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aMaIAGE, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
bMODAL, Inria Lille Nord Europe, Lille, France

Abstract

A novel algorithm for performing inference and/or clustering in semiparametric

copula-based mixture models is presented. The standard kernel density esti-

mator is replaced by a weighted version that permits to take into account the

constraints put on the underlying marginal densities. Lower misclassification

error rates and better estimates are obtained on simulations. The pointwise

consistency of the weighted kernel density estimator is established under an

assumption on the rate of convergence of the sample maximum.

Keywords: copula, kernel, semiparametric, nonparametric, mixture model,

clustering

1. Introduction

In modern data science, the observations of heterogeneous clusters is not

uncommon. An example is given in [1] where one can observe two heterogeneous

clusters of data points described by blood pressure and medical costs. The first

dimension has a skewed Gaussian distribution and the second a log-normal5

distribution. The first cluster has negative dependency and the second positive

dependency. These data cannot be captured by the standard Gaussian mixture

model. The Student-t mixture model [2][3] is not able to deal with heterogeneous

clusters either.
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Recently more flexible models have been considered. On the one hand, there10

are copula-based methods [4, 5]. Copula-based methods allow for a separate

analysis of the marginals and the dependence structure. They have been suc-

cessfully applied in Pattern Recognition [6], Machine Learning [7], Knowledge

Discovery and Database Management [1]. Copulas allow for concatenating dis-

crete and continuous data, too [8]. In this paper, we only consider continuous15

data.

On the other hand, there are nonparametric methods. Nonparametric meth-

ods do not need to pick parametric families for the component distributions (i.e.,

the distributions of the clusters) but at the cost of assuming independence within

each component [9, 10]. In nonparametric mixture models, the parameters are20

probability density functions, which are estimated by kernel density estimators

embedded in pseudo-EM algorithms [11].

In this paper, following the work in [12], we combine both the copula frame-

work and nonparametric estimation into a single mixture model. This permits

to capture a wide spectrum of dependence structures while avoiding the choice25

of setting up the parametric families for the marginals. However, there is an

important difference between the model of [12] and ours. In the former, the dis-

tributions in the clusters were not allowed to vary in scale. In the latter, change

in scale is possible. This additional degree of freedom induces a structural con-

straint on the component marginal densities of the mixture. The constraint is30

not satisfied by the kernel density estimator used in the algorithm in [12]. How

can we take the constraint into account? Will the inference be improved? To

answer the first question, we have built a random weighted kernel density esti-

mator and proved its pointwise consistency. To answer the second, we compared

the algorithms on simulated and real data.35

The rest of this paper is as follows. We present the models in Section 2.

The first part reviews the paradigms under which one can build mixture models

(Gaussian, copula-based, nonparametric and semiparametric) and the second

part presents the model of interest in this paper. We give the learning algorithms

in Section 3. Section 4 contains the definition and the consistency result for the40
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weighted kernel density estimator. This section is written in a generic framework

and therefore can be read independently. Section 5 and Section 6 contain the

simulation experiments and the real data analysis, respectively. A Summary

closes the paper.

2. Four kinds of mixture models45

2.1. A review of paradigms for mixture models

We consider mixture models of the form

f(x1, . . . , xd) =

K∑
z=1

πzfz(x1, . . . , xd),(1)

where π1, . . . , πK are the proportions of the K components (or clusters) and

f1, . . . , fK are the corresponding densities. The choice of the structure for the

component densities fz specifies the kind of mixture model.

The first kind of mixture model is as follows. One picks a multivariate50

parametric family for the component densities and estimate their parameters

by maximum likelihood through an EM algorithm. In the majority of cases

one usually picks the multivariate Gaussian family, or, perhaps, the multivari-

ate Student-t family. Note that all coordinates of a vector of variables are

distributed according to the same distribution up to their parameters. For55

instance, all the coordinates of a vector distributed according to a Gaussian

mixture model are Gaussian. This is an homogeneity assumption. We refer to

a standard textbook [3] for further details. We note that, to deal with the com-

plex, high-dimensional and noisy data of modern science, reseachers build more

sophisticated models [13, 14, 15, 16, 17]. However, the Gaussian distribution60

remains at the core of statistics and is often used as an important building block

of those [13, 14, 15, 17]. The copula method, presented next, is an interesting

alternative.

The second kind of mixture model arises when one chooses to use the copula
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decomposition for each of the component densities, that is, one writes

fz(x1, . . . , xd) = cz(F1,z(x1), . . . , Fd,z(xd))

d∏
j=1

fj,z(xj),(2)

where cz is the copula density corresponding to fz and f1,z, . . . , fd,z are the

marginals. Here F1,z, . . . , Fd,z are the corresponding (cumulative) distribution

functions. Sklar’s theorem [18, 19] states that for any distribution function Fz

with continuous marginals F1,z, . . . , Fd,z, there exists a function Cz : [0, 1]d →

[0, 1], called the copula, such that

Fz(x1, . . . , xd) = Cz(F1,z(x1), . . . , Fd,z(xd)),(3)

for any (x1, . . . , xd) in the domain of definition of Fz. The decomposition (2) fol-

lows from Sklar’s theorem by differentiation. The copula Cz encodes the depen-65

dence structure of a random vector. One easily checks that Cz is the distribution

function of the random vector (F1,z(X1), . . . , Fd,z(Xd)) if Fz is the distribution

function of (X1, . . . , Xd). Copulas are typically parametrized by considering

families of the form {Cz(·, . . . , ·; θz), θz} for some parameters θz. An example

is given in Section 5. If in (3) Cz(u1, . . . , ud) = u1 · · ·ud, then cz = 1 in (2).70

This means that the variables are independent conditionally on belonging to the

cluster z. In copula-based models, one can choose different parametric families

for the marginals within the same cluster but this heterogeneity property comes

at a price. Indeed, the specification of all the parametric families (there are dK

marginals) can be a daunting task. Estimation of copula-based mixture models75

can be performed by EM or EM-like algorithms [5].

The third kind of mixture model is of nonparametric flavor. In nonparamet-

ric mixture models, one assumes

f(x1, . . . , xd) =

K∑
z=1

πz

d∏
j=1

fj,z(xj).

That is, conditionally on the labels (i.e. conditionally on being in a certain clus-

ter), the variables are assumed to be independent. But, in contrast to copula-

based mixture models, one does not assume parametric marginals. Nonpara-

metric estimation can be performed with kernel density estimators embedded
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in EM-like algorithms [9]. In [9], marginals of the form

fj,z(xj) =
1

σj,z
gj

(
xj − µj,z
σj,z

)
,(4)

where µj,z and σj,z are location and scale parameters, respectively, are also con-

sidered. The case σj,z = 1 and d = 1 was considered in [11]. This work largely

inspired further work on nonparametric mixture models from the kernel den-

sity estimation viewpoint. But nonparametric maximum likelihood estimation80

is also possible if one assumes log-concavity of the component densities [20].

The fourth kind of mixture model combines nonparametric estimation and

copula modeling [12]. It is of the form (1), (2) and (4). In (2), the distribution

functions Fj,z are given by Fj,z(xj) = Gj((xj − µj,z)/σj,z) and

Gj(xj) =

∫ xj

−∞
gj(t) dt.(5)

The model [12] is a particular case where σj,z = 1. The gj (hereafter called

the generators) are estimated in a nonparametric way but the copula is entirely

parametric, thus the term semiparametric used for this kind of models. Inference

can be performed with essentially the same algorithms as in [9, 11] but with an85

additional step for estimating the copula parameters. Algorithm 1 in Section 3

is an example of such algorithms.

2.2. The model of interest

We consider a model of the fourth kind, a so called location-scale semipara-

metric copula-based mixture model of the form

f(x1, . . . , xd;π,µ,σ,g,θ) =

K∑
z=1

πzcz

(
G1

(
x1 − µ1,z

σ1,z

)
, . . . , Gd

(
xd − µd,z
σd,z

)
; θz

)

×
d∏
j=1

1

σj,z
gj

(
xj − µj,z
σj,z

)
,

that is, of the form (1), (2) and (4) where the generators gj , j = 1, . . . , d, satisfy∫
xjgj(xj) dxj = 0(6)
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and ∫
x2jgj(xj) dxj = 1.(7)

Here π = {πz}, µ = {µj,z}, σ = {σj,z}, g = {gj}, θ = {θz}, j = 1, . . . , d,

z = 1, . . . ,K, are the parameters of the model (note that θz can be a multi-90

variate parameter). Note that there is no loss of generality in assuming a unit

variance in (7). Indeed, if the variance would be σ2
j , say, then we could find a

unique reparametrization (given by g̃j(xj) = σjgj(σjxj) and σ̃j,z = σjσj,z) so

that (7) would be true. The copulas are parametrized by vectors θz. No specific

parametric families are assumed for the generators.95

3. Estimation

Given the model of interest in Section 2.2, one needs to estimate the pro-

portions πz, locations µj,z, scales σj,z, generators gj and copulas parameters

θz for z = 1, . . . ,K and j = 1, . . . , d. Note that the estimates of the distri-

bution functions Gj can be computed through (5). The sample is denoted by100

(x
(i)
1 , . . . , x

(i)
d ), i = 1, . . . , n. Two learning algorithms are presented in this sec-

tion. Algorithm 1, is essentially the same as that in [12], which itself is inspired

from the algorithms in [9, 11]. Hence we do not consider that Algorithm 1 is a

contribution of the paper. The contribution is Algorithm 2.

3.1. Description of the learning algorithms105

Building upon the work of [9, 11, 12], the most natural algorithm one can

build is Algorithm 1. Algorithm 1 requires initial estimates π0
z , µ

0
j,z, σ

0
j,z, g

0
j , θ

0
z

and then produces a sequence πtz, µ
t
j,z, σ

t
j,z, g

t
j , θ

t
z, for t = 1, 2, . . . until some

stopping criterion has been reached. The first step is similar to the E step of any

EM algorithm. The second step is also similar to the EM algorithm for Gaus-110

sian mixture models: the parameters are updated by computing weighted means

where the weights wti,z relate the observations to their probabilities of belonging

to the given clusters. The third step is similar to the computations undertaken
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Algorithm 1

Given initial estimates π0
z , µ

0
j,z, σ

0
j,z, g

0
j , θ

0
z and for t = 1, 2, . . . (until some stop-

ping criterion has been reached), follow the steps below.

1. Compute (for i = 1, . . . , n and z = 1, . . . ,K)

wti,z =

πtzcz

{
Gt1

(
x
(i)
1 −µ

t
1,z

σt1,z

)
, . . . , Gtd

(
x
(i)
d −µ

t
d,z

σtd,z

)
; θtz

}∏d
j=1

1
σtj,z

gtj

(
x
(i)
j −µ

t
j,z

σtj,z

)
∑K
z=1 π

t
zcz

{
Gt1

(
x
(i)
1 −µt1,z
σt1,z

)
, . . . , Gtd

(
x
(i)
d −µ

t
d,z

σtd,z

)
; θtz

}∏d
j=1

1
σtj,z

gtj

(
x
(i)
j −µtj,z
σtj,z

)
2. Process through the following steps (j = 1, . . . , d, z = 1, . . . ,K).

(a) Update the cluster proportions

πt+1
z =

1

n

n∑
i=1

wti,z.

(b) Update the location parameters

µt+1
j,z =

∑n
i=1 x

(i)
j wti,z∑n

i=1 w
t
i,z

.

(c) Update the scale parameters

(σt+1
j,z )2 =

∑n
i=1(x

(i)
j − µ

t+1
j,z )2wti,z∑n

i=1 w
t
i,z

.

3. To update the generators, proceed through the following steps (j =

1, . . . , d).

(a) Generate a random variable Z(i) from Multi(wti,1, . . . , w
t
i,K),

(b) Define x̃ij = (xij − µtj,Z(i))/σ
t
j,Z(i) .

(c) Update the generators

gt+1
j (xj) =

1

nhj

n∑
i=1

K

(
xj − x̃(i)j

hj

)
(8)

4. Update the copula parameters (z = 1, . . . ,K)

θt+1
z = arg max

θz

∑
i

wti,z log cz

Gt+1
1

(
x
(i)
1 − µ

t+1
1z

σt+1
1,z

)
, . . . , Gt+1

d

x(i)d − µt+1
dz

σd,z

t+1
 ;θz


7



in [11]. Given the data x
(i)
j and given the weights computed at the t-th itera-

tion, one generates a random label Zi ∈ {1, . . . ,K} according to a multinomial115

distribution Multi(wti,1, . . . , w
t
i,d). One then standardizes the data according to

these simulated labels, that is, builds a pseudo-sample x̃
(1)
j , . . . , x̃

(n)
j and con-

structs a kernel density estimator on the top of it for updating the generators.

The kernel density estimator can be constructed by following the guidelines as

those in a standard textbook [21]. In (8), the kernel is denoted by K and the120

bandwidth by hj . Thanks to a straightforward extension of Lemma 1 in [11],

one has that, at each iteration t of the algorithm, x̃
(1)
j , . . . , x̃

(n)
j is a sample

from gtj and therefore the choice of the bandwidth can be based on that sam-

ple. Finally in the last step, one maximizes a pseudo-likelihood for the copula

parameters. See [12] for more details about this step. Algorithm 1 empirically125

has been found to perform well on simulations (see Section 5) whenever one is

concerned with the estimation of the parameters for their own sake. However,

when one is interested in the task of clustering instead, Algorithm 1 appears to

have no greater value than a standard Gaussian mixture model. See Figure 1

and Section 5.130

Interestingly, one can improve on Algorithm 1 by taking the inherent struc-

ture of the model into account. Note that in Algorithm 1 the estimator of the

generators is not a generator itself. That is, (6) and (7) hold true but in general∫
xjg

t+1
j (xj) dxj = 0 and

∫
x2jg

t+1
j (xj) dxj = 1(9)

do not. By letting the estimators gt unconstrained in spite of (6) and (7), in-

formation may be lost. To overcome this problem, we propose to base inference

on Algorithm 2. Algorithm 2 takes into account the inherent constraints of the

model by replacing the standard kernel density estimator (8) by a weighted ver-

sion (10) satisfying the constraints at each iteration of the algorithm. The proof135

of pointwise consistency of the weighted kernel density estimator are postponed

to Section 4.

Algorithm 2 proceeds as follows. First one follows the instructions of Al-

gorithm 1 till the construction of the pseudo-samples x̃
(i)
j . Then one solves an

8



Algorithm 2

1. Follow the steps 1 and 2 in Algorithm 1.

2. Generate the random labels Z(i) ∼ Multi(wti,1, . . . , w
t
i,K) and build the

pseudo-sample x̃ij = (xij − µtj,Z(i))/σ
t
j,Z(i) as in Algorithm 1.

3. Compute

M̂n,j =


1 · · · 1

x̃
(1)
j · · · x̃

(n)
j

[x̃
(1)
j ]2 · · · [x̃

(n)
j ]2

 , and bn,j =


1

0

1− h2j

 .

4. Solve the optimization problems

min
p∈Rn

‖p‖22

such that

 M̂n,jp = bn,j

p ≥ 0,

and denote the solutions by p̃j = (p̃
(1)
j , . . . , p̃

(n)
j ).

5. Follow step 3 of Algorithm 1 but substitute (8) for

gt+1
j (xj) =

1

hj

n∑
i=1

p̃
(i)
j K

(
xj − x̃(i)j

hj

)
(10)

6. Follow step 4 of Algorithm 1 to update the copula parameters.
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optimization problem for each marginal to get the weights of an adaptive kernel140

density estimator which, at each iteration of the algorithm, satisfies the con-

straints (9) (see Section 4). The optimization problem is convex and easy to

solve. Consistency of the resulting estimator is studied in Section 4. Finally,

once the marginals have been updated, a last step is added to estimate the

copula parameters, as in Algorithm 1.145

3.2. Heuristics underlying the learning algorithms

Increase of the log-likelihood

The two learning algorithms of Section 3.1 are designed to increase the log-

likelihood of the data. They start as the standard EM algorithm. In particular,

the E step of the EM algorithm and Step 1 of Algorithm 1 are the same. In

the M step of the EM algorithm, at each iteration t, one can always write the

objective function, given by

∑
z

∑
i

wti,z log cz

[
G1

(
x
(i)
1 − µ1z

σ1,z

)
, . . . , Gd

(
x
(i)
d − µdz
σd,z

)
; θz

]
(11)

+
∑
z

∑
i

wti,z


d∑
j=1

log

[
1

σj,z
gj

(
x
(i)
j − µj,z
σj,z

)]
+
∑
z

∑
i

wti,z log πz,

where wi,z are the weights calculated at the E step. The heuristic is to find

values of πz, µj,z, σj,z, gj , θz at which the objective function is high. For πz, the

solution is standard and independent of the other parameters: it is the formula150

in Step 1 of Algorithm 1. For the other parameters, we use the following tricks.

If updates µt+1
j,z , σ

t+1
j,z , g

t+1
j were available, then they could be plugged in

to the first term in (11), which in turn could be maximized over θz. To get

the updates µt+1
j,z , σ

t+1
j,z , g

t+1
j , one tries to “maximize” the second term in (11).

But what does it mean to “maximize” the second term? A method of [11] is155

used. By the decoupling of the marginals, we are left with d univariate problems

similar to those of [11]. Their idea consists of updating the location parameters

µj,z (the scale parameters σj,z were assumed to be one) by proceeding as if the

10



generators gj were Gaussian, leading to the formula in Step 2 (b) in Algorithm 1.

Once updates µt+1
j,z have been obtained, they go on by proposing an elegant way160

of updating the generators gj : this is Step 3 of Algorithm 1. Note that step 2 (c)

of Algorithm 1 simply incorporates the estimation of the scale parameters σj,z

in a straightforward way. The novelty of Algorithm 2 is to replace the standard

kernel density estimator of Algorithm 1 by a new one that satisfies identifiability

constraints and is consistent, as shown in Section 4.165

Let us come back to the “as if the gj were Gaussian” argument mentioned

above. Although the original authors [11] did not mention the following ar-

gument, this “Gaussian trick” can be supported for densities symmetric about

zero. Indeed, maximization over µj,z of the second term in (11) is tantamount

to solving170 ∑
i,z

g′j(x
(i)
j − µ)

gj(x
(i)
j − µ)

wti,z = 0.

Now, if gj is symmetric and hence an even function, then g′j/gj is an odd function

and odd functions are quite close to the identity function around zero because

the terms of even order in Taylor expansions are zero themselves exactly. Thus,

up to quadratic approximation, and assuming that the data observations are

tightly concentrated around their mean value within each cluster, the formula175

in Step 2 (b) is approximately correct.

Initialization of the algorithms

To get initial values π0
z , µ

0
j,z, σ

0
j,z, g

0
j , θ

0
z , one can proceed as follows. A k-

means algorithm is run and the returned centers provide values for the location

parameters µ0
j,z. The returned partition of the data is used to estimate the180

remaining parameters. The proportions of the returned clusters provide values

for the proportion parameters π0
z . The standard errors of the clusters provide

values for the scale parameters σ0
j,z. The estimation of the generators g0j is

based on the shuffle of all the K standarized samples. That is, one builds

the sample {(x(i)j − µ0
j,z)/σ

0
j,z}i,z and performs kernel density estimation on185

it to get an estimate for g0j . Finally, copula parameters θ0z are estimated by

11



standard methods [22, 23], cluster by cluster. Note that, as with the standard

EM algorithm, Algorithm 1 and Algorithm 2 may depend on the initialization.

It is therefore advisable to test as many starting points as possible.

Check of convergence190

The convergence of Algorithm 1 and Algorithm 2 is checked visually. Since

the likelihood contains all the information about the parameters, we check that

the log-likelihood has increased until stabilization, in average. “In average”

means that one must take into account the inherent randomness of the algo-

rithms, which is why the check is done visually. Practically, we set a large195

number of iterations, let the algorithms run, and inspect the plot afterwards.

If the log-likelihood has not stabilized around a mean value, we increase the

number of iterations. Examples are given in Section 5 and Section 6.

4. Kernel density estimation under moment constraints

We consider the problem of estimating the common density g of indepen-200

dent random variables X1, . . . , Xn. We assume that g verifies the regularity

conditions in Assumption 1

Assumption 1. The density g is continuous on R, symmetric about zero and

obeys ∫
x2g(x) dx = 1 6=

∫
x4g(x) dx <∞.

Note that the assumed symmetry implies∫
xg(x)dx = 0.

Continuity is a standard assumption to ensure pointwise consistency of the

standard kernel density estimator [24] and the Nadaraya-Watson estimator [25].

The condition on the moment of second order stems from the structure of the205

model in Section 2.2. The moment of fourth order must have a different value

than that of the moment of second order to ensure the convergence of a certain

12



quantity (see the proof of Theorem 1 for details). We view this rather as a

technical condition. For instance if g were the Gaussian density, its variance

would have to be not equal to 1/3.210

As explained in Section 3, our aim is to construct an estimator ĝ that obeys∫
xĝ(x) dx = 0, and

∫
x2ĝ(x) dx = 1.(12)

We define the estimator

ĝ(x) =

n∑
i=1

p̂n,iKhn(Xi − x)(13)

where Khn(y) = K(y/hn)/hn is a kernel depending on a positive sequence

hn and where p̂n = (p̂n,1, . . . , p̂n,n)′ (throughout ′ stands for the transpose

operation) is the unique solution of the random optimization problem

min
p∈Rn

‖p‖22(14)

such that

 M̂np = bn

p ≥ 0,
(15)

where p = (p1, . . . , pn)′ and

M̂n =


1 · · · 1

X1 · · · Xn

X2
1 · · · X2

n

 , and bn =


1

0

1− h2n

 .

Each p̂n,i is a function of the random sample. For each realization of the sample,

the optimization problem (14) is convex and hence admits a unique solution

which is denoted by p̂n. The constraint (15) ensures that ĝ satisfies (12). Indeed,

elementary calculations show that (12) holds if and only if

n∑
i=1

p̂n,iXi = 0 and

n∑
i=1

p̂n,iX
2
i = 1− h2n,

respectively. The constraints
∑
i p̂n,i = 1 and p̂n,i ≥ 0, i = 1, . . . , n, must

always hold to ensure that ĝ is a density.

As soon as n > 3 the system M̂np = b has infinitely many solutions and

hence there are infinitely many estimators that satisfy (12). We chose to pick
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the closest one to the standard kernel density estimator. The standard kernel

density estimator is an estimator of the form (13) where p̂n,i = 1/n, and the

solution of

min
(p1,...,pn)

E

∫
(

n∑
i=1

piKhn(Xi − x)− g(x))2 dx.

In our case, we cannot set p̂n,i = 1/n because the constraint (15) would not be

satisfied. But we can project (1/n, . . . , 1/n) onto the feasible space given in (15),

which amounts to solve the optimization problem (14) because minimizing ‖p‖2215

is the same as minimizing ‖p− e‖2, where e = (1, . . . , 1)′. Thus, the minimiza-

tion of ‖p‖2 is a heuristic justified by an analogy. Moreover, even though one

can imagine other criteria [26] for choosing p, the choice of the euclidean norm

is the easiest from a theoretical and computational point of view.

Having defined the estimator in (13), it is natural to require at least point-220

wise consistency. The issue resides in the constraint p ≥ 0. Without such a

constraint, Lemma 1 states that the solution of the optimization problem is

explicit and yields a consistent estimate. In the presence of the constraint, The-

orem 1 states that consistency can be achieved under a condition on the tail of

the underlying density.225

Theorem 1. Suppose Assumption 1 holds. If hn → 0, nhn → ∞ and there

exist constants an > 0, bn ∈ R such that n−1/4an → 0, hnan → 0, n−1/4bn → 0,

hnbn → 0 and

a−1n (max{X1, . . . , Xn} − bn)(16)

converges in distribution, then the estimator (13) is pointwise consistent.

The conditions hn → 0 and nhn → ∞ are necessary to ensure pointwise

convergence of the standard kernel density estimator [21]. The condition (16)

is standard in extreme value theory [27]. The conditions n−1/4an → 0 and

n−1/4bn → 0 state that the rate at which the sample maxima grows to infinity230

must not be too fast. The conditions hnan → 0 and hnbn → 0 state that

the rate at which the sample maxima grows to infinity must be smaller than
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the rate at which the bandwidth hn vanishes. If hn is the optimal bandwidth,

that is if hn ∝ n−1/5, then the conditions n−1/4an → 0 and n−1/4bn → 0

are automatically satisfied. Example 1 and Example 3 give distributions which235

satisfy these conditions. Example 2 is a counter-example. Example 1 and

Example 2 are drawn from [28], p. 153–157. The computation of the normalizing

constants in Example 3 is given in the Appendix.

Example 1. Let hn ∝ n−1/5. The Gaussian distribution (2π)−1/2 exp(−x2/2),

x ∈ R, satisfies the conditions in Theorem 1 with

an = (2 log n)−1/2, bn =
√

2 log n− log(4π) + log log n

2(2 log n)1/2

Example 2 (Counter-example). The Cauchy distribution g(x) = [π(1+x2)]−1,

x ∈ R, does not satisfy the conditions in Theorem 1. Indeed, in addition to240

have infinite variance, the normalization constants are given by an = n/π and

bn = 0. The sequence (an) does not verifies n−1/4an → 0.

Example 3. Let hn ∝ n−1/5. The Laplace distribution g(x) = exp(−|x|/b)/(2b),

b > 0, x ∈ R, satisfies the conditions in Theorem 1 with an = b and bn =

b log(n/2).245

5. Computer experiments

In this section, we wish to compare Algorithm 1 (hereafter called cKDE for

convenience) and Algorithm 2 (fKDE) in terms of the quality of the obtained es-

timates. The standard Gaussian Mixture Model (GMM) was also implemented

as a benchmark.250

We generated 500 datasets of size n = 300, 500, 700, 900 according to the

following data generating process. The number of clusters was set to K = 3

and their proportion parameters were all set of equal value. The Frank family

of bivariate copulas, given by

Cθz (u, v) =

 −
1
θz

log
(

1 + (e−θzu−1)(e−θzv−1)
(e−θz−1)

)
, if θz ∈ (−∞,∞) \ {0},

uv, if θz = 0.
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was chosen for all of the three copulas. The parameters were θ1 = −3.45, θ2 =

3.45 and θ3 = 0, corresponding to negative, positive and null dependence levels,

respectively. The generators for the marginals along the first, resp. second,

axis (g1, resp. g2), were a normal, resp. a Laplace, distribution with zero

mean and unit variance. The three clusters had means (µ1,1 = −3, µ2,1 = 0),255

(µ1,2 = 0, µ2,2 = 3) and (µ1,3 = 3, µ2,3 = 0) respectively. The scale parameters

along the first, resp. second, axis were set to σ1,1 = 2, σ1,2 = 0.7 and σ1,3 = 1.4,

resp. σ2,1 = 0.7, σ2,2 = 1.4 and σ2,3 = 2.8.

All the three algorithms were run with 100 iterations and initialized accord-

ing to Section 3.1. The kernel and the bandwidth selection method used for260

building the kernel density estimators were the Gaussian kernel and the method

given by (3.30) in p. 47 of [21]. That is, the bandwidth is 1.06An−1/5, where A is

the minimum between the standard deviation of the data and, the interquartile

range divided by 1.34.

In order to compare the algorithms, we computed the mean absolute errors,265

that is, the differences in absolute value between the true parameters and the es-

timates. These were averaged over the clusters and the coordinates (if any). For

the generators, the L1 norm was used instead. Only the errors for the location,

scale and proportion parameters were computed for GMM. The misclassifica-

tion rate was computed, too. All these error measures can be computed at each270

iteration of the algorithms and averaged over the replications. The results are

shown in Fig. 1.

From a clustering point of view, the three learning algorithms can be com-

pared on the basis of the misclassification error rate in Fig. 1 (f). Both the

semiparametric algorithms perform better than GMM, especially for large sam-275

ple sizes, where nonparametric modeling can express its potential (see Fig. 2).

When the sample size is not so large, cKDE performs much better than fKDE.

This indicates that the new kernel density estimator implemented in cKDE was

a good idea. For larger sample sizes, the difference diminishes.

With regard to estimation, cKDE performs better than fKDE but the differ-280

ence is approximately constant across the sample sizes. Both the semiparametric
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Figure 1: Averaged error values for the various parameters and algorithms in terms of the

sample size.
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Figure 2: Pointwise averaged marginal density estimates along the second axis in the first

cluster for GMM and fKDE. The true underlying density is added for comparison.

algorithms perform better than GMM for the proportion (Fig. 1 (b)), location

(Fig. 1 (c)) and scale (Fig. 1 (d)) parameters in a way that is similar to the

missclassification error. That is, the gain is much more important as the sample

size gets larger.285

The stability of the algorithms was checked by plotting the log-likelihood

and the pointwise averaged error trajectories. Specifically, we focused on the

case n = 300 and inspected the behaviors of the error trajectories across the it-

erations. These are displayed in Fig. 3. In Fig. 3 (f), we see that, in average, the

log-likelihood increases and stabilizes after 20–30 iterations. This is in agree-290

ment with the heuristics discussed in Section 3.2. The log-likelihood of cKDE

is higher than that of fKDE, which is in agreement with the results found in

Figure 1. In the other panels, note that the method with the lowest trajectory

cannot formally be claimed the best because the point at which would converge

the algorithms is unknown. Of course if the sample size is large enough then the295
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Figure 3: Trajectories of the errors (from (a) to (e)) and log-likelihoods (f), averaged over

the replications. The x-line is the number of steps and the y-line the value of the error or

observed log-likelihood.
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true parameter would be close to this point. Thus the error trajectories (except

the log-likelihood) are here only to inspect convergence of the algorithms.

In view of the panels (a), (c) and (d) of Fig. 3, convergence seems to have

been reached after 30 iterations. For the proportion parametres in panel (b),

cKDE seems to have reached convergence while it is less clear for fKDE and300

even GMM. The density generators in panel (e) exhibit a high variability.

To get an idea of the variability of individual trajectories, Fig. 4 shows the

trajectories for the first replication of the experiment under focus.

Finally, we repeated the computer experiment described at the beginning of

this section with two modifications, one at a time. First, in five successive exper-305

iments, the proportion parameters π were set to (1/4, 3/8, 3/8), (1/5, 2/5, 2/5),

(1/6, 5/12, 5/12), (1/7, 6/14, 6/14), (1/8, 7/16, 7/16). Second, a fourth compo-

nent with location parameter (µ1,4, µ2,4) given by (0, 8), (0, 6), (0, 4), (0, 2),

(0, 0) with independent marginals and σ1,4 = σ2,4 = 1 was added. The cluster

proportions were π = (1/4, 1/4, 1/4, 1/4). Note that, since the centers of the310

other clusters are (−3, 0), (0, 3) and (3, 0), the added fourth component gets

closer to the other clusters.

The computed missclassification errors averaged over 100 replications are

shown in Table 1. We see that the missclassification error seems to remain stable

(it exhibits only a very slight increase) as the proportion of observations in the315

first cluster decreases from π1 = 1/4 to 1/6. Thus, there is some robustness in

the clustering in spite of nonparametric estimation.

In general, clustering methods typically perform worst as the amount of

separation between clusters decreases. This is also illustrated in Table 1, where

the error goes from 7-8% to 21-25%. Compared to GMM, the increase of the320

error is not worst for semiparametric copula models.
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Figure 4: Trajectories of the errors (from (a) to (e)) and log-likelihoods (f) for the first

replication. The x-line is the number of steps and the y-line the value of the error or observed

log-likelihood.
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π1 = 1/4 1/5 1/6 µ2,4 = 8 6 4 2 0

algo: cKDE 7 7 8 7 10 12 16 21

fKDE 8 8 9 7 11 11 15 25

GMM 9 10 11 8 11 14 18 23

Table 1: Averaged missclassification error of the computer experiment under eight situations,

in %.

6. Illustrations on real data

6.1. Illustration on the Iris data

We performed two data analyses of the well-known iris data available in the

R software. In the first analysis, we took the first (sepal length) and the third325

(petal length) variables and ran Algorithm 2 for four families of copulas, namely,

the Frank, Clayton, Gaussian copulas and the copula representing independence

between the variables. The convergence of the algorithms was checked by in-

spection of the log-likelihood values, which stabilized after 50 iterations around

-250, -245, -246, -288, for the four copula families, respectively. The missclassi-330

fication errors are given in Table 2. The lowest errors correspond to the highest

likelihoods. In terms of the estimated densities, the difference between the cop-

ulas is depicted in Figure 5. The Frank and Gaussian copulas seem to best fit

the data, in agreement with the results in Table 2.

Frank Clayton Gaussian independence

log-likelihood -250 -245 -246 -288

missclassification error (%) 16 10 8 14

Table 2: Missclassification errors and estimated log-likelihood for the different copula families

In the second analysis, we ran Algorithm 2 with the complete data, that335

is, we fitted a semiparametric copula-based mixture model of dimension d = 4.

Only the Gaussian copula was tested because the other copulas do not generalize

easily in higher dimensions. We let the algorithm run 50 iterations and observed
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(b) Clayton copula
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(c) Gaussian copula
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Figure 5: Isocontours of estimated densities under different copula assumptions: Frank copula

(a), Clayton copula(b), Gaussian copula(c) and independence(d).
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that the log-likelihood seem to have stabilized, see Figure 6(a). The isocontours,

depicted in Figure 6(b) do not differ much from those in Figure 5(c).340
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(b) Isocontours

Figure 6: Results of the semiparametric model for the fit in four dimensions: (a)Log-likelihood

value of the complete Iris data; (b)isocontours of the estimated density, component by com-

ponent (the estimated density is built on the four variables of the iris data and this is the

coordinatewise projection on the first and third variables).

6.2. Illustration on RNA-seq data

The use of high-throughput sequencing technologies to sequence ribonucleic

acid content results in the production of RNA-seq data. From a statistical point

of view, the observations are (realizations of) random variables Yi,j , i = 1, . . . , n,

j = 1, . . . , d, each of which is a measure of the digital gene expression (DGE)345

of the biological entity i (e.g., a gene) for the experimental condition j. For

instance, Yi,j may be the number of reads of the ith gene for the jth condition

aligned to a reference genome sequence. One question of interest deals with the

clustering of DGE profiles [29]. For instance, one may want to discover groups

of co-expressed genes.350

In recent years several clustering methods have been proposed. Poisson

mixture models can be applied but they need to assume that, within a cluster,
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the DGE measures are independent, a very strong assumption. More precisely,

they are of the form [29] f(y;ψ) =
∏n
i=1

∑K
z=1 πzfz(yi;χiz) where fz(yi;χiz) =∏d

j=1

∏rj
l=1 P(yijl;µijlz) and χiz = {µijlz}jl, ψ = {πz, χiz}i,z. Here rj = 1,

j = 1, . . . , d and P denotes the Poisson density. Another approach consists of

applying a transformation Yi,j 7→ Ỹi,j , i = 1, . . . , n, j = 1, . . . , d, so that the

transformed data, or pseudo data, are more appropriate for Gaussian mixture

models [30]. One such transformation [31] is given by

Ỹi,j = log

(
Yi,j/Nj + 1

mi + 1

)
,

where Nj =
∑n
i=1 Yi,j/106 and mi = d−1

∑d
j=1N

−1
j Yi,j . This approach es-

sentially amounts to assuming that the data are Gaussian on a log-scale. The

semiparametric copula-based mixture models permit to relax this assumption.

In this section, we compare the Poisson mixture model of [29], the Gaussian

mixture model and the semiparametric copula-based mixture models with Gaus-355

sian and Frank copulas. The data are high-throughput transcriptome RNA-seq

data [32] downloaded from the companion R package HTSCluster of [29]. We

removed the biological replicates so that d = 2. Estimation in the semipara-

metric copula-based models was performed with Algorithm 2. Estimation in

the Poisson mixture model was performed with the function PoisMixClus of360

the package HTSCluster. All the algorithms were run with a fixed number of

clusters, set to K = 10, corresponding to the number of clusters selected by the

integrated completed likelihood criterion in the analysis performed in [33].

In order the compare the models, we reproduced Fig. 2 of [29]. The bar

heights in Fig. 7 stand for the quantities∑n
i=1 ŵi,zYi,j∑n

i=1 ŵi,z
∑d
j=1 Yi,j

,

each of which, according to [29], can be interpreted as the proportion of reads

that are attributed to condition j in cluster z. The quantities ŵi,z are estimates365

of the probability that the i-th observation belongs to the z-th cluster, estimate

of which depends on the fitted model (Poisson, GMM, or semiparametric copula-

based). Bar widths are proportional to π̂z, the estimated cluster proportions.
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Each bar represents a cluster and each color represents a mean normalized

expression profile, the value of which is given by the bar length of a given color.370

In Figure 7, the results for the Poisson model, the only one which does not take

into account the dependence structure within the clusters, differ from all the

other models. We note that the copula-based semiparametric models are both

similar (compared to the Poisson model) and different from GMM. We take this

as an encouragement for copula-based semiparametric models: there are not375

absurd since similar to GMM; there are potentially of practical interest since

they differ from GMM.

7. Open problems and challenges

Despite the good results of the learning algorithms in Section 5 and Section 6,

there are open problems that need to be addressed to make these algorithms380

fully applicable in practice.

High dimensions

Are Algorithm 1 and Algorithm 2 applicable to a high-dimensional setting?

In principle, the algorithms are written for any dimension d. In practice, how-

ever, two issues make the problem challenging. First, as the dimension increases,385

the number of flexible copula families drops rapidly. Still, there are certain fam-

ilies such as Gaussian copulas, Vines copulas [34] or factor copulas [35] that

might be appropriate. But then one must be able to solve the optimization

problem in Step 4 of the algorithms.

Number of clusters390

An important problem is that of the choice of the number of clusters. To

this end, many criteria write as the observed log-likelihood minus a penalization

term [36, 37, 38, 39]. But it is unclear what the penalization term should be in

semiparametric copula-based mixture models. That said, let us notice that the

observed log-likelihoods between different semiparametric copula-based mixture395
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Figure 7: Cluster profiles for the Poisson mixture model, the Gaussian mixture model and

the semiparametric copula-based mixture models with Frank and Gauss copulas. Each bar

represents a cluster and each color represents a mean normalized expression profile, the value

of which is given by the bar length of a given color. The bar widths are proportional to the

estimated cluster proportions.
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models with the same number of parameters may be compared to at least select

the appropriate copula family.

Identifiability

As of today, identifiability of semiparametric copula-based mixture models

has not been proved. Proving identifiability in general is known to be a difficult400

problem. In fact, even purely parametric copula-based mixture models, such as

those in [5], have not been proved to be identifiable. Identifiability of elliptical

mixtures, hence including Student-t mixtures, was not proved until 2006 [40].

Identifiability, in a weaker sense, of nonparametric mixtures with independence

components under certain assumptions was proved in 2009 [41]. Identifiability405

in the weak sense means that non-identifiable parameters in the strong sense

belong to a subset of Lebesgue measure zero.

From a statistical perspective, that is, from an estimation point of view,

identifiability is an important problem. In this respect, the simulations in Sec-

tion 5 are reassuring: the true parameters with which the data were simulated410

could be recovered.

From a learning perspective, that is, from a clustering point of view, identi-

fiability is less important. For example, it is well known that neural networks

are not identifiable and still have been enjoying success throughout the sciences.

Convergence415

Another important problem is that of checking the convergence of the al-

gorithms given in Section 3.1. The current method is to check visually that

the log-likelihood has increased and stabilized, taking into account the inherent

stochasticity. The problem is that the standard criterion in EM algorithms,

of the form |∇φ
∑
i log f(X

(i)
1 , . . . , X

(i)
d ;φ)| < ε, where ∇φ denotes the gradi-420

ent operator with respect to the parameters φ, is not applicable because of the

inherent randomness of the algorithms. To address this issue, a smooth sum-

mary of the log-likelihood could be considered, as, for instance, its least concave

majorant.
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8. Summary425

We proposed a novel algorithm which permitted to improve the inference

in semiparametric copula-based mixture models in which the marginals have a

location-scale structure. We did this by replacing the standard kernel density

estimator by a weighted one in order to satisfy the inherent constraints of the

model. Pointwise consistency of the estimator was proved under mild assump-430

tions. An application to RNA-seq data and a benchmark dataset (the iris data)

confirmed the ability of the models to fit real data.

Research on copula-based (and hence genuinely multivariate) semiparamet-

ric models has started only recently, and, therefore, many challenges still remain.

A list of important open problems is given in Section 7. Among them stands435

the identifiability problem and the convergence of the algorithms. In fact, with

regard to the last point, even for simpler algorithms such as those in [9, 11, 12],

the convergence properties are still unknown, even though a first step has been

achieved in [42]. Addressing these problems should open the gate for designing

sound convergence check methods and performing model selection (including440

selection of the correct number of clusters) through pseudo-AIC criteria.

Acknowledgment

The authors thank two anonymous referees and an associate editor who made

suggestions that helped to improve this paper.

References445

[1] R. Fujimaki, Y. Sogawa, S. Morinaga, Online heterogeneous mixture mod-

eling with marginal and copula selection, in: Proceedings of the 17th

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’11, ACM, New York, NY, USA, 2011, pp. 645–653.

doi:10.1145/2020408.2020509.450

URL http://doi.acm.org/10.1145/2020408.2020509

29



[2] S. Lee, G. J. McLachlan, Finite mixtures of multivariate skew t-

distributions: some recent and new results, Statistics and Computing 24 (2)

(2014) 181–202.

[3] G. McLachlan, D. Peel, Finite mixture models, John Wiley & Sons, 2004.455

[4] D. Kim, J.-M. Kim, S.-M. Liao, Y.-S. Jung, Mixture of D-vine copulas

for modeling dependence, Computational Statistics & Data Analysis 64

(2013) 1–19. doi:https://doi.org/10.1016/j.csda.2013.02.018.

URL http://www.sciencedirect.com/science/article/pii/

S0167947313000741460

[5] I. Kosmidis, D. Karlis, Model-based clustering using copulas with applica-

tions, Statistics and Computing (2015) 1–21.

[6] A. Roy, S. K. Parui, Pair-copula based mixture models and their ap-

plication in clustering, Pattern Recognition 47 (4) (2014) 1689 – 1697.

doi:https://doi.org/10.1016/j.patcog.2013.10.004.465

URL http://www.sciencedirect.com/science/article/pii/

S0031320313004111

[7] M. Rey, V. Roth, Copula mixture model for dependency-seeking clustering,

in: J. Langford, J. Pineau (Eds.), Proceedings of the 29th International

Conference on Machine Learning (ICML-12), ICML ’12, Omnipress, New470

York, NY, USA, 2012, pp. 927–934.

[8] M. Marbac, C. Biernacki, V. Vandewalle, Model-based clustering of Gaus-

sian copulas for mixed data, Communications in Statistics - Theory and

Methods 46 (23) (2017) 11635–11656. arXiv:https://doi.org/10.1080/

03610926.2016.1277753, doi:10.1080/03610926.2016.1277753.475

URL https://doi.org/10.1080/03610926.2016.1277753

[9] T. Benaglia, D. Chauveau, D. R. Hunter, An EM-like algorithm for semi-

and nonparametric estimation in multivariate mixtures, Journal of Com-

putational and Graphical Statistics 18 (2) (2009) 505–526.

30



[10] P. K. Mallapragada, R. Jin, A. Jain, Nonparametric mixture models for480

clustering, in: Joint IAPR International Workshop, SSPR & SPR 2010,

Vol. 6218, Springer, Hancock, E. R. and Wilson, R. C. and Windeatt, T.

and Ulusoy, I. and Escolano, F., 2010, pp. 334–343.

[11] L. Bordes, D. Chauveau, P. Vandekerkhove, A stochastic EM algorithm for

a semiparametric mixture model, Computational Statistics & Data Analy-485

sis 51.

[12] G. Mazo, A semiparametric and location-shift copula-based mixture model,

Journal of Classification 34 (3) (2017) 444–464.

[13] G. Anderson, A. Farcomeni, M. G. Pittau, R. Zelli, Rectangular latent

markov models for time-specific clustering, with an analysis of the wellbe-490

ing of nations, Journal of the Royal Statistical Society: Series C (Applied

Statistics).

[14] P. Coretto, C. Hennig, Robust improper maximum likelihood: tuning, com-

putation, and a comparison with other methods for robust gaussian clus-

tering, Journal of the American Statistical Association 111 (516) (2016)495

1648–1659.

[15] M. Fop, T. B. Murphy, Variable selection methods for model-based clus-

tering, Statistics Surveys 12 (2018) 18–65.

[16] S. M. McNicholas, P. D. McNicholas, R. P. Browne, A mixture of variance-

gamma factor analyzers, in: Big and Complex Data Analysis, Springer,500

2017, pp. 369–385.

[17] C. Viroli, G. J. McLachlan, Deep gaussian mixture models, Statistics and

Computing (2017) 1–9.

[18] R. B. Nelsen, An introduction to copulas, Springer, 2006.
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Computation of the normalizing constants in Example 3

From [28], p. 155, we know that

[E(cnx+ dn; 1/b)]n → Λ(x), n→∞, x > 0,

where E(x; 1/b) = 1 − exp(−x/b), b > 0 is the distribution function of the

exponential distribution, Λ(x) = exp(−e−x) is the distribution function of the

Gumbel distribution and cn = b, dn = b log n. Let L(x; b) = exp(x/b)/2, x > 0,

be the distribution function of the Laplace distribution on the positive real line.

Let an = cn, bn = dn − b log 2 and x > 0. By identification of the binomial

coefficients in the binomial theorem, we have

[L(anx+ bn)]n = [E(cnx+ dn)]n → Λ(x),

meaning that an = b and bn = b log(n/2) are the appropriate constants. If

x < 0, the same formula applies because anx+ bn →∞.585

Proof of Theorem 1

Theorem 1 shall be proved by first considering the optimization problem (14)–

(15) without the constraint p ≥ 0. (This shall be called the simplified optimiza-

tion problem.) Throughout the proofs, the bandwidth sequence hn is simply

denoted by h.590

Lemma 1. Let n ≥ 3. If h → 0 and nh → 0 then the solution p̂n of the

simplified problem

min
p
‖p‖22(.1)

such that
{
M̂np = bn(.2)

obeys

p̂n =p̃n −
(I − H̃n)X2

X2′(I − H̃n)X2
(X2′p̃n − 1 + h2)(.3)

p̃n =
X2e−XX

n(X2 −X2
)

(.4)
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where H̃n = M̃ ′n(M̃nM̃
′
n)−1M̃n is the projection matrix on the space spanned by

e, X = (X1, . . . , Xn), X = n−1
∑n
i Xi, and X2 = n−1

∑n
i X

2
i . Moreover, the

estimator (13) with p̂n as in (.1)– (.2) is pointwise consistent.

Proof of Lemma 1. Since the distribution of Xi has no atom at zero, one

has

P (∀y ∈ R3, M̂ ′ny 6= 0 or y = 0) = 1,

meaning that M̂ ′n has full rank with probability one. Since n ≥ 3 this rank must

be three. Hence M̂nM̂
′
n has full rank equal to three and therfore is invertible.

The optimization problem is convex hence there is a unique solution p̂n whose

expression is easily found: the Lagrangian writes p′p − λ(M̂n − bn) for some

λ > 0 and by equating its gradient to zero we get

p̂n = M̂ ′n(M̂nM̂
′
n)−1bn(.5)

(and λ = 2(M̂nM̂
′
n)−1bn).

In order to obtain the desired formulas (.3) and (.4) it is convenient to

introduce

M̃n =

 1 · · · 1

X1 · · · Xn

 and X2 =


X2

1

...

X2
n

 .

so that we have the decompositions by blocks:

M̂n =

M̃n

X2′

 and M̂nM̂
′
n =

M̃nM̃
′
n M̃nX

2

X2′M̃ ′n X2′X2

 .

Let H̃n = M̃ ′n(M̃nM̃
′
n)−1M̃n be the projection matrix onto the linear space

spanned by the rows of M̃n. With this notation, we have

[M̂nM̂
′
n]−1 =

(M̃nM̃
′
n)−1 +

(M̃nM̃
′
n)
−1M̃nX

2X2′M̃ ′n(M̃nM̃
′
n)
−1

X2′(I−H̃n)X2

−(M̃nM̃
′
n)
−1M̃nX

2

X2′(I−H̃n)X2

−X2′M̃ ′n(M̃nM̃
′
n)
−1

X2′(I−H̃n)X2

1

X2′(I−H̃n)X2


Decomposing bn = (b̃′n, 1−h2)′ and applying formula (.5) then yields (.3) with595

p̃n = M̃ ′n(M̃nM̃
′
n)−1b̃n, this last equality being equivalent to (.4).
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We now introduce an intermediate lemma in order to facilitate the study of

remainder terms which shall appear in the proof of consistency.

Lemma 2. Let (Zn,1, . . . , Zn,n) be i.i.d. random variables defined on the same

probability space as X1, . . . , Xn. They are assumed to obey n−1
∑n
i=1 Zn,iX

k
i →

ck, k = 0, 1, 2, in probability as n→∞ where ck is some real constant. Then

1

n
X2′(I − H̃n)Zn

P→ c2 − c0, n→∞,

where Zn = (Zn,1, . . . , Zn,n)′.

Proof of Lemma 2. Write

1

n
X2′(I − H̃n)Zn =

1

n

n∑
i=1

X2
i Zn,i −

1

n
X2′M̃ ′nn(M̃nM̃

′
n)−1

1

n
M̃nZn

P→ c2 − c0.

To see why the limit holds, note that n(M̃nM̃
′
n)−1 converges elementwise to the600

identity matrix.

We now prove the consistency statement of Lemma 1. We have ĝ(x) = g̃(x)+

ĝ(x) − g̃(x) with g̃(x) =
∑n
i=1 p̃n,iKh(x −Xi) and ĝ(x) − g̃(x) =

∑n
i=1(p̂n,i −

p̃n,i)Kh(x −Xi). Using (.4) and
∑n
i=1XiKh(x −Xi)/

∑n
i=1Kh(x −Xi) → x,

we easily get that g̃(x)→ g(x) in probability. Now using (.4)–(.5) and Lemma 2

we also get

ĝ(x)− g̃(x) =
X2′p̃n + 1− h2

X2′(I − H̃n)X2
X2′(I − H̃n)K

P→ 0,

where K = (Kh(x−X1), . . . ,Kh(x−Xn))′. The proof of Lemma 1 is complete.

Proof of Theorem 1. In this proof, the symbol p̂n stands for the solution

of the optimization problem (.1)–(.2), that is, without the positivity constraint,

and the symbol p̂+
n stands for the solution of the optimization problem (14)–

(15), that is, with the positivity constraint. In view of Lemma 1, it is sufficient

to show that

P (p̂n,i ≥ 0, i = 1, . . . , n)→ 1, n→∞,

37



because, by definition of the optimization problems, this implies that

P (p̂n,i = p̂+n,i, i = 1, . . . , n)→ 1

and therefore that the estimators are equal with probability tending to one.605

We write

p̂n,i = p̃n,i

(
1 +

p̂n,i − p̃n,i
p̃n,i

)
and the proof will be complete if (i) P (p̃n,i ≥ 0, i = 1, . . . , n) → 1 and (ii)

|(p̂n,i− p̃n,i)/p̃n,i| can be bounded above by a quantity which would not depend

on i and would vanish asymptotically.

We first show (i). We have

|np̃n,i − 1| =

∣∣∣∣∣X
2 −XXi

X2 −X2

∣∣∣∣∣ ≤
∣∣∣∣∣ X

2

X2 −X2

∣∣∣∣∣+

∣∣∣∣ X

X2 −X2 ana
−1
n Xi

∣∣∣∣ .
The first term in the right hand side is a OP (n−1) and does not depend on i.

Now

|a−1n Xi| ≤ ∨i |a−1n Xi|

=max{∨ia−1n Xi,∨i − a−1n Xi}

=max{∨ia−1n (Xi − bn),∨i − a−1n (Xi + bn)}+ a−1n bn,

where ∨iXi is a compact notation for max{X1, . . . , Xn}. By assumption, ∨ia−1n (Xi−

bn) converges in distribution. By symmetry, so does ∨i − a−1n (Xi + bn). Hence,

by the continuous mapping theorem, the maximum of ∨ia−1n (Xi − bn) and

∨i − a−1n (Xi + bn) converges in distribution. Thus

|np̃n,i − 1| ≤
∣∣ X

2

X2 −X2

∣∣+
∣∣ X

X2 −X2 an
∣∣|max{∨ia−1n (Xi − bn),∨i − a−1n (Xi + bn)}+ a−1n bn|

=OP (n−1) +OP (n−1/2an)(OP (1) + a−1n bn).

The bound does not depend on i and vanishes asymptotically in probability by

assumption on the sequences an and bn. This is enough to conclude that (i)610

holds with probability tending to one.
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We finally show (ii). It is convenient to introduce Lemma 3 the proof of

which is deferred to the end of this Section.

Lemma 3. Let vn be a positive sequence satisfying v−1n → 0, v−1n an → 0,

v−1n bn → 0. There exist random quantities An, Bn, Cn, Dn, En such that, as n→

∞, An is OP (v−2n ), Bn, Cn, Dn are OP (v−1n ), En tends to a nonzero constant

in probability, P (DnXi + En > 0, i = 1, . . . , n)→ 1 and

p̂n,i − p̃n,i
p̃n,i

=
AnX

2
i +BnXi + Cn
DnXi + En

(.6)

In view of .6, one has∣∣∣ p̂n,i − p̃n,i
p̃n,i

∣∣∣ ≤ |An| ∨ni=1 X
2
i + |Bn| ∨ni=1 Xi + |Cn|

En − ∨ni=1 −DnXi
(.7)

(we used the fact that min{y1, . . . , yn} = −max{−y1, . . . ,−yn} for the denom-

inator). By assumption and by symmetry, both ∨ni=1Xi and ∨ni=1 − Xi are

OP (an) + bn and by assumption on vn,

v−2n ∨ni=1 X
2
i =

[
max(v−1n ∨ni=1 Xi, v

−1
n ∨ni=1 −Xi)

]2 P→ 0.

Hence the numerator in (.7) is oP (1). The denominator equals En+Dn∨ni=1Xi

if Dn < 0 and equals En−Dn∨ni=1−Xi if Dn > 0. Either way, the denominator

tends to a constant in probability and ∣∣∣ p̂n,i − p̃n,i
p̃n,i

∣∣∣ ≤
max

{
|An| ∨ni=1 X

2
i + |Bn| ∨ni=1 Xi + |Cn|

En +Dn ∨ni=1 Xi
,
|An| ∨ni=1 X

2
i + |Bn| ∨ni=1 Xi + |Cn|

En −Dn ∨ni=1 −Xi

}
.

This upper bound does not depend on i and vanishes asymptotically in proba-

bility. This proves (ii). It only remains to prove Lemma 3.615

Proof of Lemma 3. Let δi,j = 1 whenever i = j and δi,j = 0 whenever i 6= j.

Let H̃i,j denote the element at the i-th row and j-th column of H̃n. We have

p̂n,i − p̃n,i
p̃n,i

=
−
∑n
j=1(δi,j − H̃i,j)X

2
j

X2′p̃n−1+h2

X2′(I−H̃n)X2

X2−XXi
n(X2−X2

)

.
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Standard calculations yield

n∑
j=1

(δi,j − H̃i,j)X
2
j =

(X2 −X2
)X2

i + (XX2 −X3)Xi +XX3 −X2
2

X2 −X2

and hence we can rewrite

p̂n,i − p̃n,i
p̃n,i

=
[−(X2 −X2

)X2
i − (XX2 −X3)Xi −XX3 +X2

2
][X2′p̃n − 1 + h2]

[X2 −XXi][n−1X2′(I − H̃n)X2]
.

This is a ratio of polynomials in Xi that can be identified with (.6). One easily

sees that X2′p̃n − 1 + h2 is OP (n−1/2) + OP (h2) and hence all the coefficients

of the polynomial in the numerator are (at least) OP (n−1/2) + OP (h2). By

Lemma 2, n−1X2′(I − H̃n)X2 tends to EX4
1 − 1 which nonzero by assumption.

Therefore the desired equation (.6) is satisfied with

v−2n = n−1/2 + h2,

An = −(X2 −X2
)[X2′p̃n − 1 + h2]

Bn = −(XX2 −X3)[X2′p̃n − 1 + h2]

Cn = (−XX3 +X2
2
)[X2′p̃n − 1 + h2]

En = X2n−1X2′(I − H̃n)X2.

Indeed, v−2n a2n = n−1/2a2n + h2a2n → 0 by the assumptions in Theorem 1. Let

us show that An is OP (v−2n ). We have

v2nAn =Op(v
2
nn
−1/2) +Op(v

2
nh

2)

=Op

(
1

1 + n1/2h2

)
+Op

(
1

1 + n−1/2h−2

)
=Op(1),

the last equality holding because the sequence (1 + n1/2h2)−1 is bounded. The

remaining conditions in Lemma 3 are checked in the same way. The proof of

Lemma 3 is complete. Hence the proof of Theorem 1 is complete, too.
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