C. G. Victora, R. Bahl, A. J. Barros, G. V. França, S. Horton et al., Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect, Lancet, vol.387, pp.475-490, 2016.

S. Mills, R. P. Ross, C. Hill, G. F. Fitzgerald, and C. Stanton, Milk intelligence: Mining milk for bioactive substances associated with human health, Int. Dairy J, vol.21, pp.377-401, 2011.

N. J. Andreas, B. Kampmann, and K. M. Le-doare, Human breast milk: A review on its composition and bioactivity, Early Hum. Dev, vol.91, pp.629-635, 2015.

F. Mosca and M. L. Giannì, Human milk: Composition and health benefits, La Pediatria Medica e Chirurgica, vol.39, 2017.

C. Y. Boquien, Human milk: An ideal food for nutrition of preterm newborn, Front. Pediatr, vol.6, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02623706

T. J. Johnson, A. L. Patel, H. R. Bigger, J. L. Engstrom, and P. P. Meier, Economic benefits and costs of human milk feedings: A strategy to reduce the risk of prematurity-related morbidities in very-low-birth-weight infants, Adv. Nutr. Int. Rev. J, vol.5, pp.207-212, 2014.

M. J. Sankar, B. Sinha, R. Chowdhury, N. Bhandari, S. Taneja et al., Optimal breastfeeding practices and infant and child mortality: A systematic review and meta-analysis, Acta Paediatr, vol.104, pp.3-13, 2015.

M. Quigley and W. Mcguire, Formula versus donor breast milk for feeding preterm or low birth weight infants, Cochrane Database Syst. Rev, 2014.

W. E. Corpeleijn, M. De-waard, V. Christmann, J. B. Van-goudoever, M. C. Jansen-van-der-weide et al., Effect of donor milk on severe infections and mortality in very low-birth-weight infants: The early nutrition study randomized clinical trial, JAMA Pediatr, vol.170, pp.654-661, 2016.

C. A. Boyd, M. A. Quigley, and P. Brocklehurst, Donor breast milk versus infant formula for preterm infants: Systematic review and meta-analysis, Arch. Dis. Child. Fetal Neonatal Ed, vol.92, pp.169-175, 2007.

J. C. Rozé, D. Darmaun, C. Y. Boquien, C. Flamant, J. C. Picaud et al., The apparent breastfeeding paradox in very preterm infants: Relationship between breast feeding

L. Epipage, BMJ Open, vol.2, p.834, 2012.

M. Curtis and J. Rigo, Extrauterine growth restriction in very-low-birthweight infants, Acta Paediatr, vol.93, pp.1563-1568, 2004.

R. A. Ehrenkranz, A. M. Dusick, B. R. Vohr, L. L. Wright, L. A. Wrage et al., Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants, Pediatrics, vol.117, pp.1253-1261, 2006.

B. Larroque, P. Y. Ancel, S. Marret, L. Marchand, M. André et al., Neurodevelopmental disabilities and special care of 5-year-old children born before 33 weeks of gestation (the EPIPAGE study): A longitudinal cohort study, Lancet, vol.371, pp.813-820, 2008.

A. Frondas-chauty, L. Simon, B. Branger, G. Gascoin, C. Flamant et al., Early growth and neurodevelopmental outcome in very preterm infants: Impact of gender, Arch. Dis. Child. Fetal Neonatal Ed, vol.99, pp.366-372, 2014.

C. Agostoni, G. Buonocore, V. P. Carnielli, M. De-curtis, D. Darmaun et al., Enteral nutrient supply for preterm infants: Commentary from the European Society of Paediatric Gastroenterology; Hepatology and Nutrition Committee on Nutrition, J. Pediatr. Gastr. Nutr, vol.50, pp.85-91, 2010.

C. Henriksen, A. C. Westerberg, A. Rønnestad, B. Nakstad, M. B. Veierød et al., Growth and nutrient intake among very-low-birth-weight infants fed fortified human milk during hospitalisation, Brit. J. Nutr, vol.102, pp.1179-1186, 2009.

M. C. Alexandre-gouabau, F. Courant, G. Le-gall, T. Moyon, D. Darmaun et al., Offspring metabolomic response to maternal protein restriction in a rat model of intrauterine growth restriction (IUGR), J. Proteome Res, vol.10, pp.3292-3302, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01928607

M. C. Alexandre-gouabau, F. Courant, T. Moyon, A. Küster, G. Le-gall et al., Maternal and cord blood LC-HRMS metabolomics reveal alterations in energy and polyamine metabolism, and oxidative stress in very-low birth weight infants, J. Proteome Res, vol.12, pp.2764-2778, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01928639

M. Alexandre-gouabau, T. Moyon, V. Cariou, J. Antignac, E. M. Qannari et al., Breast milk lipidome is associated with early growth trajectory in preterm infants, Nutrients, vol.10, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02429557

V. Fanos, L. Atzori, K. Makarenko, G. B. Melis, and E. Ferrazzi, Metabolomics application in maternal-fetal medicine, BioMed Res. Int, issue.9, 2013.

H. Demmelmair and B. Koletzko, Variation of metabolite and hormone contents in human milk, Clin. Perinatol, vol.44, pp.151-164, 2017.

S. Carraro, E. Baraldi, G. Giordano, P. Pirillo, M. Stocchero et al., Metabolomic Profile of Amniotic Fluid and Wheezing in the First Year of Life-A Healthy Birth Cohort Study, J. Pediatr, vol.196, pp.264-269, 2018.

F. C. Marincola, A. Noto, P. Caboni, A. Reali, L. Barberini et al., A metabolomic study of preterm human and formula milk by high resolution NMR and GC/MS analysis: Preliminary results. Matern, Fetal Neonatal Med, vol.25, pp.62-67, 2012.

J. Wu, M. Domellöf, A. M. Zivkovic, G. Larsson, A. Öhman et al., NMR-based metabolite profiling of human milk: A pilot study of methods for investigating compositional changes during lactation, Biochem. Biophys. Res. Comm, vol.469, pp.626-632, 2016.

A. George, M. Gay, R. Trengove, and D. Geddes, Human Milk Lipidomics: Current Techniques and Methodologies, Nutrients, vol.10, 1169.

A. R. Spevacek, J. T. Smilowitz, E. L. Chin, M. A. Underwood, J. B. German et al., Infant Maturity at Birth Reveals Minor Differences in the Maternal Milk Metabolome in the First Month of Lactation, J. Nutr, vol.45, pp.1698-1708, 2015.

U. K. Sundekilde, E. Downey, J. A. O'mahony, C. A. Shea, C. A. Ryan et al., The effect of gestational and lactational age on the human milk metabolome, Nutrients, vol.8, 2016.

D. Maffei and R. J. Schanler, Human milk is the feeding strategy to prevent necrotizing enterocolitis! Semin, vol.41, pp.36-40, 2017.

L. Bode, Human Milk Oligosaccharides in the Prevention of Necrotizing Enterocolitis: A journey from in vitro and in vivo models to mother-infant cohort studies, Front Pediatr, vol.6, 2018.

M. L. De-leoz, S. C. Gaerlan, J. S. Strum, L. M. Dimapasoc, M. Mirmiran et al., Lacto-N-tetraose; fucosylation; and secretor status are highly variable in human milk oligosaccharides from women delivering preterm, J. Proteome Res, vol.11, pp.4662-4672, 2012.

T. L. Alderete, C. Autran, B. E. Brekke, R. Knight, L. Bode et al., Associations between human milk oligosaccharides and infant body composition in the first 6 mo of life, Am. J. Clin. Nutr, vol.102, pp.1381-1388, 2015.

M. R. Charbonneau, D. Donnell, L. V. Blanton, S. M. Totten, J. C. Davis et al., Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition, Cell, vol.164, pp.859-871, 2016.

R. Rezaei, Z. Wu, Y. Hou, F. W. Bazer, and G. Wu, Amino acids and mammary gland development: Nutritional implications for milk production and neonatal growth, J. Anim. Sci. Biotechnol, 1920.

S. J. Metrustry, V. Karhunen, M. H. Edwards, C. Menni, T. Geisendorfer et al., Metabolomic signatures of low birthweight: Pathways to insulin resistance and oxidative stress, PLoS ONE, vol.13, 2018.

V. Ferchaud-roucher, E. Desnots, C. Naël, A. Martin-agnoux, M. C. Alexandre-gouabau et al., Use of UPLC-ESI-MS/MS to quantitate free amino acid concentrations in micro-samples of mammalian milk

S. Oursel, C. Junot, and F. Fenaille, Comparative analysis of native and permethylated human milk oligosaccharides by liquid chromatography coupled to high resolution mass spectrometry, J. Chromatogr, pp.49-57, 2017.

E. G. Bligh and W. J. Dyer, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol, vol.37, pp.911-917, 1959.

H. Gallart-ayala, F. Courant, S. Severe, J. P. Antignac, F. Morio et al., Versatile lipid profiling by liquid chromatography-high resolution mass spectrometry using all ion fragmentation and polarity switching. Preliminary application for serum samples phenotyping related to canine mammary cancer, Anal. Chim. Acta, vol.796, pp.75-83, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01928645

F. Courant, A. L. Royer, S. Chéreau, M. L. Morvan, F. Monteau et al., Implementation of a semi-automated strategy for the annotation of metabolomic fingerprints generated by liquid chromatography-high resolution mass spectrometry from biological samples, Analyst, vol.137, pp.4958-4967, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01928628

D. Kessner, M. Chambers, R. Burke, D. Agus, and P. Mallick, ProteoWizard: Open source software for rapid proteomics tools development, Bioinformatics, vol.24, pp.2534-2536, 2008.

C. A. Smith, E. J. Want, G. O'maille, R. Abagyan, and G. Siuzdak, XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification, Anal. Chem, vol.78, pp.779-787, 2006.

F. Giacomoni, G. Le-corguillé, M. Monsoor, M. Landi, P. Pericard et al., Workflow4Metabolomics: A collaborative research infrastructure for computational metabolomics, vol.31, pp.1493-1495, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01123263

C. Kuhl, R. Tautenhahn, C. Bottcher, T. R. Larson, and S. Neumann, CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets, Anal. Chem, vol.84, pp.283-289, 2011.

F. M. Van-der-kloet, I. Bobeldijk, E. R. Verheij, and R. H. Jellema, Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping, J. Prot. Res, vol.8, pp.5132-5141, 2009.

W. B. Dunn, D. Broadhurst, P. Begley, E. Zelena, S. Francis-mcintyre et al., Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry, Nat. Protoc, 1060.

V. Ferchaud-roucher, M. Croyal, M. Krempf, and K. Ouguerram, Plasma lipidome characterization using UHPLC-HRMS and ion mobility of hypertriglyceridemic patients on nicotinic acid, Atherosclerosis, vol.241, pp.123-124, 2015.

R. A. Van-den-berg, H. C. Hoefsloot, J. A. Westerhuis, A. K. Smilde, and M. J. Van-der-werf, Centering, scaling, and transformations: Improving the biological information content of metabolomics data, BMC Genom, vol.7, p.142, 2006.

A. El-ghaziri, M. Qannari-el, T. Moyon, M. Alexandre-gouabau, and . Anova-pls, A new method for the analysis of multivariate data depending on several factors, Electron. J. Appl. Stat. Anal, vol.8, pp.214-235, 2015.

R. Henrion, N-way principal component analysis theory; algorithms and applications, Chemometr. Intell. Lab, vol.25, pp.1-23, 1994.

J. A. Westerhuis, T. Kourti, and J. F. Macgregor, Analysis of multiblock and hierarchical PCA and PLS models, J. Chemometr, vol.12, pp.301-321, 1998.

L. Simon, A. Frondas-chauty, T. Senterre, C. Flamant, D. Darmaun et al., Determinants of body composition in preterm infants at the time of hospital discharge, Am. J. Clin. Nutr, vol.100, pp.98-104, 2014.

D. K. Steward and K. F. Pridham, Growth patterns of extremely low-birth-weight hospitalized preterm infants, J. Obstet. Gynaecol. Neonat. Nurs, vol.31, pp.57-65, 2002.

N. Sprenger, C. A. De-castro, P. Steenhout, and S. K. Thakkar, Longitudinal change of selected human milk oligosaccharides and association to infants' growth, an observatory, single center, longitudinal cohort study, PLoS ONE, vol.12, 2017.

C. J. Lynch and S. H. Adams, Branched-chain amino acids in metabolic signalling and insulin resistance, Nat. Rev. Endocrinol, vol.10, 2014.

A. De-luca, R. Hankard, M. C. Alexandre-gouabau, V. Ferchaud-roucher, D. Darmaun et al., Higher concentrations of branched-chain amino acids in breast milk of obese mothers, Nutr. J, vol.32, pp.1295-1298, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01605046

S. E. Mccormack, O. Shaham, M. A. Mccarthy, A. A. Deik, T. J. Wang et al., Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents, Pediatr. Obes, vol.8, pp.52-61, 2013.

F. F. Kirchberg, U. Harder, M. Weber, V. Grote, H. Demmelmair et al., Dietary protein intake affects amino acid and acylcarnitine metabolism in infants aged 6 months, J. Clin. Endocr. Metab, vol.100, pp.149-158, 2015.

Q. Ma, S. Hu, M. Bannai, and G. Wu, L-Arginine regulates protein turnover in porcine mammary epithelial cells to enhance milk protein synthesis, Amino Acids, vol.50, pp.621-628, 2018.

S. W. Kim and G. Wu, Regulatory role for amino acids in mammary gland growth and milk synthesis, Amino Acids, vol.37, pp.89-95, 2009.

C. Tan, Z. Zhai, X. Ni, H. Wang, Y. Ji et al., Metabolomic profiles reveal potential factors that correlate with lactation performance in sow milk, Sci. Rep, vol.8, 2018.

L. Bode, Recent advances on structure; metabolism; and function of human milk oligosaccharides, J. Nutr, vol.136, pp.2127-2130, 2006.

J. Plaza-zamora, M. M. Sabater-molina, M. Rodríguez-palmero, M. Rivero, V. Bosch et al., Polyamines in human breast milk for preterm and term infants, Br. J. Nutr, vol.3, pp.1-5, 2013.

P. S. Shah, V. S. Shah, and L. E. Kelly, Arginine supplementation for prevention of necrotising enterocolitis in preterm infants, Cochrane Database Syst. Rev, 2017.

A. M. Blazquez, C. Cives-losada, A. Iglesia, J. J. Marin, and M. J. Monte, Lactation during cholestasis: Role of ABC proteins in bile acid traffic across the mammary gland, Sci. Rep, vol.7, p.7475, 2017.

H. Luan, L. F. Liu, Z. Tang, M. Zhang, K. K. Chua et al., Comprehensive urinary metabolomic profiling and identification of potential noninvasive marker for idiopathic Parkinson's disease, Sci. Rep. UK, vol.5, 2015.

P. Puchalska and P. A. Crawford, Multi-dimensional roles of ketone bodies in fuel metabolism; signaling; and therapeutics, Cell Metab, vol.25, pp.262-284, 2017.

K. A. Dingess, C. J. Valentine, N. J. Ollberding, B. S. Davidson, J. G. Woo et al., Branched-chain fatty acid composition of human milk and the impact of maternal diet: The Global Exploration of Human Milk (GEHM) Study. Am, J. Clin. Nutr, vol.105, pp.177-184, 2016.

R. R. Ran-ressler, L. Khailova, K. M. Arganbright, C. K. Adkins-rieck, Z. E. Jouni et al., Branched chain fatty acids reduce the incidence of necrotizing enterocolitis and alter gastrointestinal microbial ecology in a neonatal rat model, PLoS ONE, vol.6, 2011.

S. Wongtangtintharn, H. Oku, H. Iwasaki, and T. Toda, Effect of branched-chain fatty acids on fatty acid biosynthesis of human breast cancer cells, J. Nutr. Sci. Vitaminol, vol.50, pp.137-143, 2004.

B. Vlaeminck, V. Fievez, A. R. Cabrita, A. J. Fonseca, and R. J. Dewhurst, Factors affecting odd-and branched-chain fatty acids in milk: A review, Anim. Feed Sci. Tech, vol.131, pp.389-417, 2006.

B. Jenkins, J. West, and A. Koulman, A review of odd-chain fatty acid metabolism and the role of pentadecanoic acid (C15: 0) and heptadecanoic acid (C17: 0) in health and disease, Molecules, vol.20, pp.2425-2444, 2015.

B. D. Gill and H. E. Indyk, Development and application of a liquid chromatographic method for analysis of nucleotides and nucleosides in milk and infant formulas, Int. Dairy J, vol.17, pp.596-605, 2007.

M. L. Gianni, P. Roggero, and F. Mosca, Human milk protein vs. formula protein and their use in preterm infants, Cur. Opin. Clin. Nutr, vol.22, 2019.

S. H. Zeisel, Choline: Critical role during fetal development and dietary requirements in adults, Annu. Rev. Nutr, vol.26, pp.229-250, 2006.

D. S. Newburg and L. Morelli, Human milk and infant intestinal mucosal glycans guide succession of the neonatal intestinal microbiota, Pediatr. Res, vol.77, pp.115-120, 2015.