).

We detected Chloroflexi 16S rRNA gene sequences during 2013 hypoxia at up to 5%
of the community (21) and recovered three mostly complete SAR202 Chloroflexi
genomes in this work. Although present at a lower abundance than MGII and SAR406

FIG 2 Relative DNA to RNA recruitment rank for each genome, by sample. Colors indicate the relative
difference in the ratio of rank based on total RNA and DNA mapping. Red indicates a higher RNA
recruitment rank compared to DNA recruitment rank, and vice versa for blue. The plus and minus
symbols indicate bins where the rank residual from the identity in RNA versus DNA read mapping was
more or less than 1 standard deviation beyond 0, respectively. Dendrograms were calculated using an
unweighted-pair group method with arithmetic mean (UPGMA) from Euclidean distances of rank
residuals across all samples and bins.
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FIG 3 Expression of predicted respiratory genes. RPKM values of RNA recruitment for each gene, by sample, are
depicted with colors according to the Gene RPKM key (pale yellow to blue shows increasing intensity). Genes are
grouped by bin, taxonomic affiliation, and specific respiratory process. DNRA, dissimilatory nitrite reduction to
ammonia.
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FIG 4 Expression of predicted CAZy genes. RPKM values or RNA recruitment for each gene, by sample,
are depicted with colors according to the Gene RPKM key (pale yellow to red shows increasing intensity).

(Continued on next page)
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(Fig. S7), these genomes showed relatively high activity in some samples (Fig. 2). Like
subclade III and V, subclade I organisms likely respire oxygen. However, we also found
napAB and nosZ genes for nitrate and nitrous oxide reduction, respectively (Fig. 1). As
in SAR406, we detected concurrent expression of these genes with cytochrome c
oxidases in the lowest DO samples (Fig. 3) (see Table S1 at http://thethrashlab.com/
publications).

The SAR202 genomes have numerous transporters, many with predicted roles in
organic matter transport, which supports previous observations of DOM uptake (43). In
particular, SAR202 genomes had considerably more major facilitator superfamily (MFS)
transporters than the other genomes in this study (see Table S1 at http://thethrashlab
.com/publications) and those of the subclade III genomes (25), and SFam searches
revealed that the majority of these shared annotation as a “Predicted arabinose efflux
permease” (SFam 346742). MFS genes transport numerous diverse substrates, such as
sugars and amino acids, through coupling with an ion gradient, and can be associated
with either uptake or export of compounds (44). SAR202 genomes also had between 53
and 66 predicted ABC transporters.

The SAR202 genomes carried a number of duplicated genes in specific gene
families. The largest gene family expansion that we observed was associated with SFam
6706, with between 46 and 48 genes in this family in each genome. Most of these genes
(121/142) were annotated as either a “galactonate dehydratase” or a “L-alanine-DL-
glutamate epimerase.” Galactonate dehydratase catalyzes the first step of the pathway
to utilize D-galactonate in central carbon metabolism via the pentose phosphate
pathway. The large number of genes in these categories likely indicates some diver-
gence for alternative roles, as this group belongs broadly to the COG4948 “L-alanine-
DL-glutamate epimerase or related enzyme of enolase superfamily.” All genomes also
had numerous dehydrogenase genes as reported for the subclade III genomes (25).
Specifically, SFams 346640 and 1639 were the third and fourth most abundant, with 16
to 18 and 13 to 15 genes in each family, respectively, in the three genomes. Genes in
these families were annotated as “short-chain alcohol dehydrogenase family,” “3-alpha
(or 20-beta)-hydroxysteroid dehydrogenase,” “meso-butanediol dehydrogenase,” and
others. These match the annotations of the subclade III genomes and suggest a similar
role in conversion of alcohols to ketones (25). The SAR202 genomes have comparatively
few CAZy genes relative to the other genomes. GH15 and GH63 suggest starch
degradation and GH105 pectin degradation, and we detected expression of multiple
genes in these categories across samples (Fig. 4; see Table S1 at http://thethrashlab
.com/publications).

Other candidate phylum organisms in nGOM hypoxia. In contrast to the abun-
dant and cosmopolitan MGII, SAR406, and SAR202 clades, we also recovered genomes
from several groups that were either previously undetected in the nGOM or very rare.
Although these taxa likely do not contribute the biomass of more populous clades,
their genomes provide important insight into their functional potential during hypoxia.
The Bin 13 genome (possibly ACD39) also had the highest relative activity compared to
all the other genomes in our study (Fig. 2), underlining the point that low abundance
does not automatically equate to low metabolic impact. Bin 13 had predicted aerobic
respiration with both high- and low-affinity cytochrome c oxidases (Fig. 5). The low-
affinity oxidases contributed more reads in the samples where we could detect
expression (see Table S1 at http://thethrashlab.com/publications). The genome con-
tained numerous predicted CAZy genes in the glycosyltransferase and glycoside hy-
drolase categories, spread across multiple families in each (see Table S1 at http://
thethrashlab.com/publications). Notable degradation capacity included starch (GH13)
and peptidoglycan (GH23, GH103, and GH104).

FIG 4 Legend (Continued)
Genes are grouped by bin, taxonomic affiliation, and general CAZy categories. CE, carbohydrate esterase;
GH, glycoside hydrolase; GT, glycosyltransferase; CBM, carbohydrate binding module.
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Bin 13 had �80 ABC transporter genes, and similar to the SAR406 genomes,
numerous outer membrane transporters, including the OMR and OMF families. We
predict complete glycolysis/gluconeogenesis pathways and a TCA cycle. We recovered
paralogous pilus subunit genes, chemotaxis genes, and a partial flagellar assembly.
Furthermore, we detected relatively high expression of the flgLN flagellin genes in
samples D2, D3, E2A, and E4 (see Table S1 at http://thethrashlab.com/publications),
suggesting active motility in these environments. Several other Bin 13 genes were
among the most highly expressed in all samples but could be classified only as hypothetical
(see Table S1 at http://thethrashlab.com/publications). Similarly, the three most populous
SFams in Bin 13, according to the numbers of genes (n � 16, 15, and 13) also linked to
genes annotated as hypothetical proteins with either tetratricopeptide, HEAT, TPR, or
Sel1 repeats. Although currently obscure, these and the highly expressed hypothetical
genes represent important targets for future research into the function of this group.

Bins 50 and 48 were lower in abundance than SAR202 genomes (Fig. S7, PAUC34f),
with no observable trend associated with oxygen levels (Fig. S7). These genomes
encoded flagellar motility, aerobic respiration, glycolysis via the pentose-phosphate
pathway, gluconeogenesis, assimilatory sulfate reduction, and DNRA (Fig. 5). The nrfA
subunit from both genomes grouped in the same monophyletic clade as those from
SAR406 (Fig. S8A) and had similar conserved motifs (Fig. S8B and C). However, we note

FIG 5 Metabolic reconstruction of the candidate phylum members PAUC34f, Parcubacteria (OD1), Peregrinibacteria, and ACD39 (Bin 13). Colors indicate
pathway elements based on the number of genomes in which they were recovered, according to the key. Black outlines and/or arrows indicate genes that were
not observed. Boldface black numbers correspond to annotations supplied in Table S1 at http://thethrashlab.com/publications.
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that the nrfAH gene sets for Bins 50 and 48 occurred on relatively short contigs (5,650
and 5,890 bp, respectively), so the metabolic assignment cannot be corroborated as
definitively as that for SAR406. The Bin 50 genome was among the more active in our
analysis (Fig. 2), and we detected the highest expression of cytochrome c oxidase
components in samples E2A and E4 (Fig. 3). DNRA gene expression was low but
observable in the same samples. We also recovered a partial gene for the ribulose-
bisphosphate carboxylase (RuBisCO) large subunit, but this fragment was on a very
short contig (3,954 bp), and we did not detect expression in any of our samples, so we
cannot rule out that this gene occurred on a contaminating contig.

The Bin 50 and 48 genomes had abundant CAZy genes in all categories, suggesting
a highly flexible metabolic repertoire for carbon acquisition. They contain possible
capacity for breakdown of starch (GH13 and CBM48), peptidoglycan (GH23 and CBM50),
fructose-based oligosaccharides (GH32), and hemicellulose (GH2, GH3, and GH43).
Notably, these genomes were the only ones with predicted polysaccharide lyases (PL)
among those compared (with the exception of a single predicted PL gene in SAR406
[see Table S1 at http://thethrashlab.com/publications]). PL genes cleave uronic-acid
containing polysaccharides (45). These organisms seem particularly adapted for pectin
(PL1, PL2, PL9, PL10, PL11, PL22, and GH78) and alginate (PL15 and PL17) degrada-
tion— both compounds are common cell wall components of green and brown algae,
respectively.

In line with the algal cell wall degradation ability, we detected a large expansion
(102 genes in Bin 50) of sulfatase genes in SFam 1534, annotated predominantly as
either “arylsulfatase A” or “choline-sulfatase.” Arylsulfatases cleave sulfate esters, usually
to supply microbes with a source of sulfur, and can be located intracellularly or in
membranes (46). Choline sulfatases cleave choline sulfate to choline and sulfate, with
downstream use for the former as a carbon source or osmoprotectant and the latter as
a sulfur source (47). Given the predicted assimilatory sulfate reduction pathway in Bins
50 and 48, this is a logical means to obtain sulfur for the group. We observed large
expansions in galactonate and other dehydratases (as in SAR202, above; SFam 6706, 42
genes in Bin 50), as well as numerous ABC transporter permeases (SFam 4442), which
match the transporter predictions via IMG (Integrated Microbial Genomes): 117 pre-
dicted genes for ABC transporters in all. These genomes also had numerous OMF and
OMR transporter genes (see Table S1 at http://thethrashlab.com/publications). The
large number of transporters and protein family expansions correspond to the relatively
large expected genome sizes (between 5 and 6 Mbp).

We also recovered genomes associated with CPR taxa usually associated with anoxic
environments: two Peregrinibacteria and one from the Uhrbacteria subclade of the
Parcubacteria (formerly OD1). All three genomes could be assigned taxonomically with
high confidence based on their positions in the ribosomal protein tree (Fig. S1) and via
gene annotations (Fig. S3). We note that although the Peregrinibacteria bins (16 and 39)
had very low predicted contamination, the Parcubacteria Bin 40 had 15% predicted
contamination (75% of which we attributed to strain heterogeneity in the bin) (Table 1).
Recovery of Parcubacteria from a coastal marine system is unusual, but not unprece-
dented. Parcubacteria single-cell genomes have been identified in marine and brackish
sources (23), and we previously identified 26 rare OTUs assigned to the phylum in
nGOM hypoxia (21). That number of OTUs may explain why we observed 20 single-copy
marker genes present in two copies in Bin 40 (see Table S1 at http://thethrashlab.com/
publications).

In contrast to Parcubacteria, Peregrinibacteria have thus far been found only in
terrestrial subsurface aquifers (31, 33, 48, 49) and remained undetected in our amplicon
survey (21). Both groups occurred in low relative abundance compared to the other
taxa in this study (Fig. S7) and showed the lowest activity (Fig. 2). Consistent with
previous reports of obligate fermentative metabolism by Parcubacteria and Peregrini-
bacteria (23, 30, 31, 48), we identified no respiratory pathways for these taxa (Fig. 5), and
they trended toward greater abundances in the lowest DO samples (Fig. S7). In spite of
relatively high predicted genome completion, we found very few CAZy genes, and
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those genes were mostly restricted to glycosyltransferases (see Table S1 at http://
thethrashlab.com/publications) probably involved in capsular polysaccharide synthesis.
While these organisms had low relative abundance to the other groups (Fig. S7), we did
observe activity in some samples (Fig. 2, samples E2, E2A, and D1).

DISCUSSION

This work provides the first reconstruction of multiple nearly complete genomes
from uncultivated bacterioplankton during nGOM hypoxia. Although we define roles
for MGII, SAR406, SAR202, Bin 13, and Bins 50/48 as aerobic heterotrophs, we also
observed concurrent expression of genes associated with anaerobic metabolism in
SAR406 (nitrate reduction, DNRA, nitrous oxide reduction, and sulfur reduction),
SAR202 (nitrate and nitrous oxide reduction), MGII (nitrite reduction), and Bins 50/48
(DNRA) in suboxic samples with the lowest measured DO concentrations. Simultaneous
utilization of multiple electron acceptors with different redox potentials likely indicates
an abundant supply of electron donors (50), may denote niche partitioning within
group sublineages at a finer level of taxonomic resolution than we observed, or
indicates poising of taxa for rapidly changing chemical gradients (40). An organism’s set
of CAZy genes often gives insights into its biology, in particular into nutrient sensing
and acquisition. All taxa examined in this study had predicted chemoorganohetero-
trophic metabolism, and the CAZy genes found in these genomes suggest that SAR406,
SAR202, Bin 13, and Bins 50/48 participate in the degradation of complex organic
matter resulting from the detritus of larger organisms. This matches the general model
of hypoxic zone oxygen consumption resulting from sinking organic matter provided
by algal blooms in surface waters (1). The observed activity of obligate fermentative
groups Parcubacteria and Peregrinibacteria also suggests that anoxic pockets occur in
the water column where these organisms can thrive.

Marine Group II (MGII) is a broadly distributed archaeal clade, with members found
in different marine (51, 52) and sedimentary (53) environments. Previous work during
2012 and 2013 hypoxia indicated a proliferation of archaeal taxa in both the Thaumar-
chaea and MGII phyla (21, 22). The prevalence of MGII among lower oxygen samples in
the hypoxic zone is somewhat surprising, considering that they are commonly associ-
ated with aerobic environments (52). However, oxygen was still present in even the
lowest DO samples (Fig. 2), and MGII success likely had more to do with the carbon
content than oxygen levels. These nGOM MGII appear to be metabolically similar to
those described in previous work: MGII have been shown to be dominant in water
column environments associated with blooms in productivity, for example at deep-sea
hydrothermal plumes (51). Thus, the increased availability of organic matter (proteins
and carbohydrates), thought to be preferred substrates for MGII (54, 55), probably
explains their abundance.

Another cosmopolitan group found in our samples was SAR406 or Marine Group A.
These organisms were discovered more than 20 years ago (28, 56), and the clade has
recently been proposed as the phylum “Marinimicrobia” (23). SAR406 occur in numer-
ous marine (5, 23, 26, 28, 57), sedimentary (23), and even oil reservoir (58) environ-
ments. They are prevalent in deeper ocean waters (28, 57, 59) and prefer lower oxygen
concentrations in OMZs (5, 26, 60). Our genomes had larger estimated genome
sizes—2.6 to 2.7 Mbp (group A) and 2.8 to 3.5 Mbp (group B)— compared to 1.1 to
2.4 Mbp from single-cell genomes (23). Overall GC content, however, was in the range
of the 30 to 48% reported for fosmids (27) and single-cell genomes (23). The lower-GC
group A genomes specifically had GC contents similar to that of the Arctic96B-7
fosmids, matching their predicted phylogenetic affiliation (see below) (27).

Our data now also define roles for SAR406 in the eutrophication-driven hypoxia of
the nGOM. Previous metabolic reconstructions of SAR406 predicted aerobic metabo-
lism (23) and sulfur reduction (27), which our data confirm, although the sulfur
reduction genes were found only in group B organisms (see Table S1 at http://
thethrashlab.com/publications). Our genomes also suggest multiple nitrogen cycling
roles that appear to be organized by sublineages within the phylum, and sublineage-
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specific presence of both high- and low-affinity cytochrome c oxidases. The group B
organisms group with the early diverging SBH1141 clade (27) for which no previous
genome data exist. Group B organisms contained both types of cytochrome c oxidase
genes, nosZ and nrfAH genes, whereas group A organisms, sister to the Arctic96B-7
clade, contained only the low-affinity cytochrome c oxidases, and additionally narHI
genes not found in group B. The unique roles predicted for these taxa are not surprising
given the diversity of the SAR406 clade and the genetic distances between group A and B
(see Fig. S4 in the supplemental material). The fosmids associated with the Arctic96B-7
clade contained genes for oxidative stress and sulfur reduction (27), although we only
found sulfur reduction genes in the distantly related group B genomes. The Arctic96B-7
clade may be diverse enough to encompass differing metabolic strategies, but the variable
presence of phsA genes in this group may simply be due to incomplete genomic data. In
addition to sublineage-specific respiratory characteristics, our results also generate specific
hypotheses about organic matter metabolism in SAR406: likely degradation capacity for
cellulose, starch, agar, xylan, and peptidoglycan; transport of nucleosides, amino and fatty
acids, and oligopeptides; and substantial gene duplication associated with protein secre-
tion for possible extracellular metabolism. Together, these data suggest that during nGOM
hypoxia, SAR406 members degrade complex carbohydrates fueled by aerobic respiration
and supplemented with facultative anaerobic respiration of nitrate, nitrite, or sulfur com-
pounds.

Members of the SAR202 clade of Chloroflexi also inhabit a wide variety of marine
environments (24), frequently in deeper waters (24, 43, 57, 59, 61) and remain func-
tionally understudied because genome data for SAR202 have been lacking. Landry and
colleagues recently described the properties for several single-cell genomes represent-
ing SAR202 subclades III and V recovered from the mesopelagic zone (25). Our
genomes have generally higher GC content and much lower expected genome sizes
than those predicted by Landry et al. (25), although these calculations are likely
complicated by the relative incompleteness of their genomes (8 to 56%). The Landry et
al. genomes indicated a role for SAR202 in the oxidation of recalcitrant dissolved
organic matter, and specifically cyclic alkanes, via flavin mononucleotide monooxygen-
ases (FMNOs) and different dehydrogenases that occurred in paralogous groups (25).
We observed many of the same gene expansions, namely that of MFS transporters and
short-chain dehydrogenases (and related genes), but we did not recover any FMNOs of
SFam 4832 or 4965, suggesting subclade- and/or niche-specific adaptations. Further-
more, we observed napAB and nosZ genes for nitrate and nitrous oxide reduction (and
expression of these genes), which were not reported for subclade III or V. Our nGOM
hypoxia SAR202 genomes had CAZy genes implicating them in degradation of complex
compounds such as chitin and pectin. The emerging picture of these taxa from both
shallow hypoxic waters and the mesopelagic zone is one of recalcitrant carbon de-
graders, with overlapping suites of paralogous genes, but that may be specialized for
specific compounds more commonly available in their respective habitats.

This study has also developed roles for CP taxa in a shallow marine water column
during hypoxia. The most active organism in our survey based on the ratio of RNA to
DNA reads recruited, Bin 13, putatively belongs to a group with little genomic data—
ACD39. The original ACD39 genome was reconstructed from an aquifer community
(33). Although this was only a partial genome, it shared some features with our putative
ACD39 member, namely pilin and chemotaxis genes, those containing TPR and tet-
ratricopeptide repeats, and CAZy genes for degradation of complex compounds such
as starch (33). Our study provides evidence that these taxa have relatively large
genomes (�4.8 Mbp), are active aerobes in nGOM hypoxia, and have chemotaxis and
motility genes that could facilitate scavenging and surface attachment. However, most
of the highly expressed genes in this organism were annotated as hypothetical
proteins, so much of the function of these organisms remains to be uncovered.

Bins 50 and 48 provide novel genome data for bacterioplankton in nGOM hypoxia,
although the exact taxonomic position of these bins remains in conflict. The ribosomal
protein tree provides evidence that these taxa belong to the Latescibacteria (WS3)
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(Fig. S1), but 16S rRNA genes (Fig. S6) and our amplicon data point toward membership
in the more poorly understood PAUC34f clade. Since no previous genome data exist for
PAUC34f, we cannot rule out erroneous assignment in the ribosomal protein tree due
to insufficient taxon selection. Bins 50 and 48 represented the largest genomes of the
study, with estimated complete sizes of �5 to 6 Mbp, and numerous genes suggesting
degradation of a wider suite of complex organic matter than any of the other genomes
examined. For example, they were the only genomes with numerous polysaccharide
lyase genes, and these likely facilitate breakdown of algal cell wall components like
pectin and alginate. The Bin 50 genome was among the most active across all samples
(Fig. 2), and we detected expression of cytochrome c oxidase genes, and those for
DNRA, in both the Bin 50 and 48 genomes. Thus, we expect these organisms to have
an aerobic, potentially facultatively anaerobic, multifaceted chemoorganohetero-
trophic metabolism with roles in complex carbon compound degradation (like that of
algal cell walls) and the nitrogen cycle.

If these bins belong to PAUC34f, they represent the first genomic data for the group.
Although originally discovered, and commonly found, in marine sponges (32, 62–64),
this putative bacterial phylum (via GreenGenes/SILVA) has been detected as a rare
group in other marine invertebrates (65) and stream sediment (66), and we identified
18 distinct but rare PAUC34f OTUs in nGOM hypoxia compared to just 3 from WS3 (21).
Although the majority of studies suggest an endosymbiotic lifestyle for PAUC34f, our
representative genome data point toward a free-living existence with multiple terminal
electron-accepting processes, motility genes for seeking more favorable conditions,
and a large metabolic repertoire for degradation of complex compounds. On the other
hand, if these genomes represent WS3, the sister clade to PAUC34f (Fig. S6), they have
many similarities to the lifestyles inferred from recent metagenomic investigations (67,
68). Specifically, while this group was previously considered anaerobic (67), new data
have supported an aerobic lifestyle for some members (48) and revealed complete
electron transport chains and both high- and low-affinity cytochrome c oxidases (68).
The Bin 50 and 48 genomes predict aerobic metabolism as well, although only with
low-affinity cytochrome c oxidases. Farag et al. also found little evidence of these taxa
in host-associated environments, contrary to PAUC34f sequence data (68). The enrich-
ment of PL family genes in Bins 50 and 48, polysaccharide degradation capability in
general, and specific genes for degradation of cell wall components, all corroborate
previous findings on WS3 as well (68). Bin 50 had 78 annotated peptidases, nearly
double that in all other genomes in the study (Bin 48 had 46), which also concurs with
metagenomic predictions for WS3 (68). Our genomes differed from WS3 metagenomes
principally in the predicted DNRA metabolism and the dramatic expansion of sulfatases.
Although sulfatases were observed in WS3 metagenomes (68), they were not present
in the numbers associated with Bin 50 (n � 102). A large cadre of sulfatases has been
previously reported for Lentisphaera (n � 267) and Pirellula (n � 110) genomes (69, 70)
and suggests specialization for degradation of sulfate esters to satisfy carbon and/or
sulfur requirements.

Although Parcubacteria and Peregrinibacteria occurred in low abundance (Fig. S7)
and we detected activity in only a few samples, their recovery in the hypoxic zone is
notable because these organisms have generally been associated with anoxic environ-
ments. Our predicted genome sizes (�1.5 Mbp) corroborate previous reports of these
organisms having small genomes (31, 48). We did not observe any genes associated
with nitrogen or sulfur redox transitions, although we cannot rule out these capabilities
entirely due to incomplete genomes. Regardless, we can hypothesize that Parcubacteria
and Peregrinibacteria persist as members of the rare biosphere until they can take
advantage of microanoxic niches in the water column where they participate in carbon
cycling as obligately fermentative organisms.

Excluding Parcubacteria and Peregrinibacteria, the other uncultivated groups in the
nGOM hypoxic zone had one or more genomes that encoded cytochrome c oxidases
(and other electron transport chain components) for respiring oxygen, making these
taxa likely only facultative anaerobes. Pervasive aerobic metabolism in an oxygen-
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depleted water column may seem counterintuitive, yet despite DO being as low as
2.2 �mol · kg�1 in the E2A sample, oxygen probably remained high enough to sustain
aerobic microbes. As little as �0.3 �mol · kg�1 oxygen inhibited denitrification in OMZ
populations by 50% (71), and even Escherichia coli K-12 could grow aerobically at
oxygen concentrations as low as 3 nM (72). Thus, for many organisms, active aerobic
respiration likely persists even in suboxic waters during nGOM hypoxia.

Nevertheless, our data also suggest pervasive coreduction of alternative terminal
electron acceptors (oxygen, nitrate, nitrite, nitrous oxide, and sulfur), sometimes within
the same organism (Fig. 3). Coreduction of electron acceptors with different redox
potentials across a community could indicate microniches and/or aggregates in the
water column where DO concentrations drop below bulk values (40). Alternatively, this can
occur with an abundance of electron donor, and overlapping redox processes have been
reported in multiple environments, including aquatic ones (50, 73). Concurrent expression
of genes for multiple terminal electron-accepting processes within a single organism has
been proposed as a means of improved readiness for dynamic conditions, albeit at the cost
of lower productivity (40). Given that many uncultivated taxa likely perform multiple
terminal electron-accepting processes (and possibly do so simultaneously) and we found a
comparative cornucopia of genes for degradation of chemoorganoheterotrophic energy
sources, we hypothesize that niche differentiation within uncultivated hypoxic zone bac-
terioplankton occurs predominantly via specialization for different oxidizable substrates
rather than for distinct roles in the canonical redox cascade (4, 5).

Importantly, many of the active uncultivated taxa also appeared adapted for deg-
radation of complex carbon substrates. Such compounds might comprise the bulk of
available organic matter during the later stages of hypoxia after initial oxygen depletion
by microorganisms feeding on more labile carbon sources. Selection for chemoor-
ganotrophic microbes adapted to utilize recalcitrant organic matter could also explain why
organisms that do not require an exogenous carbon source, such as the chemolithoau-
totrophic Nitrosopumilus, proliferate during hypoxia (21, 22) compared to their levels during
spring before DO decreases (74, 75). Temporal data on the relative abundance and activity
of these nGOM microbial dark matter organisms, and of organic matter composition in the
water column, will be critical to more fully understand the relationship of bacterioplankton
to the creation, maintenance, and dissolution of nGOM hypoxia.

MATERIALS AND METHODS
Sample selection and nucleic acid processing. Six samples representing hypoxic (n � 4) and oxic

(n � 2) dissolved oxygen (DO) concentrations were picked from among those previously reported (21)
at stations D1, D2, D3, E2, E2A, and E4 (see Table S1 at http://thethrashlab.com/publications). DO and
nutrient collection information is detailed in the study by Gillies et al. (21). Nucleic acids were collected
as follows. At these six stations, 10 liters of seawater was collected and filtered with a peristaltic pump.
A 2.7 �m Whatman GF/D prefilter was used, and samples were concentrated on 0.22 �m Sterivex filters
(EMD Millipore). Sterivex filters were immediately sparged, filled with RNAlater, and placed at �20°C,
where they were maintained until extraction. DNA and RNA were extracted directly off the filter by
placing half of the Sterivex filter in a Lysing matrix E (LME) glass/zirconia/silica beads tube (MP
Biomedicals, Santa Ana, CA) using the protocol described by Gillies et al. (21) which combines phenol:
chloroform:isoamyl alcohol (25:24:1) and bead beating. Genomic DNA and RNA were stored at �80°C
until purified. DNA and RNA were purified using a Qiagen (Valencia, CA) AllPrep DNA/RNA kit. DNA
quantity was determined using a Qubit2.0 fluorometer (Life Technologies, Grand Island, NY). RNA with
an RNA integrity number (RIN) (16S/23S rRNA ratio determined with the Agilent TapeStation) of �8 (on
a scale of 1 to 10, with 1 being degraded and 10 being undegraded RNA) was selected for metatran-
scriptomic sequencing. Using a Ribo-Zero kit (Illumina), rRNA was subtracted from total RNA. Subse-
quently, mRNA was reverse transcribed to cDNA as described by Mason et al. (76).

Sequencing, assembly, and binning. DNA and RNA were sequenced separately, six samples per
lane, with Illumina HiSeq 2000 chemistry to generate 100 bp, paired-end reads (180 bp insert size) at the
Argonne National Laboratory Next Generation Sequencing Facility. The data are available at the NCBI SRA
repository under the BioSample accession numbers SAMN05791315 to SAMN05791320 (DNA) and
SAMN05791321 to SAMN05791326 (RNA). DNA sequencing resulted in a total of 416,924,120 reads that
were quality trimmed to 413,094,662 reads after adaptors were removed using Scythe (https://github
.com/vsbuffalo/scythe), and low-quality reads (Q � 30) were trimmed with Sickle (https://github.com/
najoshi/sickle). Reads with three or more N’s or with an average quality score of less than Q20 and a
length of �50 bp were removed. Metagenomic reads from all six samples were pooled, assembled, and
binned using previously described methods (77, 78). Briefly, quality-filtered reads were assembled with
IDBA-UD (79) on a 1TB RAM, 40-core node at the Louisiana State University high-performance computing
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cluster SuperMikeII, using the following settings: -mink 65 -maxk 105 -step 10 -pre_correction
-seed_kmer 55. Initial binning of the assembled fragments was performed using tetranucleotide fre-
quency signatures using 5 kbp fragments of the contigs. Emergent self-organizing maps (ESOM) were
manually delineated and curated based on clusters within the map. The primary assembly utilized all
reads and produced 28,080 contigs �3 kbp totaling 217,715,956 bp. Of these, 303 contigs were over
50 kbp, 72 were over 100 kbp, and the largest contig was just under 495 kbp. Binning produced 76
genomes, of which 20 genomes were assigned to lineages with uncultivated representatives using
CheckM, ribosomal protein trees, and 16S rRNA gene sequences (below).

DNA and RNA mapping. Metagenomic and metatranscriptomic sequencing reads from each sample
were separately mapped to binned contigs using BWA (80) to compare bin abundance across samples
and facilitate bin cleanup (below). Contigs within each bin were concatenated into a single fasta
sequence, and BWA was used to map the reads from each sample to all bins. All commands used for
these steps are available in the supplemental information at http://thethrashlab.com/publications.

Bin quality control. Bins were examined for contamination and completeness with CheckM (35), and
we attempted to clean bins with �10% estimated contamination using a combination of methods. First,
the CheckM modify command removed contigs determined to be outliers by GC content, coding density,
and tetranucleotide frequency. Next, in bins that still showed �10% contamination, contigs were
separated according to the comparative relative abundance of mean DNA read coverage by sample. Final
bins were evaluated with CheckM again to generate the statistics in Table S1 at http://thethrashlab.com/
publications and final bin placements in the CheckM concatenated gene tree (Fig. S2).

Ribosomal protein tree. The concatenated ribosomal protein tree was generated using 16 syntenic
genes that have been shown to undergo limited lateral gene transfer (rpL2, 3, 4, 5, 6, 14, 15, 16, 18, 22,
and 24 and rpS3, 8, 10, 17, and 19) (81). Ribosomal proteins for each bin were identified with Phylosift
(82). Amino acid alignments of the individual ribosomal proteins were generated using MUSCLE (83) and
trimmed using BMGE (84) (with the following settings: -m BLOSUM30 -g 0.5). The curated alignments
were then concatenated for phylogenetic analyses, and phylogeny was inferred via RAxML v 8.2.8 (85)
with 100 bootstrap runs (with the following settings: mpirun -np 4 -npernode 1 raxmlHPC-HYBRID-AVX
-f a -m PROTCATLG -T 16 -p 12345 -x 12345 -# 100). Note that this is similar to the number utilized in a
previous publication for this tree with automated bootstrapping (34), and required just over 56 h of wall
clock time. The alignment is available in the supplemental information at http://thethrashlab.com/
publications.

Average amino acid identity. Average amino acid identity (AAI) was calculated with GET_HOMO-
LOGUES (86) v. 02032017, with the following settings: –M –t 0 –n 16 –A.

Taxonomic assignment. Taxonomy for each bin was assigned primarily using the ribosomal protein
tree. However, for bins that did not have enough ribosomal proteins to be included in the tree, or for bins
for which the placement within the tree was poorly supported, assignments were made based on the
concatenated marker gene tree as part of the CheckM analysis (Fig. S2) or via 16S rRNA gene sequences,
when available. 16S rRNA genes were identified via CheckM, and these sequences were aligned against
the NCBI nr database using BLASTN to corroborate CheckM assignments. In the case of the SAR202
genomes, which did not have representative genomes in either the ribosomal protein tree or the CheckM
tree, the 16S rRNA gene sequences for two of the three bins (43-1 and 43-2) were available and aligned
with the sequences used to define the SAR202 clade (24) (Fig. S5). Alignment, culling, and inference were
completed with MUSCLE (83), Gblocks (87), and FastTree2 (88), respectively, with the FT_pipe script. The
script is provided in the supplemental information at http://thethrashlab.com/publications. The 16S rRNA
gene tree for subclade assignment of SAR406 (Fig. S4) was assembled by subjecting the four 16S
sequences predicted by CheckM to a BLAST search against a local GenBank nucleotide database using
blastn (v. 2.2.28�) (89), selecting the top 100 nonredundant hits to each sequence, and manually
removing all hits to genome sequences. These sequences were combined with previously defined
SAR406 subclade reference sequences (26), fosmid 16S sequences (27), single-cell genome sequences
(23), and run through alignment, culling, and inference with FT_pipe. Taxa with identical alignments
were removed with RAxML v 8.2.8 (85) using default settings, and the final tree was inferred using
FastTree2 (88). For putative candidate phylum (CP) genomes, taxonomy was also evaluated by examining
the taxonomic identification for each of the predicted protein sequences after a BLASTP search against
the NCBI nr database. After the BLAST search, the number of assignments to the dominant one or two
taxonomic names, along with the number of assignments to “uncultured bacterium,” was plotted for
each genome according to the bit score quartile (Fig. S3). Quartiles were determined in R using the
summary function. Bin 56 has two ribosomal protein operons on scaffold_2719/Ga0113622_1153 and
scaffold_21777/Ga0113622_1009. In the ribosomal protein tree, the former placed the organism in the
Planctomycetaceae, while the latter (which was much smaller) placed the organism in CP WS3. The
majority of BLASTP annotations to the nr database matched Planctomycetaceae taxa, as did the 16S rRNA
gene sequences found in the genome, so the Bin 56 organism was designated a Planctomycetes and not
WS3 and excluded from this study. The 16S rRNA gene from Bin 50 was also used to infer taxonomic
identity using an established phylogeny for the WS3 clade (68) and relevant outgroups. The Bin 50
sequence was subjected to a BLAST search against the GreenGenes database (December 2013) with
megablast, and since many of the top hits belonged to the PAUC34f clade, these were included with the
sequences from Farag et al. (68). Alignment, culling, and inference were completed with FT_pipe. Node
labels were constructed with the newick utilities (90) script nw_rename.

Metabolic reconstruction. After binning, genomes were submitted individually to IMG (Integrated
Microbial Genomes) (91) for annotation. Genome accession numbers are in Table 1, and all are publically
available. Metabolic reconstruction found in Fig. S5 to S7 and in Table S1 and Fig. S11 to S13 at
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http://thethrashlab.com/publications came from these annotations and inspection with IMG’s analysis
tools, including Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway assignments and trans-
porter predictions. Transporters highlighted for dissolved organic matter (DOM) uptake were identified
based on information at the Transporter Classification Database (92). Carbohydrate-active enzymes
(CAZymes) were predicted using the same routines as those in operation for the updates of the
carbohydrate-active enzymes database (http://www.cazy.org) (93).

RPKM abundance of taxa and genes. Abundance of taxa within the sample was quantified by
evaluating mapped reads using RPKM (reads per kilobase per million) normalization (94) according to
Aij � (Nij/Li) � (1/Tj), where Aij is the abundance of bin i in sample j, Nij is the number of reads that map
to bin from sample j, Li is the length of bin i in kilobases, and Tj is the total number of reads in sample
j divided by 106. These values were generated for all bins, with only the data for the 20 uncultivated bins
reported here. All contigs within a given bin were artificially concatenated into “supercontigs” prior to
mapping. Nij was generated using the samtools (80) idxstats function after mapping with BWA. The data
in Fig. S7 were created by summing (Nij/Li) for groups of taxa defined in Table S1 at http://thethrashlab
.com/publications prior to multiplying by (1/Tj). RNA coverage was used to evaluate both bin and gene
activity for all bins. Mean coverage for each supercontig was calculated using bedtools (95), and bins
were assigned a rank from lowest mean recruitment to highest mean recruitment. Bins with particularly
high or low activity (transcript abundance) relative to their abundance (genome abundance) were
identified using rank residuals, which were calculated as follows. On a plot of DNA coverage rank versus
RNA coverage rank, residuals for each bin or gene were calculated from the identity. As the rank residuals
followed a Gaussian distribution, bins with a residual that was �1 standard deviation (SD) from the rank
residual mean were classified as having higher-than-expected transcriptional activity; bins with a residual
that was �1 SD from the mean were classified as having lower-than-expected transcriptional activity.
RPKM values were also calculated for every gene in every bin analogously to that for bins, using RNA
mapping values extracted with the bedtools multicov function. Sample E2 was omitted from gene-
specific calculations as only 4,588 transcriptomic reads mapped successfully from this sample, compared
to �100,000 from other samples. Of 140,347 genes, 17,827 had no evidence of expression in any sample
and so were removed from further analysis. A total of 3,840 genes recruited reads in all remaining
samples. All calculations are available in Table S1 at http://thethrashlab.com/publications or the R
markdown document Per.gene.RPKM.Rmd in supplemental information. Table S1 at http://thethrashlab
.com/publications includes only analyzed data for the uncultivated bins reported in this study. Note that
RPKM values indicate abundance measurements across a small number of samples. While we can
evaluate the relative expression of genes for those samples, our data set lacks sufficient power to
evaluate estimates of significance in differential expression.

nrfA sequence assessment. Initial annotation of our bins identified putative homologs to the nrfAH
genes associated with dissimilatory nitrite reduction to ammonia. Since nrfA-type nitrite reductases can
be misannotated due to homology with other nitrite reductases, annotation for these genes was curated
with phylogenetic analysis using known nrfA genes (38) obtained via A. Welsh (personal communication).
Alignment, culling, and inference were completed with the FT_pipe script. The tree was rooted on the
designated outgroup octaheme nitrite reductase sequence from Thioalkalivibrio nitratireducens ONR.
Node labels were constructed with the newick utilities (90) script nw_rename. Visualization of the
alignment (Fig. S8B and C) to confirm the presence of the first CXXCK/CXXCH and highly conserved
KXQH/KXRH catalytic site was completed with the MSAViewer (96) online using the unculled nrfA
alignment as input.

SFam homology searches. To identify group-specific expansions in particular gene families, we
performed a homology search of all predicted protein-coding sequences in each bin against the Sifted
Families (SFam) database (41) using hmmsearch (HMMER 3.1b [97]) with default settings except for the
utilization of 16 CPUs per search.

Accession numbers. Sequence read data are available at the NCBI SRA repository under the
BioSample accession numbers SAMN05791315 to SAMN05791320 (DNA) and SAMN05791321 to
SAMN05791326 (RNA).

Additional supplemental information. Table S1, scripts, workflows, and key files, including fasta
files for each tree, are available at the Thrash Lab website: http://thethrashlab.com/publications.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.01017-17.
TEXT S1, DOCX file, 0.1 MB.
FIG S1, PDF file, 0.4 MB.
FIG S2, PDF file, 0.5 MB.
FIG S3, PDF file, 0.01 MB.
FIG S4, PDF file, 0.1 MB.
FIG S5, PDF file, 0.03 MB.
FIG S6, PDF file, 0.04 MB.
FIG S7, PDF file, 0.01 MB.
FIG S8, PDF file, 0.1 MB.
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